Introducing dynamic index update (#108)
* feat: Add GitHub PR and issue templates for better contributor experience * simplify: Make templates more concise and user-friendly * fix: enable is_compact=False, is_recompute=True * feat: update when recompute * test * fix: real recompute * refactor * fix: compare with no-recompute * fix: test
This commit is contained in:
@@ -5,6 +5,8 @@ import os
|
||||
import struct
|
||||
import sys
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -237,6 +239,288 @@ def write_compact_format(
|
||||
f_out.write(storage_data)
|
||||
|
||||
|
||||
@dataclass
|
||||
class HNSWComponents:
|
||||
original_hnsw_data: dict[str, Any]
|
||||
assign_probas_np: np.ndarray
|
||||
cum_nneighbor_per_level_np: np.ndarray
|
||||
levels_np: np.ndarray
|
||||
is_compact: bool
|
||||
compact_level_ptr: Optional[np.ndarray] = None
|
||||
compact_node_offsets_np: Optional[np.ndarray] = None
|
||||
compact_neighbors_data: Optional[list[int]] = None
|
||||
offsets_np: Optional[np.ndarray] = None
|
||||
neighbors_np: Optional[np.ndarray] = None
|
||||
storage_fourcc: int = NULL_INDEX_FOURCC
|
||||
storage_data: bytes = b""
|
||||
|
||||
|
||||
def _read_hnsw_structure(f) -> HNSWComponents:
|
||||
original_hnsw_data: dict[str, Any] = {}
|
||||
|
||||
hnsw_index_fourcc = read_struct(f, "<I")
|
||||
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||
raise ValueError(
|
||||
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
|
||||
)
|
||||
|
||||
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||
original_hnsw_data["d"] = read_struct(f, "<i")
|
||||
original_hnsw_data["ntotal"] = read_struct(f, "<q")
|
||||
original_hnsw_data["dummy1"] = read_struct(f, "<q")
|
||||
original_hnsw_data["dummy2"] = read_struct(f, "<q")
|
||||
original_hnsw_data["is_trained"] = read_struct(f, "?")
|
||||
original_hnsw_data["metric_type"] = read_struct(f, "<i")
|
||||
original_hnsw_data["metric_arg"] = 0.0
|
||||
if original_hnsw_data["metric_type"] > 1:
|
||||
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
|
||||
|
||||
assign_probas_np = read_numpy_vector(f, np.float64, "d")
|
||||
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
|
||||
levels_np = read_numpy_vector(f, np.int32, "i")
|
||||
|
||||
ntotal = len(levels_np)
|
||||
if ntotal != original_hnsw_data["ntotal"]:
|
||||
original_hnsw_data["ntotal"] = ntotal
|
||||
|
||||
pos_before_compact = f.tell()
|
||||
is_compact_flag = None
|
||||
try:
|
||||
is_compact_flag = read_struct(f, "<?")
|
||||
except EOFError:
|
||||
is_compact_flag = None
|
||||
|
||||
if is_compact_flag:
|
||||
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
|
||||
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||
|
||||
storage_fourcc = read_struct(f, "<I")
|
||||
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
|
||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||
storage_data = f.read()
|
||||
|
||||
return HNSWComponents(
|
||||
original_hnsw_data=original_hnsw_data,
|
||||
assign_probas_np=assign_probas_np,
|
||||
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||
levels_np=levels_np,
|
||||
is_compact=True,
|
||||
compact_level_ptr=compact_level_ptr,
|
||||
compact_node_offsets_np=compact_node_offsets_np,
|
||||
compact_neighbors_data=compact_neighbors_data,
|
||||
storage_fourcc=storage_fourcc,
|
||||
storage_data=storage_data,
|
||||
)
|
||||
|
||||
# Non-compact case
|
||||
f.seek(pos_before_compact)
|
||||
|
||||
pos_before_probe = f.tell()
|
||||
try:
|
||||
suspected_flag = read_struct(f, "<B")
|
||||
if suspected_flag != 0x00:
|
||||
f.seek(pos_before_probe)
|
||||
except EOFError:
|
||||
f.seek(pos_before_probe)
|
||||
|
||||
offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||
neighbors_np = read_numpy_vector(f, np.int32, "i")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||
|
||||
storage_fourcc = NULL_INDEX_FOURCC
|
||||
storage_data = b""
|
||||
try:
|
||||
storage_fourcc = read_struct(f, "<I")
|
||||
storage_data = f.read()
|
||||
except EOFError:
|
||||
storage_fourcc = NULL_INDEX_FOURCC
|
||||
|
||||
return HNSWComponents(
|
||||
original_hnsw_data=original_hnsw_data,
|
||||
assign_probas_np=assign_probas_np,
|
||||
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||
levels_np=levels_np,
|
||||
is_compact=False,
|
||||
offsets_np=offsets_np,
|
||||
neighbors_np=neighbors_np,
|
||||
storage_fourcc=storage_fourcc,
|
||||
storage_data=storage_data,
|
||||
)
|
||||
|
||||
|
||||
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
|
||||
with open(path, "rb") as f:
|
||||
return _read_hnsw_structure(f)
|
||||
|
||||
|
||||
def write_original_format(
|
||||
f_out,
|
||||
original_hnsw_data,
|
||||
assign_probas_np,
|
||||
cum_nneighbor_per_level_np,
|
||||
levels_np,
|
||||
offsets_np,
|
||||
neighbors_np,
|
||||
storage_fourcc,
|
||||
storage_data,
|
||||
):
|
||||
"""Write non-compact HNSW data in original FAISS order."""
|
||||
|
||||
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
|
||||
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
|
||||
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
|
||||
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
|
||||
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
|
||||
if original_hnsw_data["metric_type"] > 1:
|
||||
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
|
||||
|
||||
write_numpy_vector(f_out, assign_probas_np, "d")
|
||||
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
|
||||
write_numpy_vector(f_out, levels_np, "i")
|
||||
|
||||
write_numpy_vector(f_out, offsets_np, "Q")
|
||||
write_numpy_vector(f_out, neighbors_np, "i")
|
||||
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
|
||||
|
||||
f_out.write(struct.pack("<I", storage_fourcc))
|
||||
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
|
||||
f_out.write(storage_data)
|
||||
|
||||
|
||||
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
|
||||
"""Rewrite an HNSW index while dropping the embedded storage section."""
|
||||
|
||||
start_time = time.time()
|
||||
try:
|
||||
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
|
||||
original_hnsw_data: dict[str, Any] = {}
|
||||
|
||||
hnsw_index_fourcc = read_struct(f_in, "<I")
|
||||
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||
print(
|
||||
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
|
||||
file=sys.stderr,
|
||||
)
|
||||
return False
|
||||
|
||||
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||
original_hnsw_data["d"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
|
||||
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
|
||||
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
|
||||
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
|
||||
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["metric_arg"] = 0.0
|
||||
if original_hnsw_data["metric_type"] > 1:
|
||||
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
|
||||
|
||||
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
|
||||
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
levels_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
|
||||
ntotal = len(levels_np)
|
||||
if ntotal != original_hnsw_data["ntotal"]:
|
||||
original_hnsw_data["ntotal"] = ntotal
|
||||
|
||||
pos_before_compact = f_in.tell()
|
||||
is_compact_flag = None
|
||||
try:
|
||||
is_compact_flag = read_struct(f_in, "<?")
|
||||
except EOFError:
|
||||
is_compact_flag = None
|
||||
|
||||
if is_compact_flag:
|
||||
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
|
||||
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||
|
||||
_storage_fourcc = read_struct(f_in, "<I")
|
||||
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||
_storage_data = f_in.read()
|
||||
|
||||
write_compact_format(
|
||||
f_out,
|
||||
original_hnsw_data,
|
||||
assign_probas_np,
|
||||
cum_nneighbor_per_level_np,
|
||||
levels_np,
|
||||
compact_level_ptr,
|
||||
compact_node_offsets_np,
|
||||
compact_neighbors_data,
|
||||
NULL_INDEX_FOURCC,
|
||||
b"",
|
||||
)
|
||||
else:
|
||||
f_in.seek(pos_before_compact)
|
||||
|
||||
pos_before_probe = f_in.tell()
|
||||
try:
|
||||
suspected_flag = read_struct(f_in, "<B")
|
||||
if suspected_flag != 0x00:
|
||||
f_in.seek(pos_before_probe)
|
||||
except EOFError:
|
||||
f_in.seek(pos_before_probe)
|
||||
|
||||
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||
|
||||
_storage_fourcc = None
|
||||
_storage_data = b""
|
||||
try:
|
||||
_storage_fourcc = read_struct(f_in, "<I")
|
||||
_storage_data = f_in.read()
|
||||
except EOFError:
|
||||
_storage_fourcc = NULL_INDEX_FOURCC
|
||||
|
||||
write_original_format(
|
||||
f_out,
|
||||
original_hnsw_data,
|
||||
assign_probas_np,
|
||||
cum_nneighbor_per_level_np,
|
||||
levels_np,
|
||||
offsets_np,
|
||||
neighbors_np,
|
||||
NULL_INDEX_FOURCC,
|
||||
b"",
|
||||
)
|
||||
|
||||
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
|
||||
return True
|
||||
except Exception as exc:
|
||||
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
|
||||
return False
|
||||
|
||||
|
||||
# --- Main Conversion Logic ---
|
||||
|
||||
|
||||
@@ -700,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
||||
pass
|
||||
|
||||
|
||||
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
|
||||
"""Convenience wrapper to prune embeddings in-place."""
|
||||
|
||||
temp_path = f"{index_filename}.prune.tmp"
|
||||
success = prune_hnsw_embeddings(index_filename, temp_path)
|
||||
if success:
|
||||
try:
|
||||
os.replace(temp_path, index_filename)
|
||||
except Exception as exc: # pragma: no cover - defensive
|
||||
logger.error(f"Failed to replace original index with pruned version: {exc}")
|
||||
try:
|
||||
os.remove(temp_path)
|
||||
except OSError:
|
||||
pass
|
||||
return False
|
||||
else:
|
||||
try:
|
||||
os.remove(temp_path)
|
||||
except OSError:
|
||||
pass
|
||||
return success
|
||||
|
||||
|
||||
# --- Script Execution ---
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
|
||||
@@ -14,7 +14,7 @@ from leann.interface import (
|
||||
from leann.registry import register_backend
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
||||
from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -92,6 +92,8 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
elif self.is_recompute:
|
||||
prune_hnsw_embeddings_inplace(str(index_file))
|
||||
|
||||
def _convert_to_csr(self, index_file: Path):
|
||||
"""Convert built index to CSR format"""
|
||||
@@ -133,10 +135,10 @@ class HNSWSearcher(BaseSearcher):
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
|
||||
self.is_compact, self.is_pruned = (
|
||||
self.meta.get("is_compact", True),
|
||||
self.meta.get("is_pruned", True),
|
||||
)
|
||||
backend_meta_kwargs = self.meta.get("backend_kwargs", {})
|
||||
self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
|
||||
default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
|
||||
self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
|
||||
|
||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||
if not index_file.exists():
|
||||
|
||||
@@ -24,13 +24,26 @@ logger = logging.getLogger(__name__)
|
||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||
logger.setLevel(log_level)
|
||||
|
||||
# Ensure we have a handler if none exists
|
||||
# Ensure we have handlers if none exist
|
||||
if not logger.handlers:
|
||||
handler = logging.StreamHandler()
|
||||
stream_handler = logging.StreamHandler()
|
||||
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
||||
handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
logger.propagate = False
|
||||
stream_handler.setFormatter(formatter)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
log_path = os.getenv("LEANN_HNSW_LOG_PATH")
|
||||
if log_path:
|
||||
try:
|
||||
file_handler = logging.FileHandler(log_path, mode="a", encoding="utf-8")
|
||||
file_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(levelname)s - [pid=%(process)d] %(message)s"
|
||||
)
|
||||
file_handler.setFormatter(file_formatter)
|
||||
logger.addHandler(file_handler)
|
||||
except Exception as exc: # pragma: no cover - best effort logging
|
||||
logger.warning(f"Failed to attach file handler for log path {log_path}: {exc}")
|
||||
|
||||
logger.propagate = False
|
||||
|
||||
|
||||
def create_hnsw_embedding_server(
|
||||
|
||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: ed96ff7dba...1d51f0c074
@@ -15,6 +15,7 @@ from pathlib import Path
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
|
||||
|
||||
from leann.interface import LeannBackendSearcherInterface
|
||||
|
||||
@@ -476,9 +477,7 @@ class LeannBuilder:
|
||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||
meta_data["is_compact"] = is_compact
|
||||
meta_data["is_pruned"] = (
|
||||
is_compact and is_recompute
|
||||
) # Pruned only if compact and recompute
|
||||
meta_data["is_pruned"] = bool(is_recompute)
|
||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta_data, f, indent=2)
|
||||
|
||||
@@ -598,13 +597,157 @@ class LeannBuilder:
|
||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||
meta_data["is_compact"] = is_compact
|
||||
meta_data["is_pruned"] = is_compact and is_recompute
|
||||
meta_data["is_pruned"] = bool(is_recompute)
|
||||
|
||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta_data, f, indent=2)
|
||||
|
||||
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
|
||||
|
||||
def update_index(self, index_path: str):
|
||||
"""Append new passages and vectors to an existing HNSW index."""
|
||||
if not self.chunks:
|
||||
raise ValueError("No new chunks provided for update.")
|
||||
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_name = path.name
|
||||
index_prefix = path.stem
|
||||
|
||||
meta_path = index_dir / f"{index_name}.meta.json"
|
||||
passages_file = index_dir / f"{index_name}.passages.jsonl"
|
||||
offset_file = index_dir / f"{index_name}.passages.idx"
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
|
||||
if not meta_path.exists() or not passages_file.exists() or not offset_file.exists():
|
||||
raise FileNotFoundError("Index metadata or passage files are missing; cannot update.")
|
||||
if not index_file.exists():
|
||||
raise FileNotFoundError(f"HNSW index file not found: {index_file}")
|
||||
|
||||
with open(meta_path, encoding="utf-8") as f:
|
||||
meta = json.load(f)
|
||||
backend_name = meta.get("backend_name")
|
||||
if backend_name != self.backend_name:
|
||||
raise ValueError(
|
||||
f"Index was built with backend '{backend_name}', cannot update with '{self.backend_name}'."
|
||||
)
|
||||
|
||||
meta_backend_kwargs = meta.get("backend_kwargs", {})
|
||||
index_is_compact = meta.get("is_compact", meta_backend_kwargs.get("is_compact", True))
|
||||
if index_is_compact:
|
||||
raise ValueError(
|
||||
"Compact HNSW indices do not support in-place updates. Rebuild required."
|
||||
)
|
||||
|
||||
distance_metric = meta_backend_kwargs.get(
|
||||
"distance_metric", self.backend_kwargs.get("distance_metric", "mips")
|
||||
).lower()
|
||||
needs_recompute = bool(
|
||||
meta.get("is_pruned")
|
||||
or meta_backend_kwargs.get("is_recompute")
|
||||
or self.backend_kwargs.get("is_recompute")
|
||||
)
|
||||
|
||||
with open(offset_file, "rb") as f:
|
||||
offset_map: dict[str, int] = pickle.load(f)
|
||||
existing_ids = set(offset_map.keys())
|
||||
|
||||
valid_chunks: list[dict[str, Any]] = []
|
||||
for chunk in self.chunks:
|
||||
text = chunk.get("text", "")
|
||||
if not isinstance(text, str) or not text.strip():
|
||||
continue
|
||||
metadata = chunk.setdefault("metadata", {})
|
||||
passage_id = chunk.get("id") or metadata.get("id")
|
||||
if passage_id and passage_id in existing_ids:
|
||||
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
|
||||
valid_chunks.append(chunk)
|
||||
|
||||
if not valid_chunks:
|
||||
raise ValueError("No valid chunks to append.")
|
||||
|
||||
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
|
||||
embeddings = compute_embeddings(
|
||||
texts_to_embed,
|
||||
self.embedding_model,
|
||||
self.embedding_mode,
|
||||
use_server=False,
|
||||
is_build=True,
|
||||
)
|
||||
|
||||
embedding_dim = embeddings.shape[1]
|
||||
expected_dim = meta.get("dimensions")
|
||||
if expected_dim is not None and expected_dim != embedding_dim:
|
||||
raise ValueError(
|
||||
f"Dimension mismatch during update: existing index uses {expected_dim}, got {embedding_dim}."
|
||||
)
|
||||
|
||||
from leann_backend_hnsw import faiss # type: ignore
|
||||
|
||||
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
if distance_metric == "cosine":
|
||||
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
|
||||
index = faiss.read_index(str(index_file))
|
||||
if hasattr(index, "is_recompute"):
|
||||
index.is_recompute = needs_recompute
|
||||
if getattr(index, "storage", None) is None:
|
||||
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
|
||||
storage_index = faiss.IndexFlatIP(index.d)
|
||||
else:
|
||||
storage_index = faiss.IndexFlatL2(index.d)
|
||||
index.storage = storage_index
|
||||
index.own_fields = True
|
||||
if index.d != embedding_dim:
|
||||
raise ValueError(
|
||||
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
|
||||
)
|
||||
|
||||
base_id = index.ntotal
|
||||
for offset, chunk in enumerate(valid_chunks):
|
||||
new_id = str(base_id + offset)
|
||||
chunk.setdefault("metadata", {})["id"] = new_id
|
||||
chunk["id"] = new_id
|
||||
|
||||
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
with open(passages_file, "a", encoding="utf-8") as f:
|
||||
for chunk in valid_chunks:
|
||||
offset = f.tell()
|
||||
json.dump(
|
||||
{
|
||||
"id": chunk["id"],
|
||||
"text": chunk["text"],
|
||||
"metadata": chunk.get("metadata", {}),
|
||||
},
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
)
|
||||
f.write("\n")
|
||||
offset_map[chunk["id"]] = offset
|
||||
|
||||
with open(offset_file, "wb") as f:
|
||||
pickle.dump(offset_map, f)
|
||||
|
||||
meta["total_passages"] = len(offset_map)
|
||||
with open(meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta, f, indent=2)
|
||||
|
||||
logger.info(
|
||||
"Appended %d passages to index '%s'. New total: %d",
|
||||
len(valid_chunks),
|
||||
index_path,
|
||||
len(offset_map),
|
||||
)
|
||||
|
||||
self.chunks.clear()
|
||||
|
||||
if needs_recompute:
|
||||
prune_hnsw_embeddings_inplace(str(index_file))
|
||||
|
||||
|
||||
class LeannSearcher:
|
||||
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
||||
|
||||
Reference in New Issue
Block a user