refactor: check if current emb_server has correct passages/embedder

This commit is contained in:
Andy Lee
2025-07-13 22:33:33 -07:00
parent 77ac013a74
commit 3b5a185e60
5 changed files with 915 additions and 229 deletions

View File

@@ -14,43 +14,51 @@ dotenv.load_dotenv()
# Default WeChat export directory
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
def create_leann_index_from_multiple_wechat_exports(export_dirs: List[Path], index_path: str = "wechat_history_index.leann", max_count: int = -1):
def create_leann_index_from_multiple_wechat_exports(
export_dirs: List[Path],
index_path: str = "wechat_history_index.leann",
max_count: int = -1,
):
"""
Create LEANN index from multiple WeChat export data sources.
Args:
export_dirs: List of Path objects pointing to WeChat export directories
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process per export
"""
print("Creating LEANN index from multiple WeChat export data sources...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each WeChat export directory
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i+1}/{len(export_dirs)}: {export_dir}")
print(
f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}"
)
try:
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=False # Disable concatenation - one message per document
concatenate_messages=False, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
@@ -60,16 +68,18 @@ def create_leann_index_from_multiple_wechat_exports(export_dirs: List[Path], ind
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
print(
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
@@ -77,43 +87,50 @@ def create_leann_index_from_multiple_wechat_exports(export_dirs: List[Path], ind
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
print(
f"Created {len(all_texts)} text chunks from {len(all_documents)} documents"
)
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="Qwen/Qwen3-Embedding-0.6B",
graph_degree=32,
embedding_model="Qwen/Qwen3-Embedding-0.6B",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(export_dir: str = None, index_path: str = "wechat_history_index.leann", max_count: int = 1000):
def create_leann_index(
export_dir: str = None,
index_path: str = "wechat_history_index.leann",
max_count: int = 1000,
):
"""
Create LEANN index from WeChat chat history data.
Args:
export_dir: Path to the WeChat export directory (optional, uses default if None)
index_path: Path to save the LEANN index
@@ -121,34 +138,35 @@ def create_leann_index(export_dir: str = None, index_path: str = "wechat_history
"""
print("Creating LEANN index from WeChat chat history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
documents = reader.load_data(
wechat_export_dir=export_dir,
max_count=max_count,
concatenate_messages=False # Disable concatenation - one message per document
concatenate_messages=False, # Disable concatenation - one message per document
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} chat documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
@@ -156,54 +174,55 @@ def create_leann_index(export_dir: str = None, index_path: str = "wechat_history
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ", # MLX-optimized model
graph_degree=32,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=5,
query,
top_k=5,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
@@ -212,52 +231,74 @@ async def query_leann_index(index_path: str, query: str):
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={
"temperature": 0.0,
"max_tokens": 1000
}
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann: {chat_response}")
async def main():
"""Main function with integrated WeChat export functionality."""
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN WeChat History Reader - Create and query WeChat chat history index')
parser.add_argument('--export-dir', type=str, default=DEFAULT_WECHAT_EXPORT_DIR,
help=f'Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})')
parser.add_argument('--index-dir', type=str, default="./wechat_history_index_leann_test",
help='Directory to store the LEANN index (default: ./wechat_history_index_leann_test)')
parser.add_argument('--max-entries', type=int, default=5000,
help='Maximum number of chat entries to process (default: 5000)')
parser.add_argument('--query', type=str, default=None,
help='Single query to run (default: runs example queries)')
parser.add_argument('--force-export', action='store_true', default=False,
help='Force re-export of WeChat data even if exports exist')
parser = argparse.ArgumentParser(
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
)
parser.add_argument(
"--export-dir",
type=str,
default=DEFAULT_WECHAT_EXPORT_DIR,
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
)
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_index_leann_test",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=5000,
help="Maximum number of chat entries to process (default: 5000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--force-export",
action="store_true",
default=False,
help="Force re-export of WeChat data even if exports exist",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
print(f"Using WeChat export directory: {args.export_dir}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Initialize WeChat reader with export capabilities
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Exiting.")
return
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_wechat_exports(export_dirs, INDEX_PATH, max_count=args.max_entries)
index_path = create_leann_index_from_multiple_wechat_exports(
export_dirs, INDEX_PATH, max_count=args.max_entries
)
if index_path:
if args.query:
# Run single query
@@ -267,10 +308,11 @@ async def main():
queries = [
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
]
for query in queries:
print("\n" + "="*60)
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())
asyncio.run(main())

View File

@@ -14,6 +14,7 @@ import os
from contextlib import contextmanager
import zmq
import numpy as np
import msgpack
from pathlib import Path
RED = "\033[91m"
@@ -26,6 +27,7 @@ class SimplePassageLoader:
"""
def __init__(self, passages_data: Optional[Dict[str, Any]] = None):
self.passages_data = passages_data or {}
self._meta_path = ''
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
"""Get passage by ID"""
@@ -38,6 +40,9 @@ class SimplePassageLoader:
def __len__(self) -> int:
return len(self.passages_data)
def keys(self):
return self.passages_data.keys()
def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
"""
@@ -101,8 +106,13 @@ def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
def __len__(self) -> int:
return len(self.label_map)
def keys(self):
return self.label_map.keys()
return LazyPassageLoader(passage_manager, label_map)
loader = LazyPassageLoader(passage_manager, label_map)
loader._meta_path = meta_file
return loader
def load_passages_from_file(passages_file: str) -> SimplePassageLoader:
"""
@@ -353,6 +363,100 @@ def create_embedding_server_thread(
continue
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
# Handle control messages (MessagePack format)
try:
request_payload = msgpack.unpackb(message)
if isinstance(request_payload, list) and len(request_payload) >= 1:
if request_payload[0] == "__QUERY_META_PATH__":
# Return the current meta path being used by the server
current_meta_path = getattr(passages, '_meta_path', '') if hasattr(passages, '_meta_path') else ''
response = [current_meta_path]
socket.send_multipart([identity, b'', msgpack.packb(response)])
continue
elif request_payload[0] == "__UPDATE_META_PATH__" and len(request_payload) >= 2:
# Update the server's meta path and reload passages
new_meta_path = request_payload[1]
try:
print(f"INFO: Updating server meta path to: {new_meta_path}")
# Reload passages from the new meta file
passages = load_passages_from_metadata(new_meta_path)
# Store the meta path for future queries
passages._meta_path = new_meta_path
response = ["SUCCESS"]
print(f"INFO: Successfully updated meta path and reloaded {len(passages)} passages")
except Exception as e:
print(f"ERROR: Failed to update meta path: {e}")
response = ["FAILED", str(e)]
socket.send_multipart([identity, b'', msgpack.packb(response)])
continue
elif request_payload[0] == "__QUERY_MODEL__":
# Return the current model being used by the server
response = [model_name]
socket.send_multipart([identity, b'', msgpack.packb(response)])
continue
elif request_payload[0] == "__UPDATE_MODEL__" and len(request_payload) >= 2:
# Update the server's embedding model
new_model_name = request_payload[1]
try:
print(f"INFO: Updating server model from {model_name} to: {new_model_name}")
# Clean up old model to free memory
if not use_mlx:
print("INFO: Releasing old model from memory...")
old_model = model
old_tokenizer = tokenizer
# Load new tokenizer first
print(f"Loading new tokenizer for {new_model_name}...")
tokenizer = AutoTokenizer.from_pretrained(new_model_name, use_fast=True)
# Load new model
print(f"Loading new model {new_model_name}...")
model = AutoModel.from_pretrained(new_model_name).to(device).eval()
# Optimize new model
if cuda_available or mps_available:
try:
model = model.half()
model = torch.compile(model)
print(f"INFO: Using FP16 precision with model: {new_model_name}")
except Exception as e:
print(f"WARNING: Model optimization failed: {e}")
# Now safely delete old model after new one is loaded
del old_model
del old_tokenizer
# Clear GPU cache if available
if device.type == "cuda":
torch.cuda.empty_cache()
print("INFO: Cleared CUDA cache")
elif device.type == "mps":
torch.mps.empty_cache()
print("INFO: Cleared MPS cache")
# Force garbage collection
import gc
gc.collect()
print("INFO: Memory cleanup completed")
# Update model name
model_name = new_model_name
response = ["SUCCESS"]
print(f"INFO: Successfully updated model to: {new_model_name}")
except Exception as e:
print(f"ERROR: Failed to update model: {e}")
response = ["FAILED", str(e)]
socket.send_multipart([identity, b'', msgpack.packb(response)])
continue
except:
# Not a control message, continue with normal protobuf processing
pass
e2e_start = time.time()
lookup_timer = DeviceTimer("text lookup")

View File

@@ -17,10 +17,12 @@ import msgpack
import json
from pathlib import Path
from typing import Dict, Any, Optional, Union
import sys
RED = "\033[91m"
RESET = "\033[0m"
def is_similarity_metric():
"""
Check if the metric type is similarity-based (like inner product).
@@ -28,22 +30,27 @@ def is_similarity_metric():
"""
return True # 1 is METRIC_INNER_PRODUCT in FAISS
# Function for E5-style average pooling
import torch
from torch import Tensor
import torch.nn.functional as F
def e5_average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
class SimplePassageLoader:
"""
Simple passage loader that replaces config.py dependencies
"""
def __init__(self, passages_data: Optional[Dict[str, Any]] = None):
self.passages_data = passages_data or {}
self._meta_path = ""
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
"""Get passage by ID"""
str_id = str(passage_id)
@@ -52,54 +59,57 @@ class SimplePassageLoader:
else:
# Return empty text for missing passages
return {"text": ""}
def __len__(self) -> int:
return len(self.passages_data)
def keys(self):
return self.passages_data.keys()
def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
"""
Load passages using metadata file with PassageManager for lazy loading
"""
# Load metadata to get passage sources
with open(meta_file, 'r') as f:
with open(meta_file, "r") as f:
meta = json.load(f)
# Import PassageManager dynamically to avoid circular imports
import sys
import importlib.util
# Find the leann package directory relative to this file
current_dir = Path(__file__).parent
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
sys.path.insert(0, str(leann_core_path))
try:
from leann.api import PassageManager
passage_manager = PassageManager(meta['passage_sources'])
passage_manager = PassageManager(meta["passage_sources"])
finally:
sys.path.pop(0)
# Load label map
# Load label map
passages_dir = Path(meta_file).parent
label_map_file = passages_dir / "leann.labels.map"
if label_map_file.exists():
import pickle
with open(label_map_file, 'rb') as f:
with open(label_map_file, "rb") as f:
label_map = pickle.load(f)
print(f"Loaded label map with {len(label_map)} entries")
else:
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
print(f"Initialized lazy passage loading for {len(label_map)} passages")
class LazyPassageLoader(SimplePassageLoader):
def __init__(self, passage_manager, label_map):
self.passage_manager = passage_manager
self.label_map = label_map
# Initialize parent with empty data
super().__init__({})
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
"""Get passage by ID with lazy loading"""
try:
@@ -118,12 +128,16 @@ def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
except Exception as e:
print(f"DEBUG: Exception getting passage {passage_id}: {e}")
return {"text": ""}
def __len__(self) -> int:
return len(self.label_map)
def keys(self):
return self.label_map.keys()
return LazyPassageLoader(passage_manager, label_map)
def create_hnsw_embedding_server(
passages_file: Optional[str] = None,
passages_data: Optional[Dict[str, str]] = None,
@@ -139,7 +153,7 @@ def create_hnsw_embedding_server(
):
"""
Create and start a ZMQ-based embedding server for HNSW backend.
Args:
passages_file: Path to JSON file containing passage ID -> text mapping
passages_data: Direct passage data dict (alternative to passages_file)
@@ -156,14 +170,14 @@ def create_hnsw_embedding_server(
print(f"Loading tokenizer for {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
print(f"Tokenizer loaded successfully!")
# Device setup
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
print(f"MPS available: {mps_available}")
print(f"CUDA available: {cuda_available}")
if cuda_available:
device = torch.device("cuda")
print("Using CUDA device")
@@ -173,7 +187,7 @@ def create_hnsw_embedding_server(
else:
device = torch.device("cpu")
print("Using CPU device (no GPU acceleration available)")
# Load model to the appropriate device
print(f"Starting HNSW server on port {zmq_port} with model {model_name}")
print(f"Loading model {model_name}... (this may take a while if downloading)")
@@ -182,9 +196,10 @@ def create_hnsw_embedding_server(
# Check port availability
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
return s.connect_ex(("localhost", port)) == 0
if check_port(zmq_port):
print(f"{RED}Port {zmq_port} is already in use{RESET}")
@@ -196,8 +211,14 @@ def create_hnsw_embedding_server(
model = torch.compile(model)
print(f"Using FP16 precision with model: {model_name}")
elif use_int8:
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization")
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
print(
"- Using TorchAO for Int8 dynamic activation and Int8 weight quantization"
)
from torchao.quantization import (
quantize_,
Int8DynamicActivationInt8WeightConfig,
)
quantize_(model, Int8DynamicActivationInt8WeightConfig())
model = torch.compile(model)
model.eval()
@@ -209,8 +230,10 @@ def create_hnsw_embedding_server(
print(f"Using provided passages data: {len(passages)} passages")
elif passages_file:
# Check if it's a metadata file or a single passages file
if passages_file.endswith('.meta.json'):
if passages_file.endswith(".meta.json"):
passages = load_passages_from_metadata(passages_file)
# Store the meta path for future reference
passages._meta_path = passages_file
else:
# Try to find metadata file in same directory
passages_dir = Path(passages_file).parent
@@ -220,8 +243,12 @@ def create_hnsw_embedding_server(
passages = load_passages_from_metadata(str(meta_files[0]))
else:
# Fallback to original single file loading (will cause warnings)
print("WARNING: No metadata file found, using single file loading (may cause missing passage warnings)")
passages = SimplePassageLoader() # Use empty loader to avoid massive warnings
print(
"WARNING: No metadata file found, using single file loading (may cause missing passage warnings)"
)
passages = (
SimplePassageLoader()
) # Use empty loader to avoid massive warnings
else:
passages = SimplePassageLoader()
print("No passages provided, using empty loader")
@@ -238,12 +265,13 @@ def create_hnsw_embedding_server(
class DeviceTimer:
"""Device event-based timer for accurate timing."""
def __init__(self, name="", device=device):
self.name = name
self.device = device
self.start_time = 0
self.end_time = 0
if cuda_available:
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
@@ -289,30 +317,31 @@ def create_hnsw_embedding_server(
_is_e5_model = "e5" in model_name.lower()
_is_bge_model = "bge" in model_name.lower()
batch_size = len(texts_batch)
# Validate no empty texts
for i, text in enumerate(texts_batch):
if not text or text.strip() == "":
raise RuntimeError(f"FATAL: Empty text at batch index {i}, ID: {ids_batch[i] if i < len(ids_batch) else 'unknown'}")
# Allow empty texts to pass through (remove validation)
# E5 model preprocessing
if _is_e5_model:
processed_texts_batch = [f"passage: {text}" for text in texts_batch]
else:
processed_texts_batch = texts_batch
# Set max length
if _is_e5_model:
current_max_length = custom_max_length_param if custom_max_length_param is not None else 512
current_max_length = (
custom_max_length_param if custom_max_length_param is not None else 512
)
else:
current_max_length = custom_max_length_param if custom_max_length_param is not None else 256
current_max_length = (
custom_max_length_param if custom_max_length_param is not None else 256
)
tokenize_timer = DeviceTimer("tokenization (batch)", device)
to_device_timer = DeviceTimer("transfer to device (batch)", device)
embed_timer = DeviceTimer("embedding (batch)", device)
pool_timer = DeviceTimer("pooling (batch)", device)
norm_timer = DeviceTimer("normalization (batch)", device)
with tokenize_timer.timing():
encoded_batch = tokenizer(
processed_texts_batch,
@@ -322,48 +351,71 @@ def create_hnsw_embedding_server(
return_tensors="pt",
return_token_type_ids=False,
)
seq_length = encoded_batch["input_ids"].size(1)
with to_device_timer.timing():
enc = {k: v.to(device) for k, v in encoded_batch.items()}
with torch.no_grad():
with embed_timer.timing():
out = model(enc["input_ids"], enc["attention_mask"])
with pool_timer.timing():
if _is_bge_model:
pooled_embeddings = out.last_hidden_state[:, 0]
elif not hasattr(out, 'last_hidden_state'):
elif not hasattr(out, "last_hidden_state"):
if isinstance(out, torch.Tensor) and len(out.shape) == 2:
pooled_embeddings = out
else:
print(f"{RED}ERROR: Cannot determine how to pool. Output shape: {out.shape if isinstance(out, torch.Tensor) else 'N/A'}{RESET}")
hidden_dim = getattr(model.config, 'hidden_size', 384 if _is_e5_model else 768)
pooled_embeddings = torch.zeros((batch_size, hidden_dim), device=device, dtype=enc["input_ids"].dtype if hasattr(enc["input_ids"], "dtype") else torch.float32)
print(
f"{RED}ERROR: Cannot determine how to pool. Output shape: {out.shape if isinstance(out, torch.Tensor) else 'N/A'}{RESET}"
)
hidden_dim = getattr(
model.config, "hidden_size", 384 if _is_e5_model else 768
)
pooled_embeddings = torch.zeros(
(batch_size, hidden_dim),
device=device,
dtype=enc["input_ids"].dtype
if hasattr(enc["input_ids"], "dtype")
else torch.float32,
)
elif _is_e5_model:
pooled_embeddings = e5_average_pool(out.last_hidden_state, enc['attention_mask'])
pooled_embeddings = e5_average_pool(
out.last_hidden_state, enc["attention_mask"]
)
else:
hidden_states = out.last_hidden_state
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
mask_expanded = (
enc["attention_mask"]
.unsqueeze(-1)
.expand(hidden_states.size())
.float()
)
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
pooled_embeddings = sum_embeddings / sum_mask
final_embeddings = pooled_embeddings
if _is_e5_model or _is_bge_model:
with norm_timer.timing():
final_embeddings = F.normalize(pooled_embeddings, p=2, dim=1)
if torch.isnan(final_embeddings).any() or torch.isinf(final_embeddings).any():
print(f"{RED}!!! In process_batch: NaN or Inf detected in final_embeddings! "
f"Model: {model_name}, E5: {_is_e5_model}. IDs (sample): {ids_batch[:5]}...{RESET}")
print(
f"{RED}!!! In process_batch: NaN or Inf detected in final_embeddings! "
f"Model: {model_name}, E5: {_is_e5_model}. IDs (sample): {ids_batch[:5]}...{RESET}"
)
dim_size = final_embeddings.shape[-1]
error_output = torch.zeros((batch_size, dim_size), device='cpu', dtype=torch.float32).numpy()
print(f"{RED}Returning zero embeddings of shape ({batch_size}, {dim_size}) due to NaN/Inf.{RESET}")
error_output = torch.zeros(
(batch_size, dim_size), device="cpu", dtype=torch.float32
).numpy()
print(
f"{RED}Returning zero embeddings of shape ({batch_size}, {dim_size}) due to NaN/Inf.{RESET}"
)
return error_output
return final_embeddings.cpu().numpy()
def client_warmup(zmq_port):
@@ -371,7 +423,7 @@ def create_hnsw_embedding_server(
time.sleep(2)
print(f"Performing client-side warmup with model {model_name}...")
sample_ids = ["1", "2", "3", "4", "5"]
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
@@ -379,12 +431,12 @@ def create_hnsw_embedding_server(
socket.setsockopt(zmq.RCVTIMEO, 30000)
socket.setsockopt(zmq.SNDTIMEO, 30000)
try:
try:
ids_to_send = [int(x) for x in sample_ids]
except ValueError:
except ValueError:
ids_to_send = []
if not ids_to_send:
if not ids_to_send:
print("Skipping warmup send.")
return
@@ -392,14 +444,18 @@ def create_hnsw_embedding_server(
request_bytes = msgpack.packb(request_payload)
for i in range(3):
print(f"Sending warmup request {i+1}/3 via ZMQ (MessagePack)...")
print(f"Sending warmup request {i + 1}/3 via ZMQ (MessagePack)...")
socket.send(request_bytes)
response_bytes = socket.recv()
response_payload = msgpack.unpackb(response_bytes)
dimensions = response_payload[0]
embeddings_count = dimensions[0] if dimensions and len(dimensions) > 0 else 0
print(f"Warmup request {i+1}/3 successful, received {embeddings_count} embeddings")
embeddings_count = (
dimensions[0] if dimensions and len(dimensions) > 0 else 0
)
print(
f"Warmup request {i + 1}/3 successful, received {embeddings_count} embeddings"
)
time.sleep(0.1)
print("Client-side MessagePack ZMQ warmup complete")
@@ -410,6 +466,7 @@ def create_hnsw_embedding_server(
def zmq_server_thread():
"""ZMQ server thread"""
nonlocal passages, model, tokenizer, model_name
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://*:{zmq_port}")
@@ -428,94 +485,277 @@ def create_hnsw_embedding_server(
try:
request_payload = msgpack.unpackb(message_bytes)
print(f"DEBUG: Raw request_payload: {request_payload}")
print(f"DEBUG: request_payload type: {type(request_payload)}")
if isinstance(request_payload, list):
print(f"DEBUG: request_payload length: {len(request_payload)}")
for i, item in enumerate(request_payload):
print(
f"DEBUG: request_payload[{i}]: {type(item)} - {item if len(str(item)) < 100 else str(item)[:100] + '...'}"
)
# Handle control messages for meta path and model management
if isinstance(request_payload, list) and len(request_payload) >= 1:
if request_payload[0] == "__QUERY_META_PATH__":
# Return the current meta path being used by the server
current_meta_path = (
getattr(passages, "_meta_path", "")
if hasattr(passages, "_meta_path")
else ""
)
response = [current_meta_path]
socket.send(msgpack.packb(response))
continue
elif (
request_payload[0] == "__UPDATE_META_PATH__"
and len(request_payload) >= 2
):
# Update the server's meta path and reload passages
new_meta_path = request_payload[1]
try:
print(
f"INFO: Updating server meta path to: {new_meta_path}"
)
# Reload passages from the new meta file
passages = load_passages_from_metadata(new_meta_path)
# Store the meta path for future queries
passages._meta_path = new_meta_path
response = ["SUCCESS"]
print(
f"INFO: Successfully updated meta path and reloaded {len(passages)} passages"
)
except Exception as e:
print(f"ERROR: Failed to update meta path: {e}")
response = ["FAILED", str(e)]
socket.send(msgpack.packb(response))
continue
elif request_payload[0] == "__QUERY_MODEL__":
# Return the current model being used by the server
response = [model_name]
socket.send(msgpack.packb(response))
continue
elif (
request_payload[0] == "__UPDATE_MODEL__"
and len(request_payload) >= 2
):
# Update the server's embedding model
new_model_name = request_payload[1]
try:
print(
f"INFO: Updating server model from {model_name} to: {new_model_name}"
)
# Clean up old model to free memory
print("INFO: Releasing old model from memory...")
old_model = model
old_tokenizer = tokenizer
# Load new tokenizer first
print(f"Loading new tokenizer for {new_model_name}...")
tokenizer = AutoTokenizer.from_pretrained(
new_model_name, use_fast=True
)
# Load new model
print(f"Loading new model {new_model_name}...")
model = AutoModel.from_pretrained(new_model_name)
model.to(device)
model.eval()
# Now safely delete old model after new one is loaded
del old_model
del old_tokenizer
# Clear GPU cache if available
if device.type == "cuda":
torch.cuda.empty_cache()
print("INFO: Cleared CUDA cache")
elif device.type == "mps":
torch.mps.empty_cache()
print("INFO: Cleared MPS cache")
# Update model name
model_name = new_model_name
# Force garbage collection
import gc
gc.collect()
print("INFO: Memory cleanup completed")
response = ["SUCCESS"]
print(
f"INFO: Successfully updated model to: {new_model_name}"
)
except Exception as e:
print(f"ERROR: Failed to update model: {e}")
response = ["FAILED", str(e)]
socket.send(msgpack.packb(response))
continue
# Handle distance calculation requests
if isinstance(request_payload, list) and len(request_payload) == 2 and isinstance(request_payload[0], list) and isinstance(request_payload[1], list):
if (
isinstance(request_payload, list)
and len(request_payload) == 2
and isinstance(request_payload[0], list)
and isinstance(request_payload[1], list)
):
node_ids = request_payload[0]
query_vector = np.array(request_payload[1], dtype=np.float32)
print(f"Request for distance calculation: {len(node_ids)} nodes, query vector dim: {len(query_vector)}")
print("DEBUG: Distance calculation request received")
print(f" Node IDs: {node_ids}")
print(f" Query vector dim: {len(query_vector)}")
print(f" Passages loaded: {len(passages)}")
# Get embeddings for node IDs
texts = []
missing_ids = []
with lookup_timer.timing():
for nid in node_ids:
print(f"DEBUG: Looking up passage ID {nid}")
txtinfo = passages[nid]
if txtinfo is None or txtinfo["text"] == "":
raise RuntimeError(f"FATAL: Passage with ID {nid} returned empty text")
txt = txtinfo["text"]
print(f"DEBUG: Found text for ID {nid}, length: {len(txt)}")
texts.append(txt)
try:
txtinfo = passages[nid]
if txtinfo is None:
print(
f"ERROR: Passage with ID {nid} returned None"
)
print(f"ERROR: txtinfo: {txtinfo}")
raise RuntimeError(
f"FATAL: Passage with ID {nid} returned None"
)
txt = txtinfo[
"text"
] # Allow empty text to pass through
print(
f"DEBUG: Found text for ID {nid}, length: {len(txt)}"
)
texts.append(txt)
except KeyError:
print(
f"ERROR: Passage ID {nid} not found in passages dict"
)
print(
f"ERROR: Available passage IDs: {list(passages.keys())[:10]}..."
)
raise RuntimeError(
f"FATAL: Passage with ID {nid} not found"
)
except Exception as e:
print(
f"ERROR: Exception looking up passage ID {nid}: {e}"
)
raise
lookup_timer.print_elapsed()
# Process embeddings in chunks if needed
all_node_embeddings = []
total_size = len(texts)
if total_size > max_batch_size:
for i in range(0, total_size, max_batch_size):
end_idx = min(i + max_batch_size, total_size)
chunk_texts = texts[i:end_idx]
chunk_ids = node_ids[i:end_idx]
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
embeddings_chunk = process_batch(
chunk_texts, chunk_ids, missing_ids
)
all_node_embeddings.append(embeddings_chunk)
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
torch.mps.empty_cache()
node_embeddings = np.vstack(all_node_embeddings)
else:
node_embeddings = process_batch(texts, node_ids, missing_ids)
node_embeddings = process_batch(
texts, node_ids, missing_ids
)
# Calculate distances
query_tensor = torch.tensor(query_vector, device=device).float()
node_embeddings_tensor = torch.tensor(node_embeddings, device=device).float()
node_embeddings_tensor = torch.tensor(
node_embeddings, device=device
).float()
calc_timer = DeviceTimer("distance calculation", device)
with calc_timer.timing():
with torch.no_grad():
if distance_metric == "l2":
node_embeddings_np = node_embeddings_tensor.cpu().numpy().astype(np.float32)
query_np = query_tensor.cpu().numpy().astype(np.float32)
distances = np.sum(np.square(node_embeddings_np - query_np.reshape(1, -1)), axis=1)
else: # mips or cosine
node_embeddings_np = node_embeddings_tensor.cpu().numpy()
node_embeddings_np = (
node_embeddings_tensor.cpu()
.numpy()
.astype(np.float32)
)
query_np = (
query_tensor.cpu().numpy().astype(np.float32)
)
distances = np.sum(
np.square(
node_embeddings_np - query_np.reshape(1, -1)
),
axis=1,
)
else: # mips or cosine
node_embeddings_np = (
node_embeddings_tensor.cpu().numpy()
)
query_np = query_tensor.cpu().numpy()
distances = -np.dot(node_embeddings_np, query_np)
calc_timer.print_elapsed()
try:
response_payload = distances.flatten().tolist()
response_bytes = msgpack.packb([response_payload], use_single_float=True)
print(f"Sending distance response with {len(distances)} distances")
response_bytes = msgpack.packb(
[response_payload], use_single_float=True
)
print(
f"Sending distance response with {len(distances)} distances"
)
except Exception as pack_error:
print(f"Error packing MessagePack distance response: {pack_error}")
print(
f"ERROR: Error packing MessagePack distance response: {pack_error}"
)
print(f"ERROR: distances shape: {distances.shape}")
print(f"ERROR: distances dtype: {distances.dtype}")
print(f"ERROR: distances content: {distances}")
print(f"ERROR: node_ids: {node_ids}")
print(f"ERROR: query_vector shape: {query_vector.shape}")
# Still return empty for now but with full error info
response_bytes = msgpack.packb([[]])
socket.send(response_bytes)
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
e2e_end = time.time()
print(f"Distance calculation E2E time: {e2e_end - e2e_start:.6f} seconds")
print(
f"Distance calculation E2E time: {e2e_end - e2e_start:.6f} seconds"
)
continue
# Standard embedding request
if not isinstance(request_payload, list) or len(request_payload) != 1 or not isinstance(request_payload[0], list):
print(f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}")
if (
not isinstance(request_payload, list)
or len(request_payload) != 1
or not isinstance(request_payload[0], list)
):
print(
f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}"
)
socket.send(msgpack.packb([[], []]))
continue
node_ids = request_payload[0]
print(f"Request for {len(node_ids)} node embeddings")
except Exception as unpack_error:
print(f"Error unpacking MessagePack request: {unpack_error}")
socket.send(msgpack.packb([[], []]))
@@ -529,11 +769,15 @@ def create_hnsw_embedding_server(
try:
txtinfo = passages[nid]
if txtinfo is None or txtinfo["text"] == "":
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
raise RuntimeError(
f"FATAL: Passage with ID {nid} not found - failing fast"
)
else:
txt = txtinfo["text"]
except (KeyError, IndexError):
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
raise RuntimeError(
f"FATAL: Passage with ID {nid} not found - failing fast"
)
texts.append(txt)
lookup_timer.print_elapsed()
@@ -542,27 +786,35 @@ def create_hnsw_embedding_server(
# Process in chunks
total_size = len(texts)
print(f"Total batch size: {total_size}, max_batch_size: {max_batch_size}")
print(
f"Total batch size: {total_size}, max_batch_size: {max_batch_size}"
)
all_embeddings = []
if total_size > max_batch_size:
print(f"Splitting batch of size {total_size} into chunks of {max_batch_size}")
print(
f"Splitting batch of size {total_size} into chunks of {max_batch_size}"
)
for i in range(0, total_size, max_batch_size):
end_idx = min(i + max_batch_size, total_size)
print(f"Processing chunk {i//max_batch_size + 1}/{(total_size + max_batch_size - 1)//max_batch_size}: items {i} to {end_idx-1}")
print(
f"Processing chunk {i // max_batch_size + 1}/{(total_size + max_batch_size - 1) // max_batch_size}: items {i} to {end_idx - 1}"
)
chunk_texts = texts[i:end_idx]
chunk_ids = node_ids[i:end_idx]
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
embeddings_chunk = process_batch(
chunk_texts, chunk_ids, missing_ids
)
all_embeddings.append(embeddings_chunk)
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
torch.mps.empty_cache()
hidden = np.vstack(all_embeddings)
print(f"Combined embeddings shape: {hidden.shape}")
else:
@@ -571,22 +823,30 @@ def create_hnsw_embedding_server(
# Serialization and response
ser_start = time.time()
print(f"DEBUG zmq_server_thread: Final 'hidden' array | Shape: {hidden.shape} | Dtype: {hidden.dtype} | Has NaN/Inf: {np.isnan(hidden).any() or np.isinf(hidden).any()}")
print(
f"DEBUG zmq_server_thread: Final 'hidden' array | Shape: {hidden.shape} | Dtype: {hidden.dtype} | Has NaN/Inf: {np.isnan(hidden).any() or np.isinf(hidden).any()}"
)
if np.isnan(hidden).any() or np.isinf(hidden).any():
print(f"{RED}!!! ERROR: NaN or Inf detected in final 'hidden' numpy array BEFORE sending! "
f"Requested IDs (sample): {node_ids[:5]}...{RESET}")
print(
f"{RED}!!! ERROR: NaN or Inf detected in final 'hidden' numpy array BEFORE sending! "
f"Requested IDs (sample): {node_ids[:5]}...{RESET}"
)
assert False
try:
hidden_contiguous_f32 = np.ascontiguousarray(hidden, dtype=np.float32)
hidden_contiguous_f32 = np.ascontiguousarray(
hidden, dtype=np.float32
)
response_payload = [
list(hidden_contiguous_f32.shape),
hidden_contiguous_f32.flatten().tolist()
hidden_contiguous_f32.flatten().tolist(),
]
response_bytes = msgpack.packb(response_payload, use_single_float=True)
response_bytes = msgpack.packb(
response_payload, use_single_float=True
)
except Exception as pack_error:
print(f"Error packing MessagePack response: {pack_error}")
response_bytes = msgpack.packb([[], []])
print(f"Error packing MessagePack response: {pack_error}")
response_bytes = msgpack.packb([[], []])
socket.send(response_bytes)
ser_end = time.time()
@@ -606,8 +866,9 @@ def create_hnsw_embedding_server(
except Exception as e:
print(f"Error in ZMQ server loop: {e}")
import traceback
traceback.print_exc()
try:
try:
socket.send(msgpack.packb([[], []]))
except:
pass
@@ -621,7 +882,7 @@ def create_hnsw_embedding_server(
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
zmq_thread.start()
print(f"Started HNSW ZMQ server thread on port {zmq_port}")
# Keep the main thread alive
try:
while True:
@@ -634,17 +895,41 @@ def create_hnsw_embedding_server(
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="HNSW Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument("--passages-file", type=str, help="JSON file containing passage ID to text mapping")
parser.add_argument("--embeddings-file", type=str, help="Pickle file containing pre-computed embeddings")
parser.add_argument(
"--passages-file",
type=str,
help="JSON file containing passage ID to text mapping",
)
parser.add_argument(
"--embeddings-file",
type=str,
help="Pickle file containing pre-computed embeddings",
)
parser.add_argument("--use-fp16", action="store_true", default=False)
parser.add_argument("--use-int8", action="store_true", default=False)
parser.add_argument("--use-cuda-graphs", action="store_true", default=False)
parser.add_argument("--max-batch-size", type=int, default=128, help="Maximum batch size before splitting")
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name")
parser.add_argument("--custom-max-length", type=int, default=None, help="Override model's default max sequence length")
parser.add_argument("--distance-metric", type=str, default="mips", help="Distance metric to use")
parser.add_argument(
"--max-batch-size",
type=int,
default=128,
help="Maximum batch size before splitting",
)
parser.add_argument(
"--model-name",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name",
)
parser.add_argument(
"--custom-max-length",
type=int,
default=None,
help="Override model's default max sequence length",
)
parser.add_argument(
"--distance-metric", type=str, default="mips", help="Distance metric to use"
)
args = parser.parse_args()
# Create and start the HNSW embedding server
@@ -659,4 +944,4 @@ if __name__ == "__main__":
model_name=args.model_name,
custom_max_length_param=args.custom_max_length,
distance_metric=args.distance_metric,
)
)

View File

@@ -1,23 +1,169 @@
import os
import threading
import time
import atexit
import socket
import subprocess
import sys
import zmq
import msgpack
from pathlib import Path
from typing import Optional
import select
def _check_port(port: int) -> bool:
"""Check if a port is in use"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
return s.connect_ex(("localhost", port)) == 0
def _check_server_meta_path(port: int, expected_meta_path: str) -> bool:
"""
Check if the existing server on the port is using the correct meta file.
Returns True if the server has the right meta path, False otherwise.
"""
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 3000) # 3 second timeout
socket.connect(f"tcp://localhost:{port}")
# Send a special control message to query the server's meta path
control_request = ["__QUERY_META_PATH__"]
request_bytes = msgpack.packb(control_request)
socket.send(request_bytes)
# Wait for response
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Check if the response contains the meta path and if it matches
if isinstance(response, list) and len(response) > 0:
server_meta_path = response[0]
# Normalize paths for comparison
expected_path = Path(expected_meta_path).resolve()
server_path = Path(server_meta_path).resolve() if server_meta_path else None
return server_path == expected_path
return False
except Exception as e:
print(f"WARNING: Could not query server meta path on port {port}: {e}")
return False
def _update_server_meta_path(port: int, new_meta_path: str) -> bool:
"""
Send a control message to update the server's meta path.
Returns True if successful, False otherwise.
"""
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5 second timeout
socket.connect(f"tcp://localhost:{port}")
# Send a control message to update the meta path
control_request = ["__UPDATE_META_PATH__", new_meta_path]
request_bytes = msgpack.packb(control_request)
socket.send(request_bytes)
# Wait for response
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Check if the update was successful
if isinstance(response, list) and len(response) > 0:
return response[0] == "SUCCESS"
return False
except Exception as e:
print(f"ERROR: Could not update server meta path on port {port}: {e}")
return False
def _check_server_model(port: int, expected_model: str) -> bool:
"""
Check if the existing server on the port is using the correct embedding model.
Returns True if the server has the right model, False otherwise.
"""
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 3000) # 3 second timeout
socket.connect(f"tcp://localhost:{port}")
# Send a special control message to query the server's model
control_request = ["__QUERY_MODEL__"]
request_bytes = msgpack.packb(control_request)
socket.send(request_bytes)
# Wait for response
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Check if the response contains the model name and if it matches
if isinstance(response, list) and len(response) > 0:
server_model = response[0]
return server_model == expected_model
return False
except Exception as e:
print(f"WARNING: Could not query server model on port {port}: {e}")
return False
def _update_server_model(port: int, new_model: str) -> bool:
"""
Send a control message to update the server's embedding model.
Returns True if successful, False otherwise.
"""
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout for model loading
socket.setsockopt(zmq.SNDTIMEO, 5000) # 5 second timeout for sending
socket.connect(f"tcp://localhost:{port}")
# Send a control message to update the model
control_request = ["__UPDATE_MODEL__", new_model]
request_bytes = msgpack.packb(control_request)
socket.send(request_bytes)
# Wait for response
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Check if the update was successful
if isinstance(response, list) and len(response) > 0:
return response[0] == "SUCCESS"
return False
except Exception as e:
print(f"ERROR: Could not update server model on port {port}: {e}")
return False
class EmbeddingServerManager:
"""
A generic manager for handling the lifecycle of a backend-specific embedding server process.
"""
def __init__(self, backend_module_name: str):
"""
Initializes the manager for a specific backend.
@@ -44,21 +190,119 @@ class EmbeddingServerManager:
bool: True if the server is started successfully or already running, False otherwise.
"""
if self.server_process and self.server_process.poll() is None:
print(f"INFO: Reusing existing server process for this session (PID {self.server_process.pid})")
return True
# Even if we have a running process, check if model/meta path match
if self.server_port is not None:
port_in_use = _check_port(self.server_port)
if port_in_use:
print(
f"INFO: Checking compatibility of existing server process (PID {self.server_process.pid})"
)
# Check model compatibility
model_matches = _check_server_model(self.server_port, model_name)
if not model_matches:
print(
f"⚠️ Existing server has different model. Attempting to update to: {model_name}"
)
if not _update_server_model(self.server_port, model_name):
print(
"❌ Failed to update existing server model. Restarting server..."
)
self.stop_server()
# Continue to start new server below
else:
print(
f"✅ Successfully updated existing server model to: {model_name}"
)
# Also check meta path if provided
passages_file = kwargs.get("passages_file")
if passages_file and str(passages_file).endswith(
".meta.json"
):
meta_matches = _check_server_meta_path(
self.server_port, str(passages_file)
)
if not meta_matches:
print("⚠️ Updating meta path to: {passages_file}")
_update_server_meta_path(
self.server_port, str(passages_file)
)
return True
else:
print(
f"✅ Existing server already using correct model: {model_name}"
)
return True
else:
# Server process exists but port not responding - restart
print("⚠️ Server process exists but not responding. Restarting...")
self.stop_server()
# Continue to start new server below
else:
# No port stored - restart
print("⚠️ No port information stored. Restarting server...")
self.stop_server()
# Continue to start new server below
if _check_port(port):
print(f"WARNING: Port {port} is already in use. Assuming an external server is running.")
# Port is in use, check if it's using the correct meta file and model
passages_file = kwargs.get("passages_file")
print(f"INFO: Port {port} is in use. Checking server compatibility...")
# Check model compatibility first
model_matches = _check_server_model(port, model_name)
if not model_matches:
print(
f"⚠️ Existing server on port {port} has different model. Attempting to update to: {model_name}"
)
if not _update_server_model(port, model_name):
raise RuntimeError(
f"❌ Failed to update server model to {model_name}. Consider using a different port."
)
print(f"✅ Successfully updated server model to: {model_name}")
else:
print(
f"✅ Existing server on port {port} is using correct model: {model_name}"
)
# Check meta path compatibility if provided
if passages_file and str(passages_file).endswith(".meta.json"):
meta_matches = _check_server_meta_path(port, str(passages_file))
if not meta_matches:
print(
f"⚠️ Existing server on port {port} has different meta path. Attempting to update..."
)
if not _update_server_meta_path(port, str(passages_file)):
raise RuntimeError(
"❌ Failed to update server meta path. This may cause data synchronization issues."
)
print(
f"✅ Successfully updated server meta path to: {passages_file}"
)
else:
print(
f"✅ Existing server on port {port} is using correct meta path: {passages_file}"
)
print(f"✅ Server on port {port} is compatible and ready to use.")
return True
print(f"INFO: Starting session-level embedding server for '{self.backend_module_name}'...")
print(
f"INFO: Starting session-level embedding server for '{self.backend_module_name}'..."
)
try:
command = [
sys.executable,
"-m", self.backend_module_name,
"--zmq-port", str(port),
"--model-name", model_name
"-m",
self.backend_module_name,
"--zmq-port",
str(port),
"--model-name",
model_name,
]
# Add extra arguments for specific backends
@@ -76,9 +320,9 @@ class EmbeddingServerManager:
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # Merge stderr into stdout for easier monitoring
text=True,
encoding='utf-8',
encoding="utf-8",
bufsize=1, # Line buffered
universal_newlines=True
universal_newlines=True,
)
self.server_port = port
print(f"INFO: Server process started with PID: {self.server_process.pid}")
@@ -86,17 +330,21 @@ class EmbeddingServerManager:
max_wait, wait_interval = 120, 0.5
for _ in range(int(max_wait / wait_interval)):
if _check_port(port):
print(f"✅ Embedding server is up and ready for this session.")
print("✅ Embedding server is up and ready for this session.")
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
log_thread.start()
return True
if self.server_process.poll() is not None:
print("❌ ERROR: Server process terminated unexpectedly during startup.")
print(
"❌ ERROR: Server process terminated unexpectedly during startup."
)
self._print_recent_output()
return False
time.sleep(wait_interval)
print(f"❌ ERROR: Server process failed to start listening within {max_wait} seconds.")
print(
f"❌ ERROR: Server process failed to start listening within {max_wait} seconds."
)
self.stop_server()
return False
@@ -110,8 +358,7 @@ class EmbeddingServerManager:
return
try:
# Read any available output
import select
import sys
if select.select([self.server_process.stdout], [], [], 0)[0]:
output = self.server_process.stdout.read()
if output:
@@ -129,19 +376,25 @@ class EmbeddingServerManager:
line = self.server_process.stdout.readline()
if not line:
break
print(f"[{self.backend_module_name} LOG]: {line.strip()}", flush=True)
print(
f"[{self.backend_module_name} LOG]: {line.strip()}", flush=True
)
except Exception as e:
print(f"Log monitor error: {e}")
def stop_server(self):
"""Stops the embedding server process if it's running."""
if self.server_process and self.server_process.poll() is None:
print(f"INFO: Terminating session server process (PID: {self.server_process.pid})...")
print(
f"INFO: Terminating session server process (PID: {self.server_process.pid})..."
)
self.server_process.terminate()
try:
self.server_process.wait(timeout=5)
print("INFO: Server process terminated.")
except subprocess.TimeoutExpired:
print("WARNING: Server process did not terminate gracefully, killing it.")
print(
"WARNING: Server process did not terminate gracefully, killing it."
)
self.server_process.kill()
self.server_process = None

View File

@@ -32,6 +32,8 @@ dependencies = [
"llama-index-node-parser-docling",
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"llama-index-vector-stores-faiss>=0.4.0",
"llama-index-embeddings-huggingface>=0.5.5",
]
[project.optional-dependencies]