docs: Add clear documentation for Ollama embedding usage

This commit is contained in:
Andy Lee
2025-08-08 18:09:06 -07:00
parent 068fcd71cf
commit 1071479c05
2 changed files with 35 additions and 3 deletions

View File

@@ -98,6 +98,27 @@ uv sync
</details>
### 🆕 Using Ollama for Embeddings (Privacy-Focused)
LEANN now supports Ollama for generating embeddings locally, perfect for privacy-sensitive applications:
```bash
# First, pull an embedding model from Ollama
ollama pull nomic-embed-text # or mxbai-embed-large, bge-m3, etc.
# Build an index using Ollama embeddings
leann build my-project --docs ./documents --embedding-model nomic-embed-text --embedding-mode ollama
# Use with example apps
python -m apps.document_rag --embedding-model nomic-embed-text --embedding-mode ollama --query "Your question"
```
**Available Ollama Embedding Models:**
- `nomic-embed-text`: High-performing 768-dim embeddings
- `mxbai-embed-large`: Large 1024-dim embeddings
- `bge-m3`: Multilingual embeddings
- See [Ollama library](https://ollama.com/library) for more embedding models
## Quick Start
Our declarative API makes RAG as easy as writing a config file.
@@ -189,8 +210,8 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small or mlx-community/multilingual-e5-base-mlx
--embedding-mode MODE # sentence-transformers, openai, or mlx
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)

View File

@@ -49,14 +49,25 @@ Based on our experience developing LEANN, embedding models fall into three categ
- **Cons**: Slower inference, longer index build times
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
### Quick Start: OpenAI Embeddings (Fastest Setup)
### Quick Start: Cloud and Local Embedding Options
**OpenAI Embeddings (Fastest Setup)**
For immediate testing without local model downloads:
```bash
# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small
```
**Ollama Embeddings (Privacy-Focused)**
For local embeddings with complete privacy:
```bash
# First, pull an embedding model
ollama pull nomic-embed-text
# Use Ollama embeddings
--embedding-mode ollama --embedding-model nomic-embed-text
```
<details>
<summary><strong>Cloud vs Local Trade-offs</strong></summary>