refactor: check if current emb_server has correct passages/embedder
This commit is contained in:
@@ -17,10 +17,12 @@ import msgpack
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, Optional, Union
|
||||
import sys
|
||||
|
||||
RED = "\033[91m"
|
||||
RESET = "\033[0m"
|
||||
|
||||
|
||||
def is_similarity_metric():
|
||||
"""
|
||||
Check if the metric type is similarity-based (like inner product).
|
||||
@@ -28,22 +30,27 @@ def is_similarity_metric():
|
||||
"""
|
||||
return True # 1 is METRIC_INNER_PRODUCT in FAISS
|
||||
|
||||
|
||||
# Function for E5-style average pooling
|
||||
import torch
|
||||
from torch import Tensor
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def e5_average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
||||
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
||||
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
||||
|
||||
|
||||
class SimplePassageLoader:
|
||||
"""
|
||||
Simple passage loader that replaces config.py dependencies
|
||||
"""
|
||||
|
||||
def __init__(self, passages_data: Optional[Dict[str, Any]] = None):
|
||||
self.passages_data = passages_data or {}
|
||||
|
||||
self._meta_path = ""
|
||||
|
||||
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
|
||||
"""Get passage by ID"""
|
||||
str_id = str(passage_id)
|
||||
@@ -52,54 +59,57 @@ class SimplePassageLoader:
|
||||
else:
|
||||
# Return empty text for missing passages
|
||||
return {"text": ""}
|
||||
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.passages_data)
|
||||
|
||||
def keys(self):
|
||||
return self.passages_data.keys()
|
||||
|
||||
|
||||
def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
|
||||
"""
|
||||
Load passages using metadata file with PassageManager for lazy loading
|
||||
"""
|
||||
# Load metadata to get passage sources
|
||||
with open(meta_file, 'r') as f:
|
||||
with open(meta_file, "r") as f:
|
||||
meta = json.load(f)
|
||||
|
||||
|
||||
# Import PassageManager dynamically to avoid circular imports
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
# Find the leann package directory relative to this file
|
||||
current_dir = Path(__file__).parent
|
||||
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
|
||||
sys.path.insert(0, str(leann_core_path))
|
||||
|
||||
|
||||
try:
|
||||
from leann.api import PassageManager
|
||||
passage_manager = PassageManager(meta['passage_sources'])
|
||||
|
||||
passage_manager = PassageManager(meta["passage_sources"])
|
||||
finally:
|
||||
sys.path.pop(0)
|
||||
|
||||
# Load label map
|
||||
|
||||
# Load label map
|
||||
passages_dir = Path(meta_file).parent
|
||||
label_map_file = passages_dir / "leann.labels.map"
|
||||
|
||||
|
||||
if label_map_file.exists():
|
||||
import pickle
|
||||
with open(label_map_file, 'rb') as f:
|
||||
|
||||
with open(label_map_file, "rb") as f:
|
||||
label_map = pickle.load(f)
|
||||
print(f"Loaded label map with {len(label_map)} entries")
|
||||
else:
|
||||
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
||||
|
||||
|
||||
print(f"Initialized lazy passage loading for {len(label_map)} passages")
|
||||
|
||||
|
||||
class LazyPassageLoader(SimplePassageLoader):
|
||||
def __init__(self, passage_manager, label_map):
|
||||
self.passage_manager = passage_manager
|
||||
self.label_map = label_map
|
||||
# Initialize parent with empty data
|
||||
super().__init__({})
|
||||
|
||||
|
||||
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
|
||||
"""Get passage by ID with lazy loading"""
|
||||
try:
|
||||
@@ -118,12 +128,16 @@ def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
|
||||
except Exception as e:
|
||||
print(f"DEBUG: Exception getting passage {passage_id}: {e}")
|
||||
return {"text": ""}
|
||||
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.label_map)
|
||||
|
||||
|
||||
def keys(self):
|
||||
return self.label_map.keys()
|
||||
|
||||
return LazyPassageLoader(passage_manager, label_map)
|
||||
|
||||
|
||||
def create_hnsw_embedding_server(
|
||||
passages_file: Optional[str] = None,
|
||||
passages_data: Optional[Dict[str, str]] = None,
|
||||
@@ -139,7 +153,7 @@ def create_hnsw_embedding_server(
|
||||
):
|
||||
"""
|
||||
Create and start a ZMQ-based embedding server for HNSW backend.
|
||||
|
||||
|
||||
Args:
|
||||
passages_file: Path to JSON file containing passage ID -> text mapping
|
||||
passages_data: Direct passage data dict (alternative to passages_file)
|
||||
@@ -156,14 +170,14 @@ def create_hnsw_embedding_server(
|
||||
print(f"Loading tokenizer for {model_name}...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
print(f"Tokenizer loaded successfully!")
|
||||
|
||||
|
||||
# Device setup
|
||||
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
||||
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
||||
cuda_available = torch.cuda.is_available()
|
||||
|
||||
|
||||
print(f"MPS available: {mps_available}")
|
||||
print(f"CUDA available: {cuda_available}")
|
||||
|
||||
|
||||
if cuda_available:
|
||||
device = torch.device("cuda")
|
||||
print("Using CUDA device")
|
||||
@@ -173,7 +187,7 @@ def create_hnsw_embedding_server(
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print("Using CPU device (no GPU acceleration available)")
|
||||
|
||||
|
||||
# Load model to the appropriate device
|
||||
print(f"Starting HNSW server on port {zmq_port} with model {model_name}")
|
||||
print(f"Loading model {model_name}... (this may take a while if downloading)")
|
||||
@@ -182,9 +196,10 @@ def create_hnsw_embedding_server(
|
||||
|
||||
# Check port availability
|
||||
import socket
|
||||
|
||||
def check_port(port):
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
return s.connect_ex(('localhost', port)) == 0
|
||||
return s.connect_ex(("localhost", port)) == 0
|
||||
|
||||
if check_port(zmq_port):
|
||||
print(f"{RED}Port {zmq_port} is already in use{RESET}")
|
||||
@@ -196,8 +211,14 @@ def create_hnsw_embedding_server(
|
||||
model = torch.compile(model)
|
||||
print(f"Using FP16 precision with model: {model_name}")
|
||||
elif use_int8:
|
||||
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization")
|
||||
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
|
||||
print(
|
||||
"- Using TorchAO for Int8 dynamic activation and Int8 weight quantization"
|
||||
)
|
||||
from torchao.quantization import (
|
||||
quantize_,
|
||||
Int8DynamicActivationInt8WeightConfig,
|
||||
)
|
||||
|
||||
quantize_(model, Int8DynamicActivationInt8WeightConfig())
|
||||
model = torch.compile(model)
|
||||
model.eval()
|
||||
@@ -209,8 +230,10 @@ def create_hnsw_embedding_server(
|
||||
print(f"Using provided passages data: {len(passages)} passages")
|
||||
elif passages_file:
|
||||
# Check if it's a metadata file or a single passages file
|
||||
if passages_file.endswith('.meta.json'):
|
||||
if passages_file.endswith(".meta.json"):
|
||||
passages = load_passages_from_metadata(passages_file)
|
||||
# Store the meta path for future reference
|
||||
passages._meta_path = passages_file
|
||||
else:
|
||||
# Try to find metadata file in same directory
|
||||
passages_dir = Path(passages_file).parent
|
||||
@@ -220,8 +243,12 @@ def create_hnsw_embedding_server(
|
||||
passages = load_passages_from_metadata(str(meta_files[0]))
|
||||
else:
|
||||
# Fallback to original single file loading (will cause warnings)
|
||||
print("WARNING: No metadata file found, using single file loading (may cause missing passage warnings)")
|
||||
passages = SimplePassageLoader() # Use empty loader to avoid massive warnings
|
||||
print(
|
||||
"WARNING: No metadata file found, using single file loading (may cause missing passage warnings)"
|
||||
)
|
||||
passages = (
|
||||
SimplePassageLoader()
|
||||
) # Use empty loader to avoid massive warnings
|
||||
else:
|
||||
passages = SimplePassageLoader()
|
||||
print("No passages provided, using empty loader")
|
||||
@@ -238,12 +265,13 @@ def create_hnsw_embedding_server(
|
||||
|
||||
class DeviceTimer:
|
||||
"""Device event-based timer for accurate timing."""
|
||||
|
||||
def __init__(self, name="", device=device):
|
||||
self.name = name
|
||||
self.device = device
|
||||
self.start_time = 0
|
||||
self.end_time = 0
|
||||
|
||||
|
||||
if cuda_available:
|
||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||
@@ -289,30 +317,31 @@ def create_hnsw_embedding_server(
|
||||
_is_e5_model = "e5" in model_name.lower()
|
||||
_is_bge_model = "bge" in model_name.lower()
|
||||
batch_size = len(texts_batch)
|
||||
|
||||
# Validate no empty texts
|
||||
for i, text in enumerate(texts_batch):
|
||||
if not text or text.strip() == "":
|
||||
raise RuntimeError(f"FATAL: Empty text at batch index {i}, ID: {ids_batch[i] if i < len(ids_batch) else 'unknown'}")
|
||||
|
||||
|
||||
# Allow empty texts to pass through (remove validation)
|
||||
|
||||
# E5 model preprocessing
|
||||
if _is_e5_model:
|
||||
processed_texts_batch = [f"passage: {text}" for text in texts_batch]
|
||||
else:
|
||||
processed_texts_batch = texts_batch
|
||||
|
||||
|
||||
# Set max length
|
||||
if _is_e5_model:
|
||||
current_max_length = custom_max_length_param if custom_max_length_param is not None else 512
|
||||
current_max_length = (
|
||||
custom_max_length_param if custom_max_length_param is not None else 512
|
||||
)
|
||||
else:
|
||||
current_max_length = custom_max_length_param if custom_max_length_param is not None else 256
|
||||
|
||||
current_max_length = (
|
||||
custom_max_length_param if custom_max_length_param is not None else 256
|
||||
)
|
||||
|
||||
tokenize_timer = DeviceTimer("tokenization (batch)", device)
|
||||
to_device_timer = DeviceTimer("transfer to device (batch)", device)
|
||||
embed_timer = DeviceTimer("embedding (batch)", device)
|
||||
pool_timer = DeviceTimer("pooling (batch)", device)
|
||||
norm_timer = DeviceTimer("normalization (batch)", device)
|
||||
|
||||
|
||||
with tokenize_timer.timing():
|
||||
encoded_batch = tokenizer(
|
||||
processed_texts_batch,
|
||||
@@ -322,48 +351,71 @@ def create_hnsw_embedding_server(
|
||||
return_tensors="pt",
|
||||
return_token_type_ids=False,
|
||||
)
|
||||
|
||||
|
||||
seq_length = encoded_batch["input_ids"].size(1)
|
||||
|
||||
|
||||
with to_device_timer.timing():
|
||||
enc = {k: v.to(device) for k, v in encoded_batch.items()}
|
||||
|
||||
|
||||
with torch.no_grad():
|
||||
with embed_timer.timing():
|
||||
out = model(enc["input_ids"], enc["attention_mask"])
|
||||
|
||||
|
||||
with pool_timer.timing():
|
||||
if _is_bge_model:
|
||||
pooled_embeddings = out.last_hidden_state[:, 0]
|
||||
elif not hasattr(out, 'last_hidden_state'):
|
||||
elif not hasattr(out, "last_hidden_state"):
|
||||
if isinstance(out, torch.Tensor) and len(out.shape) == 2:
|
||||
pooled_embeddings = out
|
||||
else:
|
||||
print(f"{RED}ERROR: Cannot determine how to pool. Output shape: {out.shape if isinstance(out, torch.Tensor) else 'N/A'}{RESET}")
|
||||
hidden_dim = getattr(model.config, 'hidden_size', 384 if _is_e5_model else 768)
|
||||
pooled_embeddings = torch.zeros((batch_size, hidden_dim), device=device, dtype=enc["input_ids"].dtype if hasattr(enc["input_ids"], "dtype") else torch.float32)
|
||||
print(
|
||||
f"{RED}ERROR: Cannot determine how to pool. Output shape: {out.shape if isinstance(out, torch.Tensor) else 'N/A'}{RESET}"
|
||||
)
|
||||
hidden_dim = getattr(
|
||||
model.config, "hidden_size", 384 if _is_e5_model else 768
|
||||
)
|
||||
pooled_embeddings = torch.zeros(
|
||||
(batch_size, hidden_dim),
|
||||
device=device,
|
||||
dtype=enc["input_ids"].dtype
|
||||
if hasattr(enc["input_ids"], "dtype")
|
||||
else torch.float32,
|
||||
)
|
||||
elif _is_e5_model:
|
||||
pooled_embeddings = e5_average_pool(out.last_hidden_state, enc['attention_mask'])
|
||||
pooled_embeddings = e5_average_pool(
|
||||
out.last_hidden_state, enc["attention_mask"]
|
||||
)
|
||||
else:
|
||||
hidden_states = out.last_hidden_state
|
||||
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
|
||||
mask_expanded = (
|
||||
enc["attention_mask"]
|
||||
.unsqueeze(-1)
|
||||
.expand(hidden_states.size())
|
||||
.float()
|
||||
)
|
||||
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
|
||||
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
||||
pooled_embeddings = sum_embeddings / sum_mask
|
||||
|
||||
|
||||
final_embeddings = pooled_embeddings
|
||||
if _is_e5_model or _is_bge_model:
|
||||
with norm_timer.timing():
|
||||
final_embeddings = F.normalize(pooled_embeddings, p=2, dim=1)
|
||||
|
||||
|
||||
if torch.isnan(final_embeddings).any() or torch.isinf(final_embeddings).any():
|
||||
print(f"{RED}!!! In process_batch: NaN or Inf detected in final_embeddings! "
|
||||
f"Model: {model_name}, E5: {_is_e5_model}. IDs (sample): {ids_batch[:5]}...{RESET}")
|
||||
print(
|
||||
f"{RED}!!! In process_batch: NaN or Inf detected in final_embeddings! "
|
||||
f"Model: {model_name}, E5: {_is_e5_model}. IDs (sample): {ids_batch[:5]}...{RESET}"
|
||||
)
|
||||
dim_size = final_embeddings.shape[-1]
|
||||
error_output = torch.zeros((batch_size, dim_size), device='cpu', dtype=torch.float32).numpy()
|
||||
print(f"{RED}Returning zero embeddings of shape ({batch_size}, {dim_size}) due to NaN/Inf.{RESET}")
|
||||
error_output = torch.zeros(
|
||||
(batch_size, dim_size), device="cpu", dtype=torch.float32
|
||||
).numpy()
|
||||
print(
|
||||
f"{RED}Returning zero embeddings of shape ({batch_size}, {dim_size}) due to NaN/Inf.{RESET}"
|
||||
)
|
||||
return error_output
|
||||
|
||||
|
||||
return final_embeddings.cpu().numpy()
|
||||
|
||||
def client_warmup(zmq_port):
|
||||
@@ -371,7 +423,7 @@ def create_hnsw_embedding_server(
|
||||
time.sleep(2)
|
||||
print(f"Performing client-side warmup with model {model_name}...")
|
||||
sample_ids = ["1", "2", "3", "4", "5"]
|
||||
|
||||
|
||||
try:
|
||||
context = zmq.Context()
|
||||
socket = context.socket(zmq.REQ)
|
||||
@@ -379,12 +431,12 @@ def create_hnsw_embedding_server(
|
||||
socket.setsockopt(zmq.RCVTIMEO, 30000)
|
||||
socket.setsockopt(zmq.SNDTIMEO, 30000)
|
||||
|
||||
try:
|
||||
try:
|
||||
ids_to_send = [int(x) for x in sample_ids]
|
||||
except ValueError:
|
||||
except ValueError:
|
||||
ids_to_send = []
|
||||
|
||||
if not ids_to_send:
|
||||
if not ids_to_send:
|
||||
print("Skipping warmup send.")
|
||||
return
|
||||
|
||||
@@ -392,14 +444,18 @@ def create_hnsw_embedding_server(
|
||||
request_bytes = msgpack.packb(request_payload)
|
||||
|
||||
for i in range(3):
|
||||
print(f"Sending warmup request {i+1}/3 via ZMQ (MessagePack)...")
|
||||
print(f"Sending warmup request {i + 1}/3 via ZMQ (MessagePack)...")
|
||||
socket.send(request_bytes)
|
||||
response_bytes = socket.recv()
|
||||
|
||||
response_payload = msgpack.unpackb(response_bytes)
|
||||
dimensions = response_payload[0]
|
||||
embeddings_count = dimensions[0] if dimensions and len(dimensions) > 0 else 0
|
||||
print(f"Warmup request {i+1}/3 successful, received {embeddings_count} embeddings")
|
||||
embeddings_count = (
|
||||
dimensions[0] if dimensions and len(dimensions) > 0 else 0
|
||||
)
|
||||
print(
|
||||
f"Warmup request {i + 1}/3 successful, received {embeddings_count} embeddings"
|
||||
)
|
||||
time.sleep(0.1)
|
||||
|
||||
print("Client-side MessagePack ZMQ warmup complete")
|
||||
@@ -410,6 +466,7 @@ def create_hnsw_embedding_server(
|
||||
|
||||
def zmq_server_thread():
|
||||
"""ZMQ server thread"""
|
||||
nonlocal passages, model, tokenizer, model_name
|
||||
context = zmq.Context()
|
||||
socket = context.socket(zmq.REP)
|
||||
socket.bind(f"tcp://*:{zmq_port}")
|
||||
@@ -428,94 +485,277 @@ def create_hnsw_embedding_server(
|
||||
|
||||
try:
|
||||
request_payload = msgpack.unpackb(message_bytes)
|
||||
|
||||
print(f"DEBUG: Raw request_payload: {request_payload}")
|
||||
print(f"DEBUG: request_payload type: {type(request_payload)}")
|
||||
if isinstance(request_payload, list):
|
||||
print(f"DEBUG: request_payload length: {len(request_payload)}")
|
||||
for i, item in enumerate(request_payload):
|
||||
print(
|
||||
f"DEBUG: request_payload[{i}]: {type(item)} - {item if len(str(item)) < 100 else str(item)[:100] + '...'}"
|
||||
)
|
||||
|
||||
# Handle control messages for meta path and model management
|
||||
if isinstance(request_payload, list) and len(request_payload) >= 1:
|
||||
if request_payload[0] == "__QUERY_META_PATH__":
|
||||
# Return the current meta path being used by the server
|
||||
current_meta_path = (
|
||||
getattr(passages, "_meta_path", "")
|
||||
if hasattr(passages, "_meta_path")
|
||||
else ""
|
||||
)
|
||||
response = [current_meta_path]
|
||||
socket.send(msgpack.packb(response))
|
||||
continue
|
||||
|
||||
elif (
|
||||
request_payload[0] == "__UPDATE_META_PATH__"
|
||||
and len(request_payload) >= 2
|
||||
):
|
||||
# Update the server's meta path and reload passages
|
||||
new_meta_path = request_payload[1]
|
||||
try:
|
||||
print(
|
||||
f"INFO: Updating server meta path to: {new_meta_path}"
|
||||
)
|
||||
# Reload passages from the new meta file
|
||||
passages = load_passages_from_metadata(new_meta_path)
|
||||
# Store the meta path for future queries
|
||||
passages._meta_path = new_meta_path
|
||||
response = ["SUCCESS"]
|
||||
print(
|
||||
f"INFO: Successfully updated meta path and reloaded {len(passages)} passages"
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to update meta path: {e}")
|
||||
response = ["FAILED", str(e)]
|
||||
socket.send(msgpack.packb(response))
|
||||
continue
|
||||
|
||||
elif request_payload[0] == "__QUERY_MODEL__":
|
||||
# Return the current model being used by the server
|
||||
response = [model_name]
|
||||
socket.send(msgpack.packb(response))
|
||||
continue
|
||||
|
||||
elif (
|
||||
request_payload[0] == "__UPDATE_MODEL__"
|
||||
and len(request_payload) >= 2
|
||||
):
|
||||
# Update the server's embedding model
|
||||
new_model_name = request_payload[1]
|
||||
try:
|
||||
print(
|
||||
f"INFO: Updating server model from {model_name} to: {new_model_name}"
|
||||
)
|
||||
|
||||
# Clean up old model to free memory
|
||||
print("INFO: Releasing old model from memory...")
|
||||
old_model = model
|
||||
old_tokenizer = tokenizer
|
||||
|
||||
# Load new tokenizer first
|
||||
print(f"Loading new tokenizer for {new_model_name}...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
new_model_name, use_fast=True
|
||||
)
|
||||
|
||||
# Load new model
|
||||
print(f"Loading new model {new_model_name}...")
|
||||
model = AutoModel.from_pretrained(new_model_name)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
# Now safely delete old model after new one is loaded
|
||||
del old_model
|
||||
del old_tokenizer
|
||||
|
||||
# Clear GPU cache if available
|
||||
if device.type == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
print("INFO: Cleared CUDA cache")
|
||||
elif device.type == "mps":
|
||||
torch.mps.empty_cache()
|
||||
print("INFO: Cleared MPS cache")
|
||||
|
||||
# Update model name
|
||||
model_name = new_model_name
|
||||
|
||||
# Force garbage collection
|
||||
import gc
|
||||
|
||||
gc.collect()
|
||||
print("INFO: Memory cleanup completed")
|
||||
|
||||
response = ["SUCCESS"]
|
||||
print(
|
||||
f"INFO: Successfully updated model to: {new_model_name}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to update model: {e}")
|
||||
response = ["FAILED", str(e)]
|
||||
socket.send(msgpack.packb(response))
|
||||
continue
|
||||
|
||||
# Handle distance calculation requests
|
||||
if isinstance(request_payload, list) and len(request_payload) == 2 and isinstance(request_payload[0], list) and isinstance(request_payload[1], list):
|
||||
if (
|
||||
isinstance(request_payload, list)
|
||||
and len(request_payload) == 2
|
||||
and isinstance(request_payload[0], list)
|
||||
and isinstance(request_payload[1], list)
|
||||
):
|
||||
node_ids = request_payload[0]
|
||||
query_vector = np.array(request_payload[1], dtype=np.float32)
|
||||
|
||||
print(f"Request for distance calculation: {len(node_ids)} nodes, query vector dim: {len(query_vector)}")
|
||||
|
||||
|
||||
print("DEBUG: Distance calculation request received")
|
||||
print(f" Node IDs: {node_ids}")
|
||||
print(f" Query vector dim: {len(query_vector)}")
|
||||
print(f" Passages loaded: {len(passages)}")
|
||||
|
||||
# Get embeddings for node IDs
|
||||
texts = []
|
||||
missing_ids = []
|
||||
with lookup_timer.timing():
|
||||
for nid in node_ids:
|
||||
print(f"DEBUG: Looking up passage ID {nid}")
|
||||
txtinfo = passages[nid]
|
||||
if txtinfo is None or txtinfo["text"] == "":
|
||||
raise RuntimeError(f"FATAL: Passage with ID {nid} returned empty text")
|
||||
txt = txtinfo["text"]
|
||||
print(f"DEBUG: Found text for ID {nid}, length: {len(txt)}")
|
||||
texts.append(txt)
|
||||
try:
|
||||
txtinfo = passages[nid]
|
||||
if txtinfo is None:
|
||||
print(
|
||||
f"ERROR: Passage with ID {nid} returned None"
|
||||
)
|
||||
print(f"ERROR: txtinfo: {txtinfo}")
|
||||
raise RuntimeError(
|
||||
f"FATAL: Passage with ID {nid} returned None"
|
||||
)
|
||||
txt = txtinfo[
|
||||
"text"
|
||||
] # Allow empty text to pass through
|
||||
print(
|
||||
f"DEBUG: Found text for ID {nid}, length: {len(txt)}"
|
||||
)
|
||||
texts.append(txt)
|
||||
except KeyError:
|
||||
print(
|
||||
f"ERROR: Passage ID {nid} not found in passages dict"
|
||||
)
|
||||
print(
|
||||
f"ERROR: Available passage IDs: {list(passages.keys())[:10]}..."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"FATAL: Passage with ID {nid} not found"
|
||||
)
|
||||
except Exception as e:
|
||||
print(
|
||||
f"ERROR: Exception looking up passage ID {nid}: {e}"
|
||||
)
|
||||
raise
|
||||
lookup_timer.print_elapsed()
|
||||
|
||||
|
||||
# Process embeddings in chunks if needed
|
||||
all_node_embeddings = []
|
||||
total_size = len(texts)
|
||||
|
||||
|
||||
if total_size > max_batch_size:
|
||||
for i in range(0, total_size, max_batch_size):
|
||||
end_idx = min(i + max_batch_size, total_size)
|
||||
chunk_texts = texts[i:end_idx]
|
||||
chunk_ids = node_ids[i:end_idx]
|
||||
|
||||
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
|
||||
|
||||
embeddings_chunk = process_batch(
|
||||
chunk_texts, chunk_ids, missing_ids
|
||||
)
|
||||
all_node_embeddings.append(embeddings_chunk)
|
||||
|
||||
|
||||
if cuda_available:
|
||||
torch.cuda.empty_cache()
|
||||
elif device.type == "mps":
|
||||
torch.mps.empty_cache()
|
||||
|
||||
|
||||
node_embeddings = np.vstack(all_node_embeddings)
|
||||
else:
|
||||
node_embeddings = process_batch(texts, node_ids, missing_ids)
|
||||
|
||||
node_embeddings = process_batch(
|
||||
texts, node_ids, missing_ids
|
||||
)
|
||||
|
||||
# Calculate distances
|
||||
query_tensor = torch.tensor(query_vector, device=device).float()
|
||||
node_embeddings_tensor = torch.tensor(node_embeddings, device=device).float()
|
||||
|
||||
node_embeddings_tensor = torch.tensor(
|
||||
node_embeddings, device=device
|
||||
).float()
|
||||
|
||||
calc_timer = DeviceTimer("distance calculation", device)
|
||||
with calc_timer.timing():
|
||||
with torch.no_grad():
|
||||
if distance_metric == "l2":
|
||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy().astype(np.float32)
|
||||
query_np = query_tensor.cpu().numpy().astype(np.float32)
|
||||
distances = np.sum(np.square(node_embeddings_np - query_np.reshape(1, -1)), axis=1)
|
||||
else: # mips or cosine
|
||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy()
|
||||
node_embeddings_np = (
|
||||
node_embeddings_tensor.cpu()
|
||||
.numpy()
|
||||
.astype(np.float32)
|
||||
)
|
||||
query_np = (
|
||||
query_tensor.cpu().numpy().astype(np.float32)
|
||||
)
|
||||
distances = np.sum(
|
||||
np.square(
|
||||
node_embeddings_np - query_np.reshape(1, -1)
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
else: # mips or cosine
|
||||
node_embeddings_np = (
|
||||
node_embeddings_tensor.cpu().numpy()
|
||||
)
|
||||
query_np = query_tensor.cpu().numpy()
|
||||
distances = -np.dot(node_embeddings_np, query_np)
|
||||
calc_timer.print_elapsed()
|
||||
|
||||
|
||||
try:
|
||||
response_payload = distances.flatten().tolist()
|
||||
response_bytes = msgpack.packb([response_payload], use_single_float=True)
|
||||
print(f"Sending distance response with {len(distances)} distances")
|
||||
response_bytes = msgpack.packb(
|
||||
[response_payload], use_single_float=True
|
||||
)
|
||||
print(
|
||||
f"Sending distance response with {len(distances)} distances"
|
||||
)
|
||||
except Exception as pack_error:
|
||||
print(f"Error packing MessagePack distance response: {pack_error}")
|
||||
print(
|
||||
f"ERROR: Error packing MessagePack distance response: {pack_error}"
|
||||
)
|
||||
print(f"ERROR: distances shape: {distances.shape}")
|
||||
print(f"ERROR: distances dtype: {distances.dtype}")
|
||||
print(f"ERROR: distances content: {distances}")
|
||||
print(f"ERROR: node_ids: {node_ids}")
|
||||
print(f"ERROR: query_vector shape: {query_vector.shape}")
|
||||
# Still return empty for now but with full error info
|
||||
response_bytes = msgpack.packb([[]])
|
||||
|
||||
|
||||
socket.send(response_bytes)
|
||||
|
||||
|
||||
if device.type == "cuda":
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
e2e_end = time.time()
|
||||
print(f"Distance calculation E2E time: {e2e_end - e2e_start:.6f} seconds")
|
||||
print(
|
||||
f"Distance calculation E2E time: {e2e_end - e2e_start:.6f} seconds"
|
||||
)
|
||||
continue
|
||||
|
||||
|
||||
# Standard embedding request
|
||||
if not isinstance(request_payload, list) or len(request_payload) != 1 or not isinstance(request_payload[0], list):
|
||||
print(f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}")
|
||||
if (
|
||||
not isinstance(request_payload, list)
|
||||
or len(request_payload) != 1
|
||||
or not isinstance(request_payload[0], list)
|
||||
):
|
||||
print(
|
||||
f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}"
|
||||
)
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
continue
|
||||
|
||||
|
||||
node_ids = request_payload[0]
|
||||
print(f"Request for {len(node_ids)} node embeddings")
|
||||
|
||||
|
||||
except Exception as unpack_error:
|
||||
print(f"Error unpacking MessagePack request: {unpack_error}")
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
@@ -529,11 +769,15 @@ def create_hnsw_embedding_server(
|
||||
try:
|
||||
txtinfo = passages[nid]
|
||||
if txtinfo is None or txtinfo["text"] == "":
|
||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
|
||||
raise RuntimeError(
|
||||
f"FATAL: Passage with ID {nid} not found - failing fast"
|
||||
)
|
||||
else:
|
||||
txt = txtinfo["text"]
|
||||
except (KeyError, IndexError):
|
||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
|
||||
raise RuntimeError(
|
||||
f"FATAL: Passage with ID {nid} not found - failing fast"
|
||||
)
|
||||
texts.append(txt)
|
||||
lookup_timer.print_elapsed()
|
||||
|
||||
@@ -542,27 +786,35 @@ def create_hnsw_embedding_server(
|
||||
|
||||
# Process in chunks
|
||||
total_size = len(texts)
|
||||
print(f"Total batch size: {total_size}, max_batch_size: {max_batch_size}")
|
||||
|
||||
print(
|
||||
f"Total batch size: {total_size}, max_batch_size: {max_batch_size}"
|
||||
)
|
||||
|
||||
all_embeddings = []
|
||||
|
||||
|
||||
if total_size > max_batch_size:
|
||||
print(f"Splitting batch of size {total_size} into chunks of {max_batch_size}")
|
||||
print(
|
||||
f"Splitting batch of size {total_size} into chunks of {max_batch_size}"
|
||||
)
|
||||
for i in range(0, total_size, max_batch_size):
|
||||
end_idx = min(i + max_batch_size, total_size)
|
||||
print(f"Processing chunk {i//max_batch_size + 1}/{(total_size + max_batch_size - 1)//max_batch_size}: items {i} to {end_idx-1}")
|
||||
|
||||
print(
|
||||
f"Processing chunk {i // max_batch_size + 1}/{(total_size + max_batch_size - 1) // max_batch_size}: items {i} to {end_idx - 1}"
|
||||
)
|
||||
|
||||
chunk_texts = texts[i:end_idx]
|
||||
chunk_ids = node_ids[i:end_idx]
|
||||
|
||||
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
|
||||
|
||||
embeddings_chunk = process_batch(
|
||||
chunk_texts, chunk_ids, missing_ids
|
||||
)
|
||||
all_embeddings.append(embeddings_chunk)
|
||||
|
||||
|
||||
if cuda_available:
|
||||
torch.cuda.empty_cache()
|
||||
elif device.type == "mps":
|
||||
torch.mps.empty_cache()
|
||||
|
||||
|
||||
hidden = np.vstack(all_embeddings)
|
||||
print(f"Combined embeddings shape: {hidden.shape}")
|
||||
else:
|
||||
@@ -571,22 +823,30 @@ def create_hnsw_embedding_server(
|
||||
# Serialization and response
|
||||
ser_start = time.time()
|
||||
|
||||
print(f"DEBUG zmq_server_thread: Final 'hidden' array | Shape: {hidden.shape} | Dtype: {hidden.dtype} | Has NaN/Inf: {np.isnan(hidden).any() or np.isinf(hidden).any()}")
|
||||
print(
|
||||
f"DEBUG zmq_server_thread: Final 'hidden' array | Shape: {hidden.shape} | Dtype: {hidden.dtype} | Has NaN/Inf: {np.isnan(hidden).any() or np.isinf(hidden).any()}"
|
||||
)
|
||||
if np.isnan(hidden).any() or np.isinf(hidden).any():
|
||||
print(f"{RED}!!! ERROR: NaN or Inf detected in final 'hidden' numpy array BEFORE sending! "
|
||||
f"Requested IDs (sample): {node_ids[:5]}...{RESET}")
|
||||
print(
|
||||
f"{RED}!!! ERROR: NaN or Inf detected in final 'hidden' numpy array BEFORE sending! "
|
||||
f"Requested IDs (sample): {node_ids[:5]}...{RESET}"
|
||||
)
|
||||
assert False
|
||||
|
||||
try:
|
||||
hidden_contiguous_f32 = np.ascontiguousarray(hidden, dtype=np.float32)
|
||||
hidden_contiguous_f32 = np.ascontiguousarray(
|
||||
hidden, dtype=np.float32
|
||||
)
|
||||
response_payload = [
|
||||
list(hidden_contiguous_f32.shape),
|
||||
hidden_contiguous_f32.flatten().tolist()
|
||||
hidden_contiguous_f32.flatten().tolist(),
|
||||
]
|
||||
response_bytes = msgpack.packb(response_payload, use_single_float=True)
|
||||
response_bytes = msgpack.packb(
|
||||
response_payload, use_single_float=True
|
||||
)
|
||||
except Exception as pack_error:
|
||||
print(f"Error packing MessagePack response: {pack_error}")
|
||||
response_bytes = msgpack.packb([[], []])
|
||||
print(f"Error packing MessagePack response: {pack_error}")
|
||||
response_bytes = msgpack.packb([[], []])
|
||||
|
||||
socket.send(response_bytes)
|
||||
ser_end = time.time()
|
||||
@@ -606,8 +866,9 @@ def create_hnsw_embedding_server(
|
||||
except Exception as e:
|
||||
print(f"Error in ZMQ server loop: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
try:
|
||||
try:
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
except:
|
||||
pass
|
||||
@@ -621,7 +882,7 @@ def create_hnsw_embedding_server(
|
||||
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
|
||||
zmq_thread.start()
|
||||
print(f"Started HNSW ZMQ server thread on port {zmq_port}")
|
||||
|
||||
|
||||
# Keep the main thread alive
|
||||
try:
|
||||
while True:
|
||||
@@ -634,17 +895,41 @@ def create_hnsw_embedding_server(
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="HNSW Embedding service")
|
||||
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
||||
parser.add_argument("--passages-file", type=str, help="JSON file containing passage ID to text mapping")
|
||||
parser.add_argument("--embeddings-file", type=str, help="Pickle file containing pre-computed embeddings")
|
||||
parser.add_argument(
|
||||
"--passages-file",
|
||||
type=str,
|
||||
help="JSON file containing passage ID to text mapping",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embeddings-file",
|
||||
type=str,
|
||||
help="Pickle file containing pre-computed embeddings",
|
||||
)
|
||||
parser.add_argument("--use-fp16", action="store_true", default=False)
|
||||
parser.add_argument("--use-int8", action="store_true", default=False)
|
||||
parser.add_argument("--use-cuda-graphs", action="store_true", default=False)
|
||||
parser.add_argument("--max-batch-size", type=int, default=128, help="Maximum batch size before splitting")
|
||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="Embedding model name")
|
||||
parser.add_argument("--custom-max-length", type=int, default=None, help="Override model's default max sequence length")
|
||||
parser.add_argument("--distance-metric", type=str, default="mips", help="Distance metric to use")
|
||||
|
||||
parser.add_argument(
|
||||
"--max-batch-size",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Maximum batch size before splitting",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="Embedding model name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--custom-max-length",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Override model's default max sequence length",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--distance-metric", type=str, default="mips", help="Distance metric to use"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Create and start the HNSW embedding server
|
||||
@@ -659,4 +944,4 @@ if __name__ == "__main__":
|
||||
model_name=args.model_name,
|
||||
custom_max_length_param=args.custom_max_length,
|
||||
distance_metric=args.distance_metric,
|
||||
)
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user