refactor: check if current emb_server has correct passages/embedder
This commit is contained in:
@@ -14,6 +14,7 @@ import os
|
||||
from contextlib import contextmanager
|
||||
import zmq
|
||||
import numpy as np
|
||||
import msgpack
|
||||
from pathlib import Path
|
||||
|
||||
RED = "\033[91m"
|
||||
@@ -26,6 +27,7 @@ class SimplePassageLoader:
|
||||
"""
|
||||
def __init__(self, passages_data: Optional[Dict[str, Any]] = None):
|
||||
self.passages_data = passages_data or {}
|
||||
self._meta_path = ''
|
||||
|
||||
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
|
||||
"""Get passage by ID"""
|
||||
@@ -38,6 +40,9 @@ class SimplePassageLoader:
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.passages_data)
|
||||
|
||||
def keys(self):
|
||||
return self.passages_data.keys()
|
||||
|
||||
def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
|
||||
"""
|
||||
@@ -101,8 +106,13 @@ def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.label_map)
|
||||
|
||||
def keys(self):
|
||||
return self.label_map.keys()
|
||||
|
||||
return LazyPassageLoader(passage_manager, label_map)
|
||||
loader = LazyPassageLoader(passage_manager, label_map)
|
||||
loader._meta_path = meta_file
|
||||
return loader
|
||||
|
||||
def load_passages_from_file(passages_file: str) -> SimplePassageLoader:
|
||||
"""
|
||||
@@ -353,6 +363,100 @@ def create_embedding_server_thread(
|
||||
continue
|
||||
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
|
||||
|
||||
# Handle control messages (MessagePack format)
|
||||
try:
|
||||
request_payload = msgpack.unpackb(message)
|
||||
if isinstance(request_payload, list) and len(request_payload) >= 1:
|
||||
if request_payload[0] == "__QUERY_META_PATH__":
|
||||
# Return the current meta path being used by the server
|
||||
current_meta_path = getattr(passages, '_meta_path', '') if hasattr(passages, '_meta_path') else ''
|
||||
response = [current_meta_path]
|
||||
socket.send_multipart([identity, b'', msgpack.packb(response)])
|
||||
continue
|
||||
|
||||
elif request_payload[0] == "__UPDATE_META_PATH__" and len(request_payload) >= 2:
|
||||
# Update the server's meta path and reload passages
|
||||
new_meta_path = request_payload[1]
|
||||
try:
|
||||
print(f"INFO: Updating server meta path to: {new_meta_path}")
|
||||
# Reload passages from the new meta file
|
||||
passages = load_passages_from_metadata(new_meta_path)
|
||||
# Store the meta path for future queries
|
||||
passages._meta_path = new_meta_path
|
||||
response = ["SUCCESS"]
|
||||
print(f"INFO: Successfully updated meta path and reloaded {len(passages)} passages")
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to update meta path: {e}")
|
||||
response = ["FAILED", str(e)]
|
||||
socket.send_multipart([identity, b'', msgpack.packb(response)])
|
||||
continue
|
||||
|
||||
elif request_payload[0] == "__QUERY_MODEL__":
|
||||
# Return the current model being used by the server
|
||||
response = [model_name]
|
||||
socket.send_multipart([identity, b'', msgpack.packb(response)])
|
||||
continue
|
||||
|
||||
elif request_payload[0] == "__UPDATE_MODEL__" and len(request_payload) >= 2:
|
||||
# Update the server's embedding model
|
||||
new_model_name = request_payload[1]
|
||||
try:
|
||||
print(f"INFO: Updating server model from {model_name} to: {new_model_name}")
|
||||
|
||||
# Clean up old model to free memory
|
||||
if not use_mlx:
|
||||
print("INFO: Releasing old model from memory...")
|
||||
old_model = model
|
||||
old_tokenizer = tokenizer
|
||||
|
||||
# Load new tokenizer first
|
||||
print(f"Loading new tokenizer for {new_model_name}...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(new_model_name, use_fast=True)
|
||||
|
||||
# Load new model
|
||||
print(f"Loading new model {new_model_name}...")
|
||||
model = AutoModel.from_pretrained(new_model_name).to(device).eval()
|
||||
|
||||
# Optimize new model
|
||||
if cuda_available or mps_available:
|
||||
try:
|
||||
model = model.half()
|
||||
model = torch.compile(model)
|
||||
print(f"INFO: Using FP16 precision with model: {new_model_name}")
|
||||
except Exception as e:
|
||||
print(f"WARNING: Model optimization failed: {e}")
|
||||
|
||||
# Now safely delete old model after new one is loaded
|
||||
del old_model
|
||||
del old_tokenizer
|
||||
|
||||
# Clear GPU cache if available
|
||||
if device.type == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
print("INFO: Cleared CUDA cache")
|
||||
elif device.type == "mps":
|
||||
torch.mps.empty_cache()
|
||||
print("INFO: Cleared MPS cache")
|
||||
|
||||
# Force garbage collection
|
||||
import gc
|
||||
gc.collect()
|
||||
print("INFO: Memory cleanup completed")
|
||||
|
||||
# Update model name
|
||||
model_name = new_model_name
|
||||
|
||||
response = ["SUCCESS"]
|
||||
print(f"INFO: Successfully updated model to: {new_model_name}")
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to update model: {e}")
|
||||
response = ["FAILED", str(e)]
|
||||
socket.send_multipart([identity, b'', msgpack.packb(response)])
|
||||
continue
|
||||
except:
|
||||
# Not a control message, continue with normal protobuf processing
|
||||
pass
|
||||
|
||||
e2e_start = time.time()
|
||||
lookup_timer = DeviceTimer("text lookup")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user