add doc about multimodal
This commit is contained in:
@@ -169,7 +169,7 @@ def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
|
||||
)
|
||||
|
||||
doc_vecs: list[Any] = []
|
||||
for batch_doc in dataloader:
|
||||
for batch_doc in tqdm(dataloader, desc="Embedding images"):
|
||||
with torch.no_grad():
|
||||
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
|
||||
@@ -200,7 +200,7 @@ def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
||||
)
|
||||
|
||||
q_vecs: list[Any] = []
|
||||
for batch_query in dataloader:
|
||||
for batch_query in tqdm(dataloader, desc="Embedding queries"):
|
||||
with torch.no_grad():
|
||||
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||
if model.device.type == "cuda":
|
||||
@@ -362,7 +362,7 @@ if USE_HF_DATASET:
|
||||
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
|
||||
filepaths: list[str] = []
|
||||
images: list[Image.Image] = []
|
||||
for i in tqdm(range(N), desc="Loading dataset"):
|
||||
for i in tqdm(range(N), desc="Loading dataset", total=N ):
|
||||
p = dataset[i]
|
||||
# Compose a descriptive identifier for printing later
|
||||
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"
|
||||
|
||||
Reference in New Issue
Block a user