feat: mlx

This commit is contained in:
Andy Lee
2025-07-13 02:13:04 -07:00
parent 71ef4b7d4c
commit 48dda1cb5b
4 changed files with 278 additions and 60 deletions

34
build_mlx_index.py Normal file
View File

@@ -0,0 +1,34 @@
from leann.api import LeannBuilder
import os
# Define the path for our new MLX-based index
INDEX_PATH = "./mlx_diskann_index/leann"
if os.path.exists(INDEX_PATH + ".meta.json"):
print(f"Index already exists at {INDEX_PATH}. Skipping build.")
else:
print("Initializing LeannBuilder with MLX support...")
# 1. Configure LeannBuilder to use MLX
builder = LeannBuilder(
backend_name="diskann",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
use_mlx=True
)
# 2. Add documents
print("Adding documents...")
docs = [
"MLX is an array framework for machine learning on Apple silicon.",
"It was designed by Apple's machine learning research team.",
"The mlx-community organization provides pre-trained models in MLX format.",
"It supports operations on multi-dimensional arrays.",
"Leann can now use MLX for its embedding models."
]
for doc in docs:
builder.add_text(doc)
# 3. Build the index
print(f"Building the MLX-based index at: {INDEX_PATH}")
builder.build_index(INDEX_PATH)
print("\nSuccessfully built the index with MLX embeddings!")
print(f"Check the metadata file: {INDEX_PATH}.meta.json")

View File

@@ -5,7 +5,6 @@ Embedding server for leann-backend-diskann - Fixed ZMQ REQ-REP pattern
import pickle
import argparse
import threading
import time
import json
from typing import Dict, Any, Optional, Union
@@ -16,7 +15,6 @@ from contextlib import contextmanager
import zmq
import numpy as np
from pathlib import Path
import pickle
RED = "\033[91m"
RESET = "\033[0m"
@@ -154,6 +152,7 @@ def create_embedding_server_thread(
model_name="sentence-transformers/all-mpnet-base-v2",
max_batch_size=128,
passages_file: Optional[str] = None,
use_mlx: bool = False,
):
"""
在当前线程中创建并运行 embedding server
@@ -172,36 +171,40 @@ def create_embedding_server_thread(
print(f"{RED}Port {zmq_port} is already in use{RESET}")
return
# 初始化模型
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
# 选择设备
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
if cuda_available:
device = torch.device("cuda")
print("INFO: Using CUDA device")
elif mps_available:
device = torch.device("mps")
print("INFO: Using MPS device (Apple Silicon)")
if use_mlx:
from leann.api import compute_embeddings_mlx
print("INFO: Using MLX for embeddings")
else:
device = torch.device("cpu")
print("INFO: Using CPU device")
# 加载模型
print(f"INFO: Loading model {model_name}")
model = AutoModel.from_pretrained(model_name).to(device).eval()
# 初始化模型
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
# 优化模型
if cuda_available or mps_available:
try:
model = model.half()
model = torch.compile(model)
print(f"INFO: Using FP16 precision with model: {model_name}")
except Exception as e:
print(f"WARNING: Model optimization failed: {e}")
# 选择设备
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
if cuda_available:
device = torch.device("cuda")
print("INFO: Using CUDA device")
elif mps_available:
device = torch.device("mps")
print("INFO: Using MPS device (Apple Silicon)")
else:
device = torch.device("cpu")
print("INFO: Using CPU device")
# 加载模型
print(f"INFO: Loading model {model_name}")
model = AutoModel.from_pretrained(model_name).to(device).eval()
# 优化模型
if cuda_available or mps_available:
try:
model = model.half()
model = torch.compile(model)
print(f"INFO: Using FP16 precision with model: {model_name}")
except Exception as e:
print(f"WARNING: Model optimization failed: {e}")
# Load passages from file if provided
if passages_file and os.path.exists(passages_file):
@@ -233,7 +236,7 @@ def create_embedding_server_thread(
self.start_time = 0
self.end_time = 0
if cuda_available:
if not use_mlx and torch.cuda.is_available():
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
else:
@@ -247,25 +250,25 @@ def create_embedding_server_thread(
self.end()
def start(self):
if cuda_available:
if not use_mlx and torch.cuda.is_available():
torch.cuda.synchronize()
self.start_event.record()
else:
if self.device.type == "mps":
if not use_mlx and self.device.type == "mps":
torch.mps.synchronize()
self.start_time = time.time()
def end(self):
if cuda_available:
if not use_mlx and torch.cuda.is_available():
self.end_event.record()
torch.cuda.synchronize()
else:
if self.device.type == "mps":
if not use_mlx and self.device.type == "mps":
torch.mps.synchronize()
self.end_time = time.time()
def elapsed_time(self):
if cuda_available:
if not use_mlx and torch.cuda.is_available():
return self.start_event.elapsed_time(self.end_event) / 1000.0
else:
return self.end_time - self.start_time
@@ -273,7 +276,7 @@ def create_embedding_server_thread(
def print_elapsed(self):
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
def process_batch(texts_batch, ids_batch, missing_ids):
def process_batch_pytorch(texts_batch, ids_batch, missing_ids):
"""处理文本批次"""
batch_size = len(texts_batch)
print(f"INFO: Processing batch of size {batch_size}")
@@ -351,7 +354,7 @@ def create_embedding_server_thread(
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
e2e_start = time.time()
lookup_timer = DeviceTimer("text lookup", device)
lookup_timer = DeviceTimer("text lookup")
# 解析请求
req_proto = embedding_pb2.NodeEmbeddingRequest()
@@ -397,18 +400,25 @@ def create_embedding_server_thread(
chunk_texts = texts[i:end_idx]
chunk_ids = node_ids[i:end_idx]
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
if use_mlx:
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
else:
embeddings_chunk = process_batch_pytorch(chunk_texts, chunk_ids, missing_ids)
all_embeddings.append(embeddings_chunk)
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
torch.mps.empty_cache()
if not use_mlx:
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
torch.mps.empty_cache()
hidden = np.vstack(all_embeddings)
print(f"INFO: Combined embeddings shape: {hidden.shape}")
else:
hidden = process_batch(texts, node_ids, missing_ids)
if use_mlx:
hidden = compute_embeddings_mlx(texts, model_name)
else:
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
# 序列化响应
ser_start = time.time()
@@ -429,16 +439,16 @@ def create_embedding_server_thread(
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
if not use_mlx:
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
e2e_end = time.time()
print(f"INFO: ZMQ E2E time: {e2e_end - e2e_start:.6f} seconds")
except zmq.Again:
print("INFO: ZMQ socket timeout, continuing to listen")
# REP套接字不需要重新创建只需要继续监听
continue
except Exception as e:
print(f"ERROR: Error in ZMQ server: {e}")
@@ -460,7 +470,6 @@ def create_embedding_server_thread(
raise
# 保持原有的 create_embedding_server 函数不变,只添加线程化版本
def create_embedding_server(
domain="demo",
load_passages=True,
@@ -473,12 +482,13 @@ def create_embedding_server(
lazy_load_passages=False,
model_name="sentence-transformers/all-mpnet-base-v2",
passages_file: Optional[str] = None,
use_mlx: bool = False,
):
"""
原有的 create_embedding_server 函数保持不变
这个是阻塞版本,用于直接运行
"""
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file)
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, use_mlx)
if __name__ == "__main__":
@@ -495,6 +505,7 @@ if __name__ == "__main__":
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name")
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings")
args = parser.parse_args()
create_embedding_server(
@@ -509,4 +520,5 @@ if __name__ == "__main__":
lazy_load_passages=args.lazy_load_passages,
model_name=args.model_name,
passages_file=args.passages_file,
)
use_mlx=args.use_mlx,
)

View File

@@ -1,3 +1,4 @@
"""
This file contains the core API for the LEANN project, now definitively updated
with the correct, original embedding logic from the user's reference code.
@@ -17,8 +18,10 @@ from .interface import LeannBackendFactoryInterface
# --- The Correct, Verified Embedding Logic from old_code.py ---
def compute_embeddings(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using sentence-transformers for consistent results."""
def compute_embeddings(chunks: List[str], model_name: str, use_mlx: bool = False) -> np.ndarray:
"""Computes embeddings using sentence-transformers or MLX for consistent results."""
if use_mlx:
return compute_embeddings_mlx(chunks, model_name)
try:
from sentence_transformers import SentenceTransformer
except ImportError as e:
@@ -44,6 +47,45 @@ def compute_embeddings(chunks: List[str], model_name: str) -> np.ndarray:
return embeddings
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using an MLX model."""
try:
import mlx.core as mx
from mlx_lm.utils import load
except ImportError as e:
raise RuntimeError(
f"MLX or related libraries not available. Install with: pip install mlx mlx-lm"
) from e
print(f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}'...")
# Load model and tokenizer
model, tokenizer = load(model_name)
# Process each chunk
all_embeddings = []
for chunk in chunks:
# Tokenize
token_ids = tokenizer.encode(chunk)
# Convert to MLX array and add batch dimension
input_ids = mx.array([token_ids])
# Get embeddings
embeddings = model(input_ids)
# Mean pooling (since we only have one sequence, just take the mean)
pooled = embeddings.mean(axis=1) # Shape: (1, hidden_size)
# Convert individual embedding to numpy via list (to handle bfloat16)
pooled_list = pooled[0].tolist() # Remove batch dimension and convert to list
pooled_numpy = np.array(pooled_list, dtype=np.float32)
all_embeddings.append(pooled_numpy)
# Stack numpy arrays
return np.stack(all_embeddings)
# --- Core API Classes (Restored and Unchanged) ---
@dataclass
@@ -83,7 +125,7 @@ class PassageManager:
raise KeyError(f"Passage ID not found: {passage_id}")
class LeannBuilder:
def __init__(self, backend_name: str, embedding_model: str = "facebook/contriever-msmarco", dimensions: Optional[int] = None, **backend_kwargs):
def __init__(self, backend_name: str, embedding_model: str = "facebook/contriever-msmarco", dimensions: Optional[int] = None, use_mlx: bool = False, **backend_kwargs):
self.backend_name = backend_name
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
@@ -91,6 +133,7 @@ class LeannBuilder:
self.backend_factory = backend_factory
self.embedding_model = embedding_model
self.dimensions = dimensions
self.use_mlx = use_mlx
self.backend_kwargs = backend_kwargs
self.chunks: List[Dict[str, Any]] = []
@@ -102,7 +145,7 @@ class LeannBuilder:
def build_index(self, index_path: str):
if not self.chunks: raise ValueError("No chunks added.")
if self.dimensions is None: self.dimensions = len(compute_embeddings(["dummy"], self.embedding_model)[0])
if self.dimensions is None: self.dimensions = len(compute_embeddings(["dummy"], self.embedding_model, self.use_mlx)[0])
path = Path(index_path)
index_dir = path.parent
index_name = path.name
@@ -118,7 +161,7 @@ class LeannBuilder:
offset_map[chunk["id"]] = offset
with open(offset_file, 'wb') as f: pickle.dump(offset_map, f)
texts_to_embed = [c["text"] for c in self.chunks]
embeddings = compute_embeddings(texts_to_embed, self.embedding_model)
embeddings = compute_embeddings(texts_to_embed, self.embedding_model, self.use_mlx)
string_ids = [chunk["id"] for chunk in self.chunks]
current_backend_kwargs = {**self.backend_kwargs, 'dimensions': self.dimensions}
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
@@ -126,7 +169,7 @@ class LeannBuilder:
leann_meta_path = index_dir / f"{index_name}.meta.json"
meta_data = {
"version": "1.0", "backend_name": self.backend_name, "embedding_model": self.embedding_model,
"dimensions": self.dimensions, "backend_kwargs": self.backend_kwargs,
"dimensions": self.dimensions, "backend_kwargs": self.backend_kwargs, "use_mlx": self.use_mlx,
"passage_sources": [{"type": "jsonl", "path": str(passages_file), "index_path": str(offset_file)}]
}
@@ -145,6 +188,7 @@ class LeannSearcher:
with open(meta_path_str, 'r', encoding='utf-8') as f: self.meta_data = json.load(f)
backend_name = self.meta_data['backend_name']
self.embedding_model = self.meta_data['embedding_model']
self.use_mlx = self.meta_data.get('use_mlx', False)
self.passage_manager = PassageManager(self.meta_data.get('passage_sources', []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None: raise ValueError(f"Backend '{backend_name}' not found.")
@@ -157,7 +201,7 @@ class LeannSearcher:
print(f" Top_k: {top_k}")
print(f" Search kwargs: {search_kwargs}")
query_embedding = compute_embeddings([query], self.embedding_model)
query_embedding = compute_embeddings([query], self.embedding_model, self.use_mlx)
print(f" Generated embedding shape: {query_embedding.shape}")
print(f"🔍 DEBUG Query embedding first 10 values: {query_embedding[0][:10]}")
print(f"🔍 DEBUG Query embedding norm: {np.linalg.norm(query_embedding[0])}")
@@ -212,4 +256,4 @@ class LeannChat:
print(f"Leann: {response}")
except (KeyboardInterrupt, EOFError):
print("\nGoodbye!")
break
break

View File

@@ -0,0 +1,128 @@
import time
import numpy as np
import matplotlib.pyplot as plt
import torch
from sentence_transformers import SentenceTransformer
import mlx.core as mx
from mlx_lm import load
# --- Configuration ---
MODEL_NAME_TORCH = "Qwen/Qwen3-Embedding-0.6B"
MODEL_NAME_MLX = "mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ"
BATCH_SIZES = [1, 8, 16, 32, 64, 128]
NUM_RUNS = 10 # Number of runs to average for each batch size
WARMUP_RUNS = 2 # Number of warm-up runs
# --- Generate Dummy Data ---
DUMMY_SENTENCES = ["This is a test sentence for benchmarking." * 5] * max(BATCH_SIZES)
# --- Benchmark Functions ---b
def benchmark_torch(model, sentences):
start_time = time.time()
model.encode(sentences, convert_to_numpy=True)
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
def benchmark_mlx(model, tokenizer, sentences):
start_time = time.time()
# Tokenize sentences using MLX tokenizer
tokens = []
for sentence in sentences:
token_ids = tokenizer.encode(sentence)
tokens.append(token_ids)
# Pad sequences to the same length
max_len = max(len(t) for t in tokens)
input_ids = []
attention_mask = []
for token_seq in tokens:
# Pad sequence
padded = token_seq + [tokenizer.eos_token_id] * (max_len - len(token_seq))
input_ids.append(padded)
# Create attention mask (1 for real tokens, 0 for padding)
mask = [1] * len(token_seq) + [0] * (max_len - len(token_seq))
attention_mask.append(mask)
# Convert to MLX arrays
input_ids = mx.array(input_ids)
attention_mask = mx.array(attention_mask)
# Get embeddings
embeddings = model(input_ids)
# Mean pooling
mask = mx.expand_dims(attention_mask, -1)
sum_embeddings = (embeddings * mask).sum(axis=1)
sum_mask = mask.sum(axis=1)
_ = sum_embeddings / sum_mask
mx.eval() # Ensure computation is finished
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
# --- Main Execution ---
def main():
print("--- Initializing Models ---")
# Load PyTorch model
print(f"Loading PyTorch model: {MODEL_NAME_TORCH}")
device = "mps" if torch.backends.mps.is_available() else "cpu"
model_torch = SentenceTransformer(MODEL_NAME_TORCH, device=device)
print(f"PyTorch model loaded on: {device}")
# Load MLX model
print(f"Loading MLX model: {MODEL_NAME_MLX}")
model_mlx, tokenizer_mlx = load(MODEL_NAME_MLX)
print("MLX model loaded.")
# --- Warm-up ---
print("\n--- Performing Warm-up Runs ---")
for _ in range(WARMUP_RUNS):
benchmark_torch(model_torch, DUMMY_SENTENCES[:1])
benchmark_mlx(model_mlx, tokenizer_mlx, DUMMY_SENTENCES[:1])
print("Warm-up complete.")
# --- Benchmarking ---
print("\n--- Starting Benchmark ---")
results_torch = []
results_mlx = []
for batch_size in BATCH_SIZES:
print(f"Benchmarking batch size: {batch_size}")
sentences_batch = DUMMY_SENTENCES[:batch_size]
# Benchmark PyTorch
torch_times = [benchmark_torch(model_torch, sentences_batch) for _ in range(NUM_RUNS)]
results_torch.append(np.mean(torch_times))
# Benchmark MLX
mlx_times = [benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)]
results_mlx.append(np.mean(mlx_times))
print("\n--- Benchmark Results (Average time per batch in ms) ---")
print(f"Batch Sizes: {BATCH_SIZES}")
print(f"PyTorch (mps): {[f'{t:.2f}' for t in results_torch]}")
print(f"MLX: {[f'{t:.2f}' for t in results_mlx]}")
# --- Plotting ---
print("\n--- Generating Plot ---")
plt.figure(figsize=(10, 6))
plt.plot(BATCH_SIZES, results_torch, marker='o', linestyle='-', label=f'PyTorch ({device})')
plt.plot(BATCH_SIZES, results_mlx, marker='s', linestyle='-', label='MLX')
plt.title(f'Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}')
plt.xlabel("Batch Size")
plt.ylabel("Average Time per Batch (ms)")
plt.xticks(BATCH_SIZES)
plt.grid(True)
plt.legend()
# Save the plot
output_filename = "embedding_benchmark.png"
plt.savefig(output_filename)
print(f"Plot saved to {output_filename}")
if __name__ == "__main__":
main()