feat: mlx
This commit is contained in:
34
build_mlx_index.py
Normal file
34
build_mlx_index.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from leann.api import LeannBuilder
|
||||
import os
|
||||
|
||||
# Define the path for our new MLX-based index
|
||||
INDEX_PATH = "./mlx_diskann_index/leann"
|
||||
|
||||
if os.path.exists(INDEX_PATH + ".meta.json"):
|
||||
print(f"Index already exists at {INDEX_PATH}. Skipping build.")
|
||||
else:
|
||||
print("Initializing LeannBuilder with MLX support...")
|
||||
# 1. Configure LeannBuilder to use MLX
|
||||
builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
|
||||
use_mlx=True
|
||||
)
|
||||
|
||||
# 2. Add documents
|
||||
print("Adding documents...")
|
||||
docs = [
|
||||
"MLX is an array framework for machine learning on Apple silicon.",
|
||||
"It was designed by Apple's machine learning research team.",
|
||||
"The mlx-community organization provides pre-trained models in MLX format.",
|
||||
"It supports operations on multi-dimensional arrays.",
|
||||
"Leann can now use MLX for its embedding models."
|
||||
]
|
||||
for doc in docs:
|
||||
builder.add_text(doc)
|
||||
|
||||
# 3. Build the index
|
||||
print(f"Building the MLX-based index at: {INDEX_PATH}")
|
||||
builder.build_index(INDEX_PATH)
|
||||
print("\nSuccessfully built the index with MLX embeddings!")
|
||||
print(f"Check the metadata file: {INDEX_PATH}.meta.json")
|
||||
@@ -5,7 +5,6 @@ Embedding server for leann-backend-diskann - Fixed ZMQ REQ-REP pattern
|
||||
|
||||
import pickle
|
||||
import argparse
|
||||
import threading
|
||||
import time
|
||||
import json
|
||||
from typing import Dict, Any, Optional, Union
|
||||
@@ -16,7 +15,6 @@ from contextlib import contextmanager
|
||||
import zmq
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
|
||||
RED = "\033[91m"
|
||||
RESET = "\033[0m"
|
||||
@@ -154,6 +152,7 @@ def create_embedding_server_thread(
|
||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
||||
max_batch_size=128,
|
||||
passages_file: Optional[str] = None,
|
||||
use_mlx: bool = False,
|
||||
):
|
||||
"""
|
||||
在当前线程中创建并运行 embedding server
|
||||
@@ -172,36 +171,40 @@ def create_embedding_server_thread(
|
||||
print(f"{RED}Port {zmq_port} is already in use{RESET}")
|
||||
return
|
||||
|
||||
# 初始化模型
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
import torch
|
||||
|
||||
# 选择设备
|
||||
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
||||
cuda_available = torch.cuda.is_available()
|
||||
|
||||
if cuda_available:
|
||||
device = torch.device("cuda")
|
||||
print("INFO: Using CUDA device")
|
||||
elif mps_available:
|
||||
device = torch.device("mps")
|
||||
print("INFO: Using MPS device (Apple Silicon)")
|
||||
if use_mlx:
|
||||
from leann.api import compute_embeddings_mlx
|
||||
print("INFO: Using MLX for embeddings")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print("INFO: Using CPU device")
|
||||
|
||||
# 加载模型
|
||||
print(f"INFO: Loading model {model_name}")
|
||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
||||
# 初始化模型
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
import torch
|
||||
|
||||
# 优化模型
|
||||
if cuda_available or mps_available:
|
||||
try:
|
||||
model = model.half()
|
||||
model = torch.compile(model)
|
||||
print(f"INFO: Using FP16 precision with model: {model_name}")
|
||||
except Exception as e:
|
||||
print(f"WARNING: Model optimization failed: {e}")
|
||||
# 选择设备
|
||||
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
||||
cuda_available = torch.cuda.is_available()
|
||||
|
||||
if cuda_available:
|
||||
device = torch.device("cuda")
|
||||
print("INFO: Using CUDA device")
|
||||
elif mps_available:
|
||||
device = torch.device("mps")
|
||||
print("INFO: Using MPS device (Apple Silicon)")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print("INFO: Using CPU device")
|
||||
|
||||
# 加载模型
|
||||
print(f"INFO: Loading model {model_name}")
|
||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
||||
|
||||
# 优化模型
|
||||
if cuda_available or mps_available:
|
||||
try:
|
||||
model = model.half()
|
||||
model = torch.compile(model)
|
||||
print(f"INFO: Using FP16 precision with model: {model_name}")
|
||||
except Exception as e:
|
||||
print(f"WARNING: Model optimization failed: {e}")
|
||||
|
||||
# Load passages from file if provided
|
||||
if passages_file and os.path.exists(passages_file):
|
||||
@@ -233,7 +236,7 @@ def create_embedding_server_thread(
|
||||
self.start_time = 0
|
||||
self.end_time = 0
|
||||
|
||||
if cuda_available:
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||
else:
|
||||
@@ -247,25 +250,25 @@ def create_embedding_server_thread(
|
||||
self.end()
|
||||
|
||||
def start(self):
|
||||
if cuda_available:
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
self.start_event.record()
|
||||
else:
|
||||
if self.device.type == "mps":
|
||||
if not use_mlx and self.device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
self.start_time = time.time()
|
||||
|
||||
def end(self):
|
||||
if cuda_available:
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
self.end_event.record()
|
||||
torch.cuda.synchronize()
|
||||
else:
|
||||
if self.device.type == "mps":
|
||||
if not use_mlx and self.device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
self.end_time = time.time()
|
||||
|
||||
def elapsed_time(self):
|
||||
if cuda_available:
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
return self.start_event.elapsed_time(self.end_event) / 1000.0
|
||||
else:
|
||||
return self.end_time - self.start_time
|
||||
@@ -273,7 +276,7 @@ def create_embedding_server_thread(
|
||||
def print_elapsed(self):
|
||||
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
|
||||
|
||||
def process_batch(texts_batch, ids_batch, missing_ids):
|
||||
def process_batch_pytorch(texts_batch, ids_batch, missing_ids):
|
||||
"""处理文本批次"""
|
||||
batch_size = len(texts_batch)
|
||||
print(f"INFO: Processing batch of size {batch_size}")
|
||||
@@ -351,7 +354,7 @@ def create_embedding_server_thread(
|
||||
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
|
||||
|
||||
e2e_start = time.time()
|
||||
lookup_timer = DeviceTimer("text lookup", device)
|
||||
lookup_timer = DeviceTimer("text lookup")
|
||||
|
||||
# 解析请求
|
||||
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
||||
@@ -397,18 +400,25 @@ def create_embedding_server_thread(
|
||||
chunk_texts = texts[i:end_idx]
|
||||
chunk_ids = node_ids[i:end_idx]
|
||||
|
||||
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
|
||||
if use_mlx:
|
||||
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
|
||||
else:
|
||||
embeddings_chunk = process_batch_pytorch(chunk_texts, chunk_ids, missing_ids)
|
||||
all_embeddings.append(embeddings_chunk)
|
||||
|
||||
if cuda_available:
|
||||
torch.cuda.empty_cache()
|
||||
elif device.type == "mps":
|
||||
torch.mps.empty_cache()
|
||||
if not use_mlx:
|
||||
if cuda_available:
|
||||
torch.cuda.empty_cache()
|
||||
elif device.type == "mps":
|
||||
torch.mps.empty_cache()
|
||||
|
||||
hidden = np.vstack(all_embeddings)
|
||||
print(f"INFO: Combined embeddings shape: {hidden.shape}")
|
||||
else:
|
||||
hidden = process_batch(texts, node_ids, missing_ids)
|
||||
if use_mlx:
|
||||
hidden = compute_embeddings_mlx(texts, model_name)
|
||||
else:
|
||||
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
|
||||
|
||||
# 序列化响应
|
||||
ser_start = time.time()
|
||||
@@ -429,16 +439,16 @@ def create_embedding_server_thread(
|
||||
|
||||
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
|
||||
|
||||
if device.type == "cuda":
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
if not use_mlx:
|
||||
if device.type == "cuda":
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
e2e_end = time.time()
|
||||
print(f"INFO: ZMQ E2E time: {e2e_end - e2e_start:.6f} seconds")
|
||||
|
||||
except zmq.Again:
|
||||
print("INFO: ZMQ socket timeout, continuing to listen")
|
||||
# REP套接字不需要重新创建,只需要继续监听
|
||||
continue
|
||||
except Exception as e:
|
||||
print(f"ERROR: Error in ZMQ server: {e}")
|
||||
@@ -460,7 +470,6 @@ def create_embedding_server_thread(
|
||||
raise
|
||||
|
||||
|
||||
# 保持原有的 create_embedding_server 函数不变,只添加线程化版本
|
||||
def create_embedding_server(
|
||||
domain="demo",
|
||||
load_passages=True,
|
||||
@@ -473,12 +482,13 @@ def create_embedding_server(
|
||||
lazy_load_passages=False,
|
||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
||||
passages_file: Optional[str] = None,
|
||||
use_mlx: bool = False,
|
||||
):
|
||||
"""
|
||||
原有的 create_embedding_server 函数保持不变
|
||||
这个是阻塞版本,用于直接运行
|
||||
"""
|
||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file)
|
||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, use_mlx)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -495,6 +505,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
|
||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="Embedding model name")
|
||||
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings")
|
||||
args = parser.parse_args()
|
||||
|
||||
create_embedding_server(
|
||||
@@ -509,4 +520,5 @@ if __name__ == "__main__":
|
||||
lazy_load_passages=args.lazy_load_passages,
|
||||
model_name=args.model_name,
|
||||
passages_file=args.passages_file,
|
||||
)
|
||||
use_mlx=args.use_mlx,
|
||||
)
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
|
||||
"""
|
||||
This file contains the core API for the LEANN project, now definitively updated
|
||||
with the correct, original embedding logic from the user's reference code.
|
||||
@@ -17,8 +18,10 @@ from .interface import LeannBackendFactoryInterface
|
||||
|
||||
# --- The Correct, Verified Embedding Logic from old_code.py ---
|
||||
|
||||
def compute_embeddings(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
"""Computes embeddings using sentence-transformers for consistent results."""
|
||||
def compute_embeddings(chunks: List[str], model_name: str, use_mlx: bool = False) -> np.ndarray:
|
||||
"""Computes embeddings using sentence-transformers or MLX for consistent results."""
|
||||
if use_mlx:
|
||||
return compute_embeddings_mlx(chunks, model_name)
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
except ImportError as e:
|
||||
@@ -44,6 +47,45 @@ def compute_embeddings(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
|
||||
return embeddings
|
||||
|
||||
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
"""Computes embeddings using an MLX model."""
|
||||
try:
|
||||
import mlx.core as mx
|
||||
from mlx_lm.utils import load
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
f"MLX or related libraries not available. Install with: pip install mlx mlx-lm"
|
||||
) from e
|
||||
|
||||
print(f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}'...")
|
||||
|
||||
# Load model and tokenizer
|
||||
model, tokenizer = load(model_name)
|
||||
|
||||
# Process each chunk
|
||||
all_embeddings = []
|
||||
for chunk in chunks:
|
||||
# Tokenize
|
||||
token_ids = tokenizer.encode(chunk)
|
||||
|
||||
# Convert to MLX array and add batch dimension
|
||||
input_ids = mx.array([token_ids])
|
||||
|
||||
# Get embeddings
|
||||
embeddings = model(input_ids)
|
||||
|
||||
# Mean pooling (since we only have one sequence, just take the mean)
|
||||
pooled = embeddings.mean(axis=1) # Shape: (1, hidden_size)
|
||||
|
||||
# Convert individual embedding to numpy via list (to handle bfloat16)
|
||||
pooled_list = pooled[0].tolist() # Remove batch dimension and convert to list
|
||||
pooled_numpy = np.array(pooled_list, dtype=np.float32)
|
||||
all_embeddings.append(pooled_numpy)
|
||||
|
||||
# Stack numpy arrays
|
||||
return np.stack(all_embeddings)
|
||||
|
||||
|
||||
# --- Core API Classes (Restored and Unchanged) ---
|
||||
|
||||
@dataclass
|
||||
@@ -83,7 +125,7 @@ class PassageManager:
|
||||
raise KeyError(f"Passage ID not found: {passage_id}")
|
||||
|
||||
class LeannBuilder:
|
||||
def __init__(self, backend_name: str, embedding_model: str = "facebook/contriever-msmarco", dimensions: Optional[int] = None, **backend_kwargs):
|
||||
def __init__(self, backend_name: str, embedding_model: str = "facebook/contriever-msmarco", dimensions: Optional[int] = None, use_mlx: bool = False, **backend_kwargs):
|
||||
self.backend_name = backend_name
|
||||
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
@@ -91,6 +133,7 @@ class LeannBuilder:
|
||||
self.backend_factory = backend_factory
|
||||
self.embedding_model = embedding_model
|
||||
self.dimensions = dimensions
|
||||
self.use_mlx = use_mlx
|
||||
self.backend_kwargs = backend_kwargs
|
||||
self.chunks: List[Dict[str, Any]] = []
|
||||
|
||||
@@ -102,7 +145,7 @@ class LeannBuilder:
|
||||
|
||||
def build_index(self, index_path: str):
|
||||
if not self.chunks: raise ValueError("No chunks added.")
|
||||
if self.dimensions is None: self.dimensions = len(compute_embeddings(["dummy"], self.embedding_model)[0])
|
||||
if self.dimensions is None: self.dimensions = len(compute_embeddings(["dummy"], self.embedding_model, self.use_mlx)[0])
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_name = path.name
|
||||
@@ -118,7 +161,7 @@ class LeannBuilder:
|
||||
offset_map[chunk["id"]] = offset
|
||||
with open(offset_file, 'wb') as f: pickle.dump(offset_map, f)
|
||||
texts_to_embed = [c["text"] for c in self.chunks]
|
||||
embeddings = compute_embeddings(texts_to_embed, self.embedding_model)
|
||||
embeddings = compute_embeddings(texts_to_embed, self.embedding_model, self.use_mlx)
|
||||
string_ids = [chunk["id"] for chunk in self.chunks]
|
||||
current_backend_kwargs = {**self.backend_kwargs, 'dimensions': self.dimensions}
|
||||
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
||||
@@ -126,7 +169,7 @@ class LeannBuilder:
|
||||
leann_meta_path = index_dir / f"{index_name}.meta.json"
|
||||
meta_data = {
|
||||
"version": "1.0", "backend_name": self.backend_name, "embedding_model": self.embedding_model,
|
||||
"dimensions": self.dimensions, "backend_kwargs": self.backend_kwargs,
|
||||
"dimensions": self.dimensions, "backend_kwargs": self.backend_kwargs, "use_mlx": self.use_mlx,
|
||||
"passage_sources": [{"type": "jsonl", "path": str(passages_file), "index_path": str(offset_file)}]
|
||||
}
|
||||
|
||||
@@ -145,6 +188,7 @@ class LeannSearcher:
|
||||
with open(meta_path_str, 'r', encoding='utf-8') as f: self.meta_data = json.load(f)
|
||||
backend_name = self.meta_data['backend_name']
|
||||
self.embedding_model = self.meta_data['embedding_model']
|
||||
self.use_mlx = self.meta_data.get('use_mlx', False)
|
||||
self.passage_manager = PassageManager(self.meta_data.get('passage_sources', []))
|
||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None: raise ValueError(f"Backend '{backend_name}' not found.")
|
||||
@@ -157,7 +201,7 @@ class LeannSearcher:
|
||||
print(f" Top_k: {top_k}")
|
||||
print(f" Search kwargs: {search_kwargs}")
|
||||
|
||||
query_embedding = compute_embeddings([query], self.embedding_model)
|
||||
query_embedding = compute_embeddings([query], self.embedding_model, self.use_mlx)
|
||||
print(f" Generated embedding shape: {query_embedding.shape}")
|
||||
print(f"🔍 DEBUG Query embedding first 10 values: {query_embedding[0][:10]}")
|
||||
print(f"🔍 DEBUG Query embedding norm: {np.linalg.norm(query_embedding[0])}")
|
||||
@@ -212,4 +256,4 @@ class LeannChat:
|
||||
print(f"Leann: {response}")
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
print("\nGoodbye!")
|
||||
break
|
||||
break
|
||||
|
||||
128
tests/sanity_checks/benchmark_embeddings.py
Normal file
128
tests/sanity_checks/benchmark_embeddings.py
Normal file
@@ -0,0 +1,128 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import mlx.core as mx
|
||||
from mlx_lm import load
|
||||
|
||||
# --- Configuration ---
|
||||
MODEL_NAME_TORCH = "Qwen/Qwen3-Embedding-0.6B"
|
||||
MODEL_NAME_MLX = "mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ"
|
||||
BATCH_SIZES = [1, 8, 16, 32, 64, 128]
|
||||
NUM_RUNS = 10 # Number of runs to average for each batch size
|
||||
WARMUP_RUNS = 2 # Number of warm-up runs
|
||||
|
||||
# --- Generate Dummy Data ---
|
||||
DUMMY_SENTENCES = ["This is a test sentence for benchmarking." * 5] * max(BATCH_SIZES)
|
||||
|
||||
# --- Benchmark Functions ---b
|
||||
|
||||
def benchmark_torch(model, sentences):
|
||||
start_time = time.time()
|
||||
model.encode(sentences, convert_to_numpy=True)
|
||||
end_time = time.time()
|
||||
return (end_time - start_time) * 1000 # Return time in ms
|
||||
|
||||
def benchmark_mlx(model, tokenizer, sentences):
|
||||
start_time = time.time()
|
||||
|
||||
# Tokenize sentences using MLX tokenizer
|
||||
tokens = []
|
||||
for sentence in sentences:
|
||||
token_ids = tokenizer.encode(sentence)
|
||||
tokens.append(token_ids)
|
||||
|
||||
# Pad sequences to the same length
|
||||
max_len = max(len(t) for t in tokens)
|
||||
input_ids = []
|
||||
attention_mask = []
|
||||
|
||||
for token_seq in tokens:
|
||||
# Pad sequence
|
||||
padded = token_seq + [tokenizer.eos_token_id] * (max_len - len(token_seq))
|
||||
input_ids.append(padded)
|
||||
# Create attention mask (1 for real tokens, 0 for padding)
|
||||
mask = [1] * len(token_seq) + [0] * (max_len - len(token_seq))
|
||||
attention_mask.append(mask)
|
||||
|
||||
# Convert to MLX arrays
|
||||
input_ids = mx.array(input_ids)
|
||||
attention_mask = mx.array(attention_mask)
|
||||
|
||||
# Get embeddings
|
||||
embeddings = model(input_ids)
|
||||
|
||||
# Mean pooling
|
||||
mask = mx.expand_dims(attention_mask, -1)
|
||||
sum_embeddings = (embeddings * mask).sum(axis=1)
|
||||
sum_mask = mask.sum(axis=1)
|
||||
_ = sum_embeddings / sum_mask
|
||||
|
||||
mx.eval() # Ensure computation is finished
|
||||
end_time = time.time()
|
||||
return (end_time - start_time) * 1000 # Return time in ms
|
||||
|
||||
# --- Main Execution ---
|
||||
def main():
|
||||
print("--- Initializing Models ---")
|
||||
# Load PyTorch model
|
||||
print(f"Loading PyTorch model: {MODEL_NAME_TORCH}")
|
||||
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
model_torch = SentenceTransformer(MODEL_NAME_TORCH, device=device)
|
||||
print(f"PyTorch model loaded on: {device}")
|
||||
|
||||
# Load MLX model
|
||||
print(f"Loading MLX model: {MODEL_NAME_MLX}")
|
||||
model_mlx, tokenizer_mlx = load(MODEL_NAME_MLX)
|
||||
print("MLX model loaded.")
|
||||
|
||||
# --- Warm-up ---
|
||||
print("\n--- Performing Warm-up Runs ---")
|
||||
for _ in range(WARMUP_RUNS):
|
||||
benchmark_torch(model_torch, DUMMY_SENTENCES[:1])
|
||||
benchmark_mlx(model_mlx, tokenizer_mlx, DUMMY_SENTENCES[:1])
|
||||
print("Warm-up complete.")
|
||||
|
||||
# --- Benchmarking ---
|
||||
print("\n--- Starting Benchmark ---")
|
||||
results_torch = []
|
||||
results_mlx = []
|
||||
|
||||
for batch_size in BATCH_SIZES:
|
||||
print(f"Benchmarking batch size: {batch_size}")
|
||||
sentences_batch = DUMMY_SENTENCES[:batch_size]
|
||||
|
||||
# Benchmark PyTorch
|
||||
torch_times = [benchmark_torch(model_torch, sentences_batch) for _ in range(NUM_RUNS)]
|
||||
results_torch.append(np.mean(torch_times))
|
||||
|
||||
# Benchmark MLX
|
||||
mlx_times = [benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)]
|
||||
results_mlx.append(np.mean(mlx_times))
|
||||
|
||||
print("\n--- Benchmark Results (Average time per batch in ms) ---")
|
||||
print(f"Batch Sizes: {BATCH_SIZES}")
|
||||
print(f"PyTorch (mps): {[f'{t:.2f}' for t in results_torch]}")
|
||||
print(f"MLX: {[f'{t:.2f}' for t in results_mlx]}")
|
||||
|
||||
# --- Plotting ---
|
||||
print("\n--- Generating Plot ---")
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.plot(BATCH_SIZES, results_torch, marker='o', linestyle='-', label=f'PyTorch ({device})')
|
||||
plt.plot(BATCH_SIZES, results_mlx, marker='s', linestyle='-', label='MLX')
|
||||
|
||||
plt.title(f'Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}')
|
||||
plt.xlabel("Batch Size")
|
||||
plt.ylabel("Average Time per Batch (ms)")
|
||||
plt.xticks(BATCH_SIZES)
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
|
||||
# Save the plot
|
||||
output_filename = "embedding_benchmark.png"
|
||||
plt.savefig(output_filename)
|
||||
print(f"Plot saved to {output_filename}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user