fix larger file read and add faq
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -29,6 +29,7 @@ build/
|
||||
nprobe_logs/
|
||||
micro/results
|
||||
micro/contriever-INT8
|
||||
examples/data/
|
||||
*.qdstrm
|
||||
benchmark_results/
|
||||
results/
|
||||
|
||||
19
README.md
19
README.md
@@ -241,6 +241,25 @@ uv run python tests/sanity_checks/test_distance_functions.py
|
||||
# Verify L2 implementation
|
||||
uv run python tests/sanity_checks/test_l2_verification.py
|
||||
```
|
||||
## ❓ FAQ
|
||||
|
||||
### Common Issues
|
||||
|
||||
#### NCCL Topology Error
|
||||
**Problem**: You encounter `ncclTopoComputePaths` error during document processing:
|
||||
```
|
||||
ncclTopoComputePaths (system=<optimized out>, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688
|
||||
```
|
||||
|
||||
**Solution**: Set these environment variables before running your script:
|
||||
```bash
|
||||
export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml
|
||||
export NCCL_DEBUG=INFO
|
||||
export NCCL_DEBUG_SUBSYS=INIT,GRAPH
|
||||
export NCCL_IB_DISABLE=1
|
||||
export NCCL_NET_PLUGIN=none
|
||||
export NCCL_SOCKET_IFNAME=ens5
|
||||
|
||||
|
||||
## 📈 Roadmap
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ import asyncio
|
||||
import os
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
import leann_backend_hnsw # Import to ensure backend registration
|
||||
import leann_backend_diskann # Import to ensure backend registration
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
@@ -21,9 +21,9 @@ file_extractor: dict[str, BaseReader] = {
|
||||
".xlsx": reader,
|
||||
}
|
||||
node_parser = DoclingNodeParser(
|
||||
chunker=HybridChunker(tokenizer="Qwen/Qwen3-Embedding-4B", max_tokens=64)
|
||||
chunker=HybridChunker(tokenizer="Qwen/Qwen3-Embedding-4B", max_tokens=256)
|
||||
)
|
||||
|
||||
print("Loading documents...")
|
||||
documents = SimpleDirectoryReader(
|
||||
"examples/data",
|
||||
recursive=True,
|
||||
@@ -31,7 +31,7 @@ documents = SimpleDirectoryReader(
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".docx", ".pptx", ".xlsx"]
|
||||
).load_data(show_progress=True)
|
||||
|
||||
print("Documents loaded.")
|
||||
# Extract text from documents and prepare for Leann
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
@@ -50,7 +50,7 @@ if INDEX_DIR.exists():
|
||||
print(f"\n[PHASE 1] Building Leann index...")
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever", # Using a common sentence transformer model
|
||||
graph_degree=32,
|
||||
complexity=64
|
||||
@@ -67,9 +67,10 @@ async def main():
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=INDEX_PATH)
|
||||
|
||||
query = "Based on the paper, what are the main techniques LEANN and DLPM explores to reduce the storage overhead?"
|
||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||
# query = "What is the Off-policy training in RL?"
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(query, top_k=10, recompute_beighbor_embeddings=True)
|
||||
chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True)
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -265,6 +265,7 @@ class HNSWSearcher(LeannBackendSearcherInterface):
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, any]:
|
||||
"""Search using HNSW index with optional recompute functionality"""
|
||||
from . import faiss
|
||||
ef = kwargs.get("ef", 200) # Size of the dynamic candidate list for search
|
||||
|
||||
# Recompute parameters
|
||||
@@ -293,15 +294,20 @@ class HNSWSearcher(LeannBackendSearcherInterface):
|
||||
# Set search parameter
|
||||
self._index.hnsw.efSearch = ef
|
||||
|
||||
# Prepare output arrays for the older FAISS SWIG API
|
||||
batch_size = query.shape[0]
|
||||
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
||||
|
||||
if recompute_neighbor_embeddings:
|
||||
# Use custom search with recompute
|
||||
# This would require implementing custom HNSW search logic
|
||||
# For now, we'll fall back to standard search
|
||||
print("WARNING: Recompute functionality for HNSW not yet implemented, using standard search")
|
||||
distances, labels = self._index.search(query, top_k)
|
||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels))
|
||||
else:
|
||||
# Standard FAISS search
|
||||
distances, labels = self._index.search(query, top_k)
|
||||
# Standard FAISS search using SWIG API
|
||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels))
|
||||
|
||||
return {"labels": labels, "distances": distances}
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user