Add Anthropic LLM support (#185)

* Add Anthropic LLM support

Signed-off-by: droctothorpe <mythicalsunlight@gmail.com>

* Update skypilot link

Signed-off-by: droctothorpe <mythicalsunlight@gmail.com>

* Handle anthropic base_url

Signed-off-by: droctothorpe <mythicalsunlight@gmail.com>

* Address ruff format finding

Signed-off-by: droctothorpe <mythicalsunlight@gmail.com>

---------

Signed-off-by: droctothorpe <mythicalsunlight@gmail.com>
This commit is contained in:
Alex
2025-12-12 13:53:41 -05:00
committed by GitHub
parent 3629ccf8f7
commit 17cbd07b25
5 changed files with 137 additions and 11 deletions

View File

@@ -201,7 +201,7 @@ LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`,
#### LLM Backend
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, and Any OpenAI compatible API).
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, Anthropic, and Any OpenAI compatible API).
<details>
@@ -269,6 +269,7 @@ Below is a list of base URLs for common providers to get you started.
| **SiliconFlow** | `https://api.siliconflow.cn/v1` |
| **Zhipu (BigModel)** | `https://open.bigmodel.cn/api/paas/v4/` |
| **Mistral AI** | `https://api.mistral.ai/v1` |
| **Anthropic** | `https://api.anthropic.com/v1` |
@@ -328,7 +329,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm TYPE # LLM backend: openai, ollama, hf, or anthropic (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
@@ -1057,10 +1058,10 @@ Options:
leann ask INDEX_NAME [OPTIONS]
Options:
--llm {ollama,openai,hf} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode
--top-k N Retrieval count (default: 20)
--llm {ollama,openai,hf,anthropic} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode
--top-k N Retrieval count (default: 20)
```
**List Command:**

View File

@@ -454,7 +454,7 @@ leann search my-index "your query" \
### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://docs.skypilot.co/en/latest/docs/index.html). A template is provided at `sky/leann-build.yaml`.
```bash
# One-time: install and configure SkyPilot

View File

@@ -12,7 +12,13 @@ from typing import Any, Optional
import torch
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
from .settings import (
resolve_anthropic_api_key,
resolve_anthropic_base_url,
resolve_ollama_host,
resolve_openai_api_key,
resolve_openai_base_url,
)
# Configure logging
logging.basicConfig(level=logging.INFO)
@@ -845,6 +851,81 @@ class OpenAIChat(LLMInterface):
return f"Error: Could not get a response from OpenAI. Details: {e}"
class AnthropicChat(LLMInterface):
"""LLM interface for Anthropic Claude models."""
def __init__(
self,
model: str = "claude-haiku-4-5",
api_key: Optional[str] = None,
base_url: Optional[str] = None,
):
self.model = model
self.base_url = resolve_anthropic_base_url(base_url)
self.api_key = resolve_anthropic_api_key(api_key)
if not self.api_key:
raise ValueError(
"Anthropic API key is required. Set ANTHROPIC_API_KEY environment variable or pass api_key parameter."
)
logger.info(
"Initializing Anthropic Chat with model='%s' and base_url='%s'",
model,
self.base_url,
)
try:
import anthropic
# Allow custom Anthropic-compatible endpoints via base_url
self.client = anthropic.Anthropic(
api_key=self.api_key,
base_url=self.base_url,
)
except ImportError:
raise ImportError(
"The 'anthropic' library is required for Anthropic models. Please install it with 'pip install anthropic'."
)
def ask(self, prompt: str, **kwargs) -> str:
logger.info(f"Sending request to Anthropic with model {self.model}")
try:
# Anthropic API parameters
params = {
"model": self.model,
"max_tokens": kwargs.get("max_tokens", 1000),
"messages": [{"role": "user", "content": prompt}],
}
# Add optional parameters
if "temperature" in kwargs:
params["temperature"] = kwargs["temperature"]
if "top_p" in kwargs:
params["top_p"] = kwargs["top_p"]
response = self.client.messages.create(**params)
# Extract text from response
response_text = response.content[0].text
# Log token usage
print(
f"Total tokens = {response.usage.input_tokens + response.usage.output_tokens}, "
f"input tokens = {response.usage.input_tokens}, "
f"output tokens = {response.usage.output_tokens}"
)
if response.stop_reason == "max_tokens":
print("The query is exceeding the maximum allowed number of tokens")
return response_text.strip()
except Exception as e:
logger.error(f"Error communicating with Anthropic: {e}")
return f"Error: Could not get a response from Anthropic. Details: {e}"
class SimulatedChat(LLMInterface):
"""A simple simulated chat for testing and development."""
@@ -897,6 +978,12 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
)
elif llm_type == "gemini":
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
elif llm_type == "anthropic":
return AnthropicChat(
model=model or "claude-3-5-sonnet-20241022",
api_key=llm_config.get("api_key"),
base_url=llm_config.get("base_url"),
)
elif llm_type == "simulated":
return SimulatedChat()
else:

View File

@@ -11,7 +11,12 @@ from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
from .interactive_utils import create_cli_session
from .registry import register_project_directory
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
from .settings import (
resolve_anthropic_base_url,
resolve_ollama_host,
resolve_openai_api_key,
resolve_openai_base_url,
)
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
@@ -291,7 +296,7 @@ Examples:
"--llm",
type=str,
default="ollama",
choices=["simulated", "ollama", "hf", "openai"],
choices=["simulated", "ollama", "hf", "openai", "anthropic"],
help="LLM provider (default: ollama)",
)
ask_parser.add_argument(
@@ -341,7 +346,7 @@ Examples:
"--api-key",
type=str,
default=None,
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
help="API key for cloud LLM providers (OpenAI, Anthropic)",
)
# List command
@@ -1616,6 +1621,12 @@ Examples:
resolved_api_key = resolve_openai_api_key(args.api_key)
if resolved_api_key:
llm_config["api_key"] = resolved_api_key
elif args.llm == "anthropic":
# For Anthropic, pass base_url and API key if provided
if args.api_base:
llm_config["base_url"] = resolve_anthropic_base_url(args.api_base)
if args.api_key:
llm_config["api_key"] = args.api_key
chat = LeannChat(index_path=index_path, llm_config=llm_config)

View File

@@ -9,6 +9,7 @@ from typing import Any
# Default fallbacks to preserve current behaviour while keeping them in one place.
_DEFAULT_OLLAMA_HOST = "http://localhost:11434"
_DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1"
_DEFAULT_ANTHROPIC_BASE_URL = "https://api.anthropic.com"
def _clean_url(value: str) -> str:
@@ -52,6 +53,23 @@ def resolve_openai_base_url(explicit: str | None = None) -> str:
return _clean_url(_DEFAULT_OPENAI_BASE_URL)
def resolve_anthropic_base_url(explicit: str | None = None) -> str:
"""Resolve the base URL for Anthropic-compatible services."""
candidates = (
explicit,
os.getenv("LEANN_ANTHROPIC_BASE_URL"),
os.getenv("ANTHROPIC_BASE_URL"),
os.getenv("LOCAL_ANTHROPIC_BASE_URL"),
)
for candidate in candidates:
if candidate:
return _clean_url(candidate)
return _clean_url(_DEFAULT_ANTHROPIC_BASE_URL)
def resolve_openai_api_key(explicit: str | None = None) -> str | None:
"""Resolve the API key for OpenAI-compatible services."""
@@ -61,6 +79,15 @@ def resolve_openai_api_key(explicit: str | None = None) -> str | None:
return os.getenv("OPENAI_API_KEY")
def resolve_anthropic_api_key(explicit: str | None = None) -> str | None:
"""Resolve the API key for Anthropic services."""
if explicit:
return explicit
return os.getenv("ANTHROPIC_API_KEY")
def encode_provider_options(options: dict[str, Any] | None) -> str | None:
"""Serialize provider options for child processes."""