feat: Add ColQwen multimodal PDF retrieval integration

This commit is contained in:
aakash
2025-12-19 13:54:38 -08:00
parent 0175bc9c20
commit 360fdf575c
3 changed files with 0 additions and 376 deletions

View File

@@ -1,200 +0,0 @@
# ColQwen Integration Guide
Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali models.
## Quick Start
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
### 1. Install Dependencies
```bash
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
### 2. Basic Usage
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
## Commands
### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 \
--pages-dir ./page_images/ # Optional: save page images
```
**Options:**
- `--pdfs`: Directory containing PDF files (or single PDF path)
- `--index`: Name for the index (required)
- `--model`: `colqwen2` (default) or `colpali`
- `--pages-dir`: Directory to save page images (optional)
### Search Index
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
**Options:**
- `--top-k`: Number of results to return (default: 5)
- `--model`: Model used for search (should match build model)
### Interactive Q&A
```bash
python -m apps.colqwen_rag ask my_index --interactive
```
**Commands in interactive mode:**
- Type your questions naturally
- `help`: Show available commands
- `quit`/`exit`/`q`: Exit interactive mode
## 🧪 Test & Reproduce Results
Run the reproduction test for issue #119:
```bash
python test_colqwen_reproduction.py
```
This will:
1. ✅ Check dependencies
2. 📥 Download sample PDF (Attention Is All You Need paper)
3. 🏗️ Build test index
4. 🔍 Run sample queries
5. 📊 Show how to generate similarity maps
## 🎨 Advanced: Similarity Maps
For visual similarity analysis, use the existing advanced script:
```bash
cd apps/multimodal/vision-based-pdf-multi-vector/
python multi-vector-leann-similarity-map.py
```
Edit the script to customize:
- `QUERY`: Your question
- `MODEL`: "colqwen2" or "colpali"
- `USE_HF_DATASET`: Use HuggingFace dataset or local PDFs
- `SIMILARITY_MAP`: Generate heatmaps
- `ANSWER`: Enable Qwen-VL answer generation
## 🔧 How It Works
### ColQwen2 vs ColPali
- **ColQwen2** (`vidore/colqwen2-v1.0`): Latest vision-language model
- **ColPali** (`vidore/colpali-v1.2`): Proven multimodal retriever
### Architecture
1. **PDF → Images**: Convert PDF pages to images (150 DPI)
2. **Vision Encoding**: Process images with ColQwen2/ColPali
3. **Multi-Vector Index**: Build LEANN HNSW index with multiple embeddings per page
4. **Query Processing**: Encode text queries with same model
5. **Similarity Search**: Find most relevant pages/regions
6. **Visual Maps**: Generate attention heatmaps (optional)
### Device Support
- **CUDA**: Best performance with GPU acceleration
- **MPS**: Apple Silicon Mac support
- **CPU**: Fallback for any system (slower)
Auto-detection: CUDA > MPS > CPU
## 📊 Performance Tips
### For Best Performance:
```bash
# Use ColQwen2 for latest features
--model colqwen2
# Save page images for reuse
--pages-dir ./cached_pages/
# Adjust batch size based on GPU memory
# (automatically handled)
```
### For Large Document Sets:
- Process PDFs in batches
- Use SSD storage for index files
- Consider using CUDA if available
## 🔗 Related Resources
- **Fast-PLAID**: https://github.com/lightonai/fast-plaid
- **Pylate**: https://github.com/lightonai/pylate
- **ColBERT**: https://github.com/stanford-futuredata/ColBERT
- **ColPali Paper**: Vision-Language Models for Document Retrieval
- **Issue #119**: https://github.com/yichuan-w/LEANN/issues/119
## 🐛 Troubleshooting
### PDF Conversion Issues (macOS)
```bash
# Install poppler
brew install poppler
which pdfinfo && pdfinfo -v
```
### Memory Issues
- Reduce batch size (automatically handled)
- Use CPU instead of GPU: `export CUDA_VISIBLE_DEVICES=""`
- Process fewer PDFs at once
### Model Download Issues
- Ensure internet connection for first run
- Models are cached after first download
- Use HuggingFace mirrors if needed
### Import Errors
```bash
# Ensure all dependencies installed
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
# Check PyTorch installation
python -c "import torch; print(torch.__version__)"
```
## 💡 Examples
### Research Paper Analysis
```bash
# Index your research papers
python -m apps.colqwen_rag build --pdfs ~/Papers/AI/ --index ai_papers
# Ask research questions
python -m apps.colqwen_rag search ai_papers "What are the limitations of transformer models?"
python -m apps.colqwen_rag search ai_papers "How does BERT compare to GPT?"
```
### Document Q&A
```bash
# Index business documents
python -m apps.colqwen_rag build --pdfs ~/Documents/Reports/ --index reports
# Interactive analysis
python -m apps.colqwen_rag ask reports --interactive
```
### Visual Analysis
```bash
# Generate similarity maps for specific queries
cd apps/multimodal/vision-based-pdf-multi-vector/
# Edit multi-vector-leann-similarity-map.py with your query
python multi-vector-leann-similarity-map.py
# Check ./figures/ for generated heatmaps
```
---
**🎯 This integration makes ColQwen as easy to use as other LEANN features while maintaining the full power of multimodal document understanding!**

View File

@@ -60,20 +60,6 @@ python -m apps.colqwen_rag ask my_index --interactive
- `help`: Show available commands
- `quit`/`exit`/`q`: Exit interactive mode
## 🧪 Test & Reproduce Results
Run the reproduction test for issue #119:
```bash
python test_colqwen_reproduction.py
```
This will:
1. ✅ Check dependencies
2. 📥 Download sample PDF (Attention Is All You Need paper)
3. 🏗️ Build test index
4. 🔍 Run sample queries
5. 📊 Show how to generate similarity maps
## 🎨 Advanced: Similarity Maps
For visual similarity analysis, use the existing advanced script:

View File

@@ -1,162 +0,0 @@
#!/usr/bin/env python3
"""
Test script to reproduce ColQwen results from issue #119
https://github.com/yichuan-w/LEANN/issues/119
This script demonstrates the ColQwen workflow:
1. Download sample PDF
2. Convert to images
3. Build multimodal index
4. Run test queries
5. Generate similarity maps
"""
import importlib.util
import os
from pathlib import Path
def main():
print("🧪 ColQwen Reproduction Test - Issue #119")
print("=" * 50)
# Check if we're in the right directory
repo_root = Path.cwd()
if not (repo_root / "apps" / "colqwen_rag.py").exists():
print("❌ Please run this script from the LEANN repository root")
print(" cd /path/to/LEANN && python test_colqwen_reproduction.py")
return
print("✅ Repository structure looks good")
# Step 1: Check dependencies
print("\n📦 Checking dependencies...")
try:
import torch
# Check if pdf2image is available
if importlib.util.find_spec("pdf2image") is None:
raise ImportError("pdf2image not found")
# Check if colpali_engine is available
if importlib.util.find_spec("colpali_engine") is None:
raise ImportError("colpali_engine not found")
print("✅ Core dependencies available")
print(f" - PyTorch: {torch.__version__}")
print(f" - CUDA available: {torch.cuda.is_available()}")
print(
f" - MPS available: {hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()}"
)
except ImportError as e:
print(f"❌ Missing dependency: {e}")
print("\n📥 Install missing dependencies:")
print(
" uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn"
)
return
# Step 2: Download sample PDF
print("\n📄 Setting up sample PDF...")
pdf_dir = repo_root / "test_pdfs"
pdf_dir.mkdir(exist_ok=True)
sample_pdf = pdf_dir / "attention_paper.pdf"
if not sample_pdf.exists():
print("📥 Downloading sample paper (Attention Is All You Need)...")
import urllib.request
try:
urllib.request.urlretrieve("https://arxiv.org/pdf/1706.03762.pdf", sample_pdf)
print(f"✅ Downloaded: {sample_pdf}")
except Exception as e:
print(f"❌ Download failed: {e}")
print(" Please manually download a PDF to test_pdfs/attention_paper.pdf")
return
else:
print(f"✅ Using existing PDF: {sample_pdf}")
# Step 3: Test ColQwen RAG
print("\n🚀 Testing ColQwen RAG...")
# Build index
print("\n1⃣ Building multimodal index...")
build_cmd = f"python -m apps.colqwen_rag build --pdfs {pdf_dir} --index test_attention --model colqwen2 --pages-dir test_pages"
print(f" Command: {build_cmd}")
try:
result = os.system(build_cmd)
if result == 0:
print("✅ Index built successfully!")
else:
print("❌ Index building failed")
return
except Exception as e:
print(f"❌ Error building index: {e}")
return
# Test search
print("\n2⃣ Testing search...")
test_queries = [
"How does attention mechanism work?",
"What is the transformer architecture?",
"How do you compute self-attention?",
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
search_cmd = f'python -m apps.colqwen_rag search test_attention "{query}" --top-k 3'
print(f" Command: {search_cmd}")
try:
result = os.system(search_cmd)
if result == 0:
print("✅ Search completed")
else:
print("❌ Search failed")
except Exception as e:
print(f"❌ Search error: {e}")
# Test interactive mode (briefly)
print("\n3⃣ Testing interactive mode...")
print(" You can test interactive mode with:")
print(" python -m apps.colqwen_rag ask test_attention --interactive")
# Step 4: Test similarity maps (using existing script)
print("\n4⃣ Testing similarity maps...")
similarity_script = (
repo_root
/ "apps"
/ "multimodal"
/ "vision-based-pdf-multi-vector"
/ "multi-vector-leann-similarity-map.py"
)
if similarity_script.exists():
print(" You can generate similarity maps with:")
print(f" cd {similarity_script.parent}")
print(" python multi-vector-leann-similarity-map.py")
print(" (Edit the script to use your local PDF)")
print("\n🎉 ColQwen reproduction test completed!")
print("\n📋 Summary:")
print(" ✅ Dependencies checked")
print(" ✅ Sample PDF prepared")
print(" ✅ Index building tested")
print(" ✅ Search functionality tested")
print(" ✅ Interactive mode available")
print(" ✅ Similarity maps available")
print("\n🔗 Related repositories to check:")
print(" - https://github.com/lightonai/fast-plaid")
print(" - https://github.com/lightonai/pylate")
print(" - https://github.com/stanford-futuredata/ColBERT")
print("\n📝 Next steps:")
print(" 1. Test with your own PDFs")
print(" 2. Experiment with different queries")
print(" 3. Generate similarity maps for visual analysis")
print(" 4. Compare ColQwen2 vs ColPali performance")
if __name__ == "__main__":
main()