[Feat] ColQwen intergration (#111)
* add colqwen stuff * add colqwen stuff and pass ruff * remove ipynb
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -18,6 +18,7 @@ demo/experiment_results/**/*.json
|
||||
*.eml
|
||||
*.emlx
|
||||
*.json
|
||||
*.png
|
||||
!.vscode/*.json
|
||||
*.sh
|
||||
*.txt
|
||||
@@ -101,3 +102,6 @@ CLAUDE.local.md
|
||||
.claude/*.local.*
|
||||
.claude/local/*
|
||||
benchmarks/data/
|
||||
|
||||
## multi vector
|
||||
apps/multimodal/vision-based-pdf-multi-vector/multi-vector-colpali-native-weaviate.py
|
||||
|
||||
@@ -0,0 +1,182 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||
_repo_root = Path(current_file).resolve().parents[3]
|
||||
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||
if str(_leann_core_src) not in sys.path:
|
||||
sys.path.append(str(_leann_core_src))
|
||||
if str(_leann_hnsw_pkg) not in sys.path:
|
||||
sys.path.append(str(_leann_hnsw_pkg))
|
||||
|
||||
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
from leann_backend_hnsw.hnsw_backend import HNSWBuilder, HNSWSearcher # noqa: E402
|
||||
|
||||
|
||||
class LeannMultiVector:
|
||||
def __init__(
|
||||
self,
|
||||
index_path: str,
|
||||
dim: int = 128,
|
||||
distance_metric: str = "mips",
|
||||
m: int = 16,
|
||||
ef_construction: int = 500,
|
||||
is_compact: bool = False,
|
||||
is_recompute: bool = False,
|
||||
embedding_model_name: str = "colvision",
|
||||
) -> None:
|
||||
self.index_path = index_path
|
||||
self.dim = dim
|
||||
self.embedding_model_name = embedding_model_name
|
||||
self._pending_items: list[dict] = []
|
||||
self._backend_kwargs = {
|
||||
"distance_metric": distance_metric,
|
||||
"M": m,
|
||||
"efConstruction": ef_construction,
|
||||
"is_compact": is_compact,
|
||||
"is_recompute": is_recompute,
|
||||
}
|
||||
self._labels_meta: list[dict] = []
|
||||
|
||||
def _meta_dict(self) -> dict:
|
||||
return {
|
||||
"version": "1.0",
|
||||
"backend_name": "hnsw",
|
||||
"embedding_model": self.embedding_model_name,
|
||||
"embedding_mode": "custom",
|
||||
"dimensions": self.dim,
|
||||
"backend_kwargs": self._backend_kwargs,
|
||||
"is_compact": self._backend_kwargs.get("is_compact", True),
|
||||
"is_pruned": self._backend_kwargs.get("is_compact", True)
|
||||
and self._backend_kwargs.get("is_recompute", True),
|
||||
}
|
||||
|
||||
def create_collection(self) -> None:
|
||||
path = Path(self.index_path)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def insert(self, data: dict) -> None:
|
||||
self._pending_items.append(
|
||||
{
|
||||
"doc_id": int(data["doc_id"]),
|
||||
"filepath": data.get("filepath", ""),
|
||||
"colbert_vecs": [np.asarray(v, dtype=np.float32) for v in data["colbert_vecs"]],
|
||||
}
|
||||
)
|
||||
|
||||
def _labels_path(self) -> Path:
|
||||
index_path_obj = Path(self.index_path)
|
||||
return index_path_obj.parent / f"{index_path_obj.name}.labels.json"
|
||||
|
||||
def _meta_path(self) -> Path:
|
||||
index_path_obj = Path(self.index_path)
|
||||
return index_path_obj.parent / f"{index_path_obj.name}.meta.json"
|
||||
|
||||
def create_index(self) -> None:
|
||||
if not self._pending_items:
|
||||
return
|
||||
|
||||
embeddings: list[np.ndarray] = []
|
||||
labels_meta: list[dict] = []
|
||||
|
||||
for item in self._pending_items:
|
||||
doc_id = int(item["doc_id"])
|
||||
filepath = item.get("filepath", "")
|
||||
colbert_vecs = item["colbert_vecs"]
|
||||
for seq_id, vec in enumerate(colbert_vecs):
|
||||
vec_np = np.asarray(vec, dtype=np.float32)
|
||||
embeddings.append(vec_np)
|
||||
labels_meta.append(
|
||||
{
|
||||
"id": f"{doc_id}:{seq_id}",
|
||||
"doc_id": doc_id,
|
||||
"seq_id": int(seq_id),
|
||||
"filepath": filepath,
|
||||
}
|
||||
)
|
||||
|
||||
if not embeddings:
|
||||
return
|
||||
|
||||
embeddings_np = np.vstack(embeddings).astype(np.float32)
|
||||
# print shape of embeddings_np
|
||||
print(embeddings_np.shape)
|
||||
|
||||
builder = HNSWBuilder(**{**self._backend_kwargs, "dimensions": self.dim})
|
||||
ids = [str(i) for i in range(embeddings_np.shape[0])]
|
||||
builder.build(embeddings_np, ids, self.index_path)
|
||||
|
||||
import json as _json
|
||||
|
||||
with open(self._meta_path(), "w", encoding="utf-8") as f:
|
||||
_json.dump(self._meta_dict(), f, indent=2)
|
||||
with open(self._labels_path(), "w", encoding="utf-8") as f:
|
||||
_json.dump(labels_meta, f)
|
||||
|
||||
self._labels_meta = labels_meta
|
||||
|
||||
def _load_labels_meta_if_needed(self) -> None:
|
||||
if self._labels_meta:
|
||||
return
|
||||
labels_path = self._labels_path()
|
||||
if labels_path.exists():
|
||||
import json as _json
|
||||
|
||||
with open(labels_path, encoding="utf-8") as f:
|
||||
self._labels_meta = _json.load(f)
|
||||
|
||||
def search(
|
||||
self, data: np.ndarray, topk: int, first_stage_k: int = 50
|
||||
) -> list[tuple[float, int]]:
|
||||
if data.ndim == 1:
|
||||
data = data.reshape(1, -1)
|
||||
if data.dtype != np.float32:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
self._load_labels_meta_if_needed()
|
||||
|
||||
searcher = HNSWSearcher(self.index_path, meta=self._meta_dict())
|
||||
raw = searcher.search(
|
||||
data,
|
||||
first_stage_k,
|
||||
recompute_embeddings=False,
|
||||
complexity=128,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
batch_size=0,
|
||||
)
|
||||
|
||||
labels = raw.get("labels")
|
||||
distances = raw.get("distances")
|
||||
if labels is None or distances is None:
|
||||
return []
|
||||
|
||||
doc_scores: dict[int, float] = {}
|
||||
B = len(labels)
|
||||
for b in range(B):
|
||||
per_doc_best: dict[int, float] = {}
|
||||
for k, sid in enumerate(labels[b]):
|
||||
try:
|
||||
idx = int(sid)
|
||||
except Exception:
|
||||
continue
|
||||
if 0 <= idx < len(self._labels_meta):
|
||||
doc_id = int(self._labels_meta[idx]["doc_id"]) # type: ignore[index]
|
||||
else:
|
||||
continue
|
||||
score = float(distances[b][k])
|
||||
if (doc_id not in per_doc_best) or (score > per_doc_best[doc_id]):
|
||||
per_doc_best[doc_id] = score
|
||||
for doc_id, best_score in per_doc_best.items():
|
||||
doc_scores[doc_id] = doc_scores.get(doc_id, 0.0) + best_score
|
||||
|
||||
scores = sorted(((v, k) for k, v in doc_scores.items()), key=lambda x: x[0], reverse=True)
|
||||
return scores[:topk] if len(scores) >= topk else scores
|
||||
@@ -0,0 +1,477 @@
|
||||
## Jupyter-style notebook script
|
||||
# %%
|
||||
# uv pip install matplotlib qwen_vl_utils
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||
"""Make local leann packages importable without installing (mirrors multi-vector-leann.py)."""
|
||||
_repo_root = Path(current_file).resolve().parents[3]
|
||||
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||
if str(_leann_core_src) not in sys.path:
|
||||
sys.path.append(str(_leann_core_src))
|
||||
if str(_leann_hnsw_pkg) not in sys.path:
|
||||
sys.path.append(str(_leann_hnsw_pkg))
|
||||
|
||||
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
from leann_multi_vector import LeannMultiVector # noqa: E402
|
||||
|
||||
# %%
|
||||
# Config
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"
|
||||
MODEL: str = "colqwen2" # "colpali" or "colqwen2"
|
||||
|
||||
# Data source: set to True to use the Hugging Face dataset example (recommended)
|
||||
USE_HF_DATASET: bool = True
|
||||
DATASET_NAME: str = "weaviate/arXiv-AI-papers-multi-vector"
|
||||
DATASET_SPLIT: str = "train"
|
||||
MAX_DOCS: Optional[int] = None # limit number of pages to index; None = all
|
||||
|
||||
# Local pages (used when USE_HF_DATASET == False)
|
||||
PDF: Optional[str] = None # e.g., "./pdfs/2004.12832v2.pdf"
|
||||
PAGES_DIR: str = "./pages"
|
||||
|
||||
# Index + retrieval settings
|
||||
INDEX_PATH: str = "./indexes/colvision.leann"
|
||||
TOPK: int = 1
|
||||
FIRST_STAGE_K: int = 500
|
||||
REBUILD_INDEX: bool = False
|
||||
|
||||
# Artifacts
|
||||
SAVE_TOP_IMAGE: Optional[str] = "./figures/retrieved_page.png"
|
||||
SIMILARITY_MAP: bool = True
|
||||
SIM_TOKEN_IDX: int = 13 # -1 means auto-select the most salient token
|
||||
SIM_OUTPUT: str = "./figures/similarity_map.png"
|
||||
ANSWER: bool = True
|
||||
MAX_NEW_TOKENS: int = 128
|
||||
|
||||
|
||||
# %%
|
||||
# Helpers
|
||||
def _natural_sort_key(name: str) -> int:
|
||||
m = re.search(r"\d+", name)
|
||||
return int(m.group()) if m else 0
|
||||
|
||||
|
||||
def _load_images_from_dir(pages_dir: str) -> tuple[list[str], list[Image.Image]]:
|
||||
filenames = [n for n in os.listdir(pages_dir) if n.lower().endswith((".png", ".jpg", ".jpeg"))]
|
||||
filenames = sorted(filenames, key=_natural_sort_key)
|
||||
filepaths = [os.path.join(pages_dir, n) for n in filenames]
|
||||
images = [Image.open(p) for p in filepaths]
|
||||
return filepaths, images
|
||||
|
||||
|
||||
def _maybe_convert_pdf_to_images(pdf_path: Optional[str], pages_dir: str, dpi: int = 200) -> None:
|
||||
if not pdf_path:
|
||||
return
|
||||
os.makedirs(pages_dir, exist_ok=True)
|
||||
try:
|
||||
from pdf2image import convert_from_path
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
"pdf2image is required to convert PDF to images. Install via pip install pdf2image"
|
||||
) from e
|
||||
images = convert_from_path(pdf_path, dpi=dpi)
|
||||
for i, image in enumerate(images):
|
||||
image.save(os.path.join(pages_dir, f"page_{i + 1}.png"), "PNG")
|
||||
|
||||
|
||||
def _select_device_and_dtype():
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import get_torch_device
|
||||
|
||||
device_str = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else (
|
||||
"mps"
|
||||
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
)
|
||||
device = get_torch_device(device_str)
|
||||
# Stable dtype selection to avoid NaNs:
|
||||
# - CUDA: prefer bfloat16 if supported, else float16
|
||||
# - MPS: use float32 (fp16 on MPS can produce NaNs in some ops)
|
||||
# - CPU: float32
|
||||
if device_str == "cuda":
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
try:
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # Better stability/perf on Ampere+
|
||||
except Exception:
|
||||
pass
|
||||
elif device_str == "mps":
|
||||
dtype = torch.float32
|
||||
else:
|
||||
dtype = torch.float32
|
||||
return device_str, device, dtype
|
||||
|
||||
|
||||
def _load_colvision(model_choice: str):
|
||||
import torch
|
||||
from colpali_engine.models import ColPali, ColQwen2, ColQwen2Processor
|
||||
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
device_str, device, dtype = _select_device_and_dtype()
|
||||
|
||||
if model_choice == "colqwen2":
|
||||
model_name = "vidore/colqwen2-v1.0"
|
||||
# On CPU/MPS we must avoid flash-attn and stay eager; on CUDA prefer flash-attn if available
|
||||
attn_implementation = (
|
||||
"flash_attention_2"
|
||||
if (device_str == "cuda" and is_flash_attn_2_available())
|
||||
else "eager"
|
||||
)
|
||||
model = ColQwen2.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
).eval()
|
||||
processor = ColQwen2Processor.from_pretrained(model_name)
|
||||
else:
|
||||
model_name = "vidore/colpali-v1.2"
|
||||
model = ColPali.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=device,
|
||||
).eval()
|
||||
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
||||
|
||||
return model_name, model, processor, device_str, device, dtype
|
||||
|
||||
|
||||
def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import ListDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Ensure deterministic eval and autocast for stability
|
||||
model.eval()
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[Image.Image](images),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_images(x),
|
||||
)
|
||||
|
||||
doc_vecs: list[Any] = []
|
||||
for batch_doc in dataloader:
|
||||
with torch.no_grad():
|
||||
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
|
||||
if model.device.type == "cuda":
|
||||
with torch.autocast(
|
||||
device_type="cuda",
|
||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||
):
|
||||
embeddings_doc = model(**batch_doc)
|
||||
else:
|
||||
embeddings_doc = model(**batch_doc)
|
||||
doc_vecs.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
||||
return doc_vecs
|
||||
|
||||
|
||||
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import ListDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
model.eval()
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[str](queries),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_queries(x),
|
||||
)
|
||||
|
||||
q_vecs: list[Any] = []
|
||||
for batch_query in dataloader:
|
||||
with torch.no_grad():
|
||||
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||
if model.device.type == "cuda":
|
||||
with torch.autocast(
|
||||
device_type="cuda",
|
||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||
):
|
||||
embeddings_query = model(**batch_query)
|
||||
else:
|
||||
embeddings_query = model(**batch_query)
|
||||
q_vecs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
||||
return q_vecs
|
||||
|
||||
|
||||
def _build_index(index_path: str, doc_vecs: list[Any], filepaths: list[str]) -> LeannMultiVector:
|
||||
dim = int(doc_vecs[0].shape[-1])
|
||||
retriever = LeannMultiVector(index_path=index_path, dim=dim)
|
||||
retriever.create_collection()
|
||||
for i, vec in enumerate(doc_vecs):
|
||||
data = {
|
||||
"colbert_vecs": vec.float().numpy(),
|
||||
"doc_id": i,
|
||||
"filepath": filepaths[i],
|
||||
}
|
||||
retriever.insert(data)
|
||||
retriever.create_index()
|
||||
return retriever
|
||||
|
||||
|
||||
def _load_retriever_if_index_exists(index_path: str, dim: int) -> Optional[LeannMultiVector]:
|
||||
index_base = Path(index_path)
|
||||
# Rough heuristic: index dir exists AND meta+labels files exist
|
||||
meta = index_base.parent / f"{index_base.name}.meta.json"
|
||||
labels = index_base.parent / f"{index_base.name}.labels.json"
|
||||
if index_base.exists() and meta.exists() and labels.exists():
|
||||
return LeannMultiVector(index_path=index_path, dim=dim)
|
||||
return None
|
||||
|
||||
|
||||
def _generate_similarity_map(
|
||||
model,
|
||||
processor,
|
||||
image: Image.Image,
|
||||
query: str,
|
||||
token_idx: Optional[int] = None,
|
||||
output_path: Optional[str] = None,
|
||||
) -> tuple[int, float]:
|
||||
import torch
|
||||
from colpali_engine.interpretability import (
|
||||
get_similarity_maps_from_embeddings,
|
||||
plot_similarity_map,
|
||||
)
|
||||
|
||||
batch_images = processor.process_images([image]).to(model.device)
|
||||
batch_queries = processor.process_queries([query]).to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
image_embeddings = model.forward(**batch_images)
|
||||
query_embeddings = model.forward(**batch_queries)
|
||||
|
||||
n_patches = processor.get_n_patches(
|
||||
image_size=image.size,
|
||||
spatial_merge_size=getattr(model, "spatial_merge_size", None),
|
||||
)
|
||||
image_mask = processor.get_image_mask(batch_images)
|
||||
|
||||
batched_similarity_maps = get_similarity_maps_from_embeddings(
|
||||
image_embeddings=image_embeddings,
|
||||
query_embeddings=query_embeddings,
|
||||
n_patches=n_patches,
|
||||
image_mask=image_mask,
|
||||
)
|
||||
|
||||
similarity_maps = batched_similarity_maps[0]
|
||||
|
||||
# Determine token index if not provided: choose the token with highest max score
|
||||
if token_idx is None:
|
||||
per_token_max = similarity_maps.view(similarity_maps.shape[0], -1).max(dim=1).values
|
||||
token_idx = int(per_token_max.argmax().item())
|
||||
|
||||
max_sim_score = similarity_maps[token_idx, :, :].max().item()
|
||||
|
||||
if output_path:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
fig, ax = plot_similarity_map(
|
||||
image=image,
|
||||
similarity_map=similarity_maps[token_idx],
|
||||
figsize=(14, 14),
|
||||
show_colorbar=False,
|
||||
)
|
||||
ax.set_title(f"Token #{token_idx}. MaxSim score: {max_sim_score:.2f}", fontsize=12)
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
plt.savefig(output_path, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
|
||||
return token_idx, float(max_sim_score)
|
||||
|
||||
|
||||
class QwenVL:
|
||||
def __init__(self, device: str):
|
||||
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "eager"
|
||||
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
torch_dtype="auto",
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
)
|
||||
|
||||
min_pixels = 256 * 28 * 28
|
||||
max_pixels = 1280 * 28 * 28
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
||||
)
|
||||
|
||||
def answer(self, query: str, images: list[Image.Image], max_new_tokens: int = 128) -> str:
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
content = []
|
||||
for img in images:
|
||||
buffer = BytesIO()
|
||||
img.save(buffer, format="jpeg")
|
||||
img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||
content.append({"type": "image", "image": f"data:image;base64,{img_base64}"})
|
||||
content.append({"type": "text", "text": query})
|
||||
messages = [{"role": "user", "content": content}]
|
||||
|
||||
text = self.processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = self.processor(
|
||||
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
|
||||
)
|
||||
inputs = inputs.to(self.model.device)
|
||||
|
||||
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
return self.processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)[0]
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# Step 1: Prepare data
|
||||
if USE_HF_DATASET:
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset(DATASET_NAME, split=DATASET_SPLIT)
|
||||
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
|
||||
filepaths: list[str] = []
|
||||
images: list[Image.Image] = []
|
||||
for i in tqdm(range(N), desc="Loading dataset"):
|
||||
p = dataset[i]
|
||||
# Compose a descriptive identifier for printing later
|
||||
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"
|
||||
print(identifier)
|
||||
filepaths.append(identifier)
|
||||
images.append(p["page_image"]) # PIL Image
|
||||
else:
|
||||
_maybe_convert_pdf_to_images(PDF, PAGES_DIR)
|
||||
filepaths, images = _load_images_from_dir(PAGES_DIR)
|
||||
if not images:
|
||||
raise RuntimeError(
|
||||
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
|
||||
)
|
||||
|
||||
|
||||
# %%
|
||||
# Step 2: Load model and processor
|
||||
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
|
||||
print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
# Step 3: Build or load index
|
||||
retriever: Optional[LeannMultiVector] = None
|
||||
if not REBUILD_INDEX:
|
||||
try:
|
||||
one_vec = _embed_images(model, processor, [images[0]])[0]
|
||||
retriever = _load_retriever_if_index_exists(INDEX_PATH, dim=int(one_vec.shape[-1]))
|
||||
except Exception:
|
||||
retriever = None
|
||||
|
||||
if retriever is None:
|
||||
doc_vecs = _embed_images(model, processor, images)
|
||||
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths)
|
||||
|
||||
|
||||
# %%
|
||||
# Step 4: Embed query and search
|
||||
q_vec = _embed_queries(model, processor, [QUERY])[0]
|
||||
results = retriever.search(q_vec.float().numpy(), topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
||||
if not results:
|
||||
print("No results found.")
|
||||
else:
|
||||
print(f'Top {len(results)} results for query: "{QUERY}"')
|
||||
top_images: list[Image.Image] = []
|
||||
for rank, (score, doc_id) in enumerate(results, start=1):
|
||||
path = filepaths[doc_id]
|
||||
# For HF dataset, path is a descriptive identifier, not a real file path
|
||||
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
|
||||
top_images.append(images[doc_id])
|
||||
|
||||
if SAVE_TOP_IMAGE:
|
||||
from pathlib import Path as _Path
|
||||
|
||||
base = _Path(SAVE_TOP_IMAGE)
|
||||
base.parent.mkdir(parents=True, exist_ok=True)
|
||||
for rank, img in enumerate(top_images[:TOPK], start=1):
|
||||
if base.suffix:
|
||||
out_path = base.parent / f"{base.stem}_rank{rank}{base.suffix}"
|
||||
else:
|
||||
out_path = base / f"retrieved_page_rank{rank}.png"
|
||||
img.save(str(out_path))
|
||||
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
|
||||
|
||||
## TODO stange results of second page of DeepSeek-V2 rather than the first page
|
||||
|
||||
# %%
|
||||
# Step 5: Similarity maps for top-K results
|
||||
if results and SIMILARITY_MAP:
|
||||
token_idx = None if SIM_TOKEN_IDX < 0 else int(SIM_TOKEN_IDX)
|
||||
from pathlib import Path as _Path
|
||||
|
||||
output_base = _Path(SIM_OUTPUT) if SIM_OUTPUT else None
|
||||
for rank, img in enumerate(top_images[:TOPK], start=1):
|
||||
if output_base:
|
||||
if output_base.suffix:
|
||||
out_dir = output_base.parent
|
||||
out_name = f"{output_base.stem}_rank{rank}{output_base.suffix}"
|
||||
out_path = str(out_dir / out_name)
|
||||
else:
|
||||
out_dir = output_base
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
out_path = str(out_dir / f"similarity_map_rank{rank}.png")
|
||||
else:
|
||||
out_path = None
|
||||
chosen_idx, max_sim = _generate_similarity_map(
|
||||
model=model,
|
||||
processor=processor,
|
||||
image=img,
|
||||
query=QUERY,
|
||||
token_idx=token_idx,
|
||||
output_path=out_path,
|
||||
)
|
||||
if out_path:
|
||||
print(
|
||||
f"Saved similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f}) to: {out_path}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"Computed similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f})"
|
||||
)
|
||||
|
||||
|
||||
# %%
|
||||
# Step 6: Optional answer generation
|
||||
if results and ANSWER:
|
||||
qwen = QwenVL(device=device_str)
|
||||
response = qwen.answer(QUERY, top_images[:TOPK], max_new_tokens=MAX_NEW_TOKENS)
|
||||
print("\nAnswer:")
|
||||
print(response)
|
||||
@@ -0,0 +1,134 @@
|
||||
# pip install pdf2image
|
||||
# pip install pymilvus
|
||||
# pip install colpali_engine
|
||||
# pip install tqdm
|
||||
# pip install pillow
|
||||
|
||||
# %%
|
||||
from pdf2image import convert_from_path
|
||||
|
||||
pdf_path = "pdfs/2004.12832v2.pdf"
|
||||
images = convert_from_path(pdf_path)
|
||||
|
||||
for i, image in enumerate(images):
|
||||
image.save(f"pages/page_{i + 1}.png", "PNG")
|
||||
|
||||
# %%
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
# Make local leann packages importable without installing
|
||||
_repo_root = Path(__file__).resolve().parents[3]
|
||||
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||
import sys
|
||||
|
||||
if str(_leann_core_src) not in sys.path:
|
||||
sys.path.append(str(_leann_core_src))
|
||||
if str(_leann_hnsw_pkg) not in sys.path:
|
||||
sys.path.append(str(_leann_hnsw_pkg))
|
||||
|
||||
from leann_multi_vector import LeannMultiVector
|
||||
|
||||
|
||||
class LeannRetriever(LeannMultiVector):
|
||||
pass
|
||||
|
||||
|
||||
# %%
|
||||
from typing import cast
|
||||
|
||||
import torch
|
||||
from colpali_engine.models import ColPali
|
||||
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
|
||||
from colpali_engine.utils.torch_utils import ListDataset, get_torch_device
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Auto-select device: CUDA > MPS (mac) > CPU
|
||||
_device_str = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else (
|
||||
"mps"
|
||||
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
)
|
||||
device = get_torch_device(_device_str)
|
||||
# Prefer fp16 on GPU/MPS, bfloat16 on CPU
|
||||
_dtype = torch.float16 if _device_str in ("cuda", "mps") else torch.bfloat16
|
||||
model_name = "vidore/colpali-v1.2"
|
||||
|
||||
model = ColPali.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=_dtype,
|
||||
device_map=device,
|
||||
).eval()
|
||||
print(f"Using device={_device_str}, dtype={_dtype}")
|
||||
|
||||
queries = [
|
||||
"How to end-to-end retrieval with ColBert",
|
||||
"Where is ColBERT performance Table, including text representation results?",
|
||||
]
|
||||
|
||||
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[str](queries),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_queries(x),
|
||||
)
|
||||
|
||||
qs: list[torch.Tensor] = []
|
||||
for batch_query in dataloader:
|
||||
with torch.no_grad():
|
||||
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||
embeddings_query = model(**batch_query)
|
||||
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
||||
print(qs[0].shape)
|
||||
# %%
|
||||
|
||||
|
||||
import re
|
||||
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
page_filenames = sorted(os.listdir("./pages"), key=lambda n: int(re.search(r"\d+", n).group()))
|
||||
images = [Image.open(os.path.join("./pages", name)) for name in page_filenames]
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[str](images),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_images(x),
|
||||
)
|
||||
|
||||
ds: list[torch.Tensor] = []
|
||||
for batch_doc in tqdm(dataloader):
|
||||
with torch.no_grad():
|
||||
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||
embeddings_doc = model(**batch_doc)
|
||||
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
||||
|
||||
print(ds[0].shape)
|
||||
|
||||
# %%
|
||||
# Build HNSW index via LeannRetriever primitives and run search
|
||||
index_path = "./indexes/colpali.leann"
|
||||
retriever = LeannRetriever(index_path=index_path, dim=int(ds[0].shape[-1]))
|
||||
retriever.create_collection()
|
||||
filepaths = [os.path.join("./pages", name) for name in page_filenames]
|
||||
for i in range(len(filepaths)):
|
||||
data = {
|
||||
"colbert_vecs": ds[i].float().numpy(),
|
||||
"doc_id": i,
|
||||
"filepath": filepaths[i],
|
||||
}
|
||||
retriever.insert(data)
|
||||
retriever.create_index()
|
||||
for query in qs:
|
||||
query_np = query.float().numpy()
|
||||
result = retriever.search(query_np, topk=1)
|
||||
print(filepaths[result[0][1]])
|
||||
@@ -104,7 +104,11 @@ astchunk = { path = "packages/astchunk-leann", editable = true }
|
||||
[tool.ruff]
|
||||
target-version = "py39"
|
||||
line-length = 100
|
||||
extend-exclude = ["third_party"]
|
||||
extend-exclude = [
|
||||
"third_party",
|
||||
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann.py",
|
||||
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann-similarity-map.py"
|
||||
]
|
||||
|
||||
|
||||
[tool.ruff.lint]
|
||||
|
||||
Reference in New Issue
Block a user