fix: remove unused storage_fourcc
This commit is contained in:
@@ -17,6 +17,19 @@ Usage examples:
|
||||
uv run python examples/dynamic_add_leann_no_recompute.py --add-incremental \
|
||||
--add-dir /Users/yichuan/Desktop/code/LEANN/leann/test_add \
|
||||
--index-dir ./test_doc_files
|
||||
|
||||
Quick recompute test (both true):
|
||||
# Recompute build
|
||||
uv run python examples/dynamic_add_leann_no_recompute.py --build-base \
|
||||
--recompute-build --ef-construction 200 \
|
||||
--base-dir /Users/yichuan/Desktop/code/LEANN/leann/data \
|
||||
--index-dir ./test_doc_files --index-name documents.leann
|
||||
|
||||
# Recompute add
|
||||
uv run python examples/dynamic_add_leann_no_recompute.py --add-incremental \
|
||||
--recompute-add --ef-construction 32 \
|
||||
--add-dir /Users/yichuan/Desktop/code/LEANN/leann/test_add \
|
||||
--index-dir ./test_doc_files --index-name documents.leann
|
||||
"""
|
||||
|
||||
import argparse
|
||||
@@ -32,8 +45,29 @@ CORE_SRC = ROOT / "packages" / "leann-core" / "src"
|
||||
HNSW_PKG_DIR = ROOT / "packages" / "leann-backend-hnsw"
|
||||
APPS_DIR = ROOT / "apps"
|
||||
|
||||
# Prepend precise paths so the core module name `leann` resolves to leann-core
|
||||
for p in [CORE_SRC, HNSW_PKG_DIR, APPS_DIR]:
|
||||
|
||||
# Prefer the installed backend if available (it contains the compiled extension)
|
||||
def _prefer_installed(pkg_name: str) -> bool:
|
||||
try:
|
||||
import importlib
|
||||
import importlib.util
|
||||
|
||||
spec = importlib.util.find_spec(pkg_name)
|
||||
if spec and spec.origin and "site-packages" in spec.origin:
|
||||
# ensure the faiss shim/extension is importable from the installed package
|
||||
importlib.import_module(f"{pkg_name}.faiss")
|
||||
return True
|
||||
except Exception:
|
||||
pass
|
||||
return False
|
||||
|
||||
|
||||
# Prepend paths, but only add the repo backend if the installed one is not present
|
||||
paths_to_prepend = [CORE_SRC, APPS_DIR]
|
||||
if not _prefer_installed("leann_backend_hnsw"):
|
||||
paths_to_prepend.insert(1, HNSW_PKG_DIR)
|
||||
|
||||
for p in paths_to_prepend:
|
||||
p_str = str(p)
|
||||
if p_str not in sys.path:
|
||||
sys.path.insert(0, p_str)
|
||||
@@ -113,6 +147,8 @@ def build_base_index(
|
||||
chunk_overlap: int,
|
||||
file_types: Optional[list[str]] = None,
|
||||
max_items: int = -1,
|
||||
ef_construction: Optional[int] = None,
|
||||
recompute_build: bool = False,
|
||||
) -> str:
|
||||
print(f"Building base index from: {base_dir}")
|
||||
documents = _load_documents(base_dir, required_exts=file_types)
|
||||
@@ -135,7 +171,7 @@ def build_base_index(
|
||||
_ensure_index_dir(index_dir_path)
|
||||
index_path = index_dir_path / index_name
|
||||
|
||||
print("Creating HNSW index with no-recompute (non-compact)...")
|
||||
print("Creating HNSW index (non-compact)...")
|
||||
from leann.api import LeannBuilder
|
||||
from leann.registry import register_project_directory
|
||||
|
||||
@@ -143,8 +179,9 @@ def build_base_index(
|
||||
backend_name="hnsw",
|
||||
embedding_model=embedding_model,
|
||||
embedding_mode=embedding_mode,
|
||||
is_recompute=False,
|
||||
is_recompute=recompute_build,
|
||||
is_compact=False,
|
||||
efConstruction=(ef_construction if ef_construction is not None else 200),
|
||||
)
|
||||
for t in texts:
|
||||
builder.add_text(t)
|
||||
@@ -167,6 +204,8 @@ def add_incremental(
|
||||
chunk_overlap: int = 128,
|
||||
file_types: Optional[list[str]] = None,
|
||||
max_items: int = -1,
|
||||
ef_construction: Optional[int] = None,
|
||||
recompute_add: bool = False,
|
||||
) -> str:
|
||||
print(f"Adding incremental data from: {add_dir}")
|
||||
index_dir_path = Path(index_dir)
|
||||
@@ -207,7 +246,12 @@ def add_incremental(
|
||||
print("No new chunks to add.")
|
||||
return str(index_path)
|
||||
|
||||
added = incremental_add_texts_with_context(ctx, prepared_texts)
|
||||
added = incremental_add_texts_with_context(
|
||||
ctx,
|
||||
prepared_texts,
|
||||
ef_construction=ef_construction,
|
||||
recompute=recompute_add,
|
||||
)
|
||||
|
||||
print(f"Incremental add completed. Added {added} chunks. Index: {index_path}")
|
||||
return str(index_path)
|
||||
@@ -268,6 +312,15 @@ def main():
|
||||
parser.add_argument("--chunk-overlap", type=int, default=128)
|
||||
parser.add_argument("--file-types", nargs="+", default=None)
|
||||
parser.add_argument("--max-items", type=int, default=-1)
|
||||
parser.add_argument("--ef-construction", type=int, default=32)
|
||||
parser.add_argument(
|
||||
"--recompute-add", action="store_true", help="Enable recompute-mode add (non-compact only)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--recompute-build",
|
||||
action="store_true",
|
||||
help="Enable recompute-mode base build (non-compact only)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -288,6 +341,8 @@ def main():
|
||||
chunk_overlap=args.chunk_overlap,
|
||||
file_types=args.file_types,
|
||||
max_items=args.max_items,
|
||||
ef_construction=args.ef_construction,
|
||||
recompute_build=args.recompute_build,
|
||||
)
|
||||
|
||||
if args.add_incremental:
|
||||
@@ -301,6 +356,8 @@ def main():
|
||||
chunk_overlap=args.chunk_overlap,
|
||||
file_types=args.file_types,
|
||||
max_items=args.max_items,
|
||||
ef_construction=args.ef_construction,
|
||||
recompute_add=args.recompute_add,
|
||||
)
|
||||
|
||||
# Optional: quick test query using searcher
|
||||
@@ -312,7 +369,7 @@ def main():
|
||||
query = "what is LEANN?"
|
||||
if args.add_incremental:
|
||||
query = "what is the multi vector search and how it works?"
|
||||
results = searcher.search(query, top_k=5, recompute_embeddings=False)
|
||||
results = searcher.search(query, top_k=5)
|
||||
if results:
|
||||
print(f"Sample result: {results[0].text[:80]}...")
|
||||
except Exception:
|
||||
|
||||
@@ -15,6 +15,7 @@ from leann.registry import register_backend
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
||||
from .prune_index import prune_embeddings_preserve_graph_inplace
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -90,8 +91,16 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
if self.is_recompute:
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
else:
|
||||
# Non-compact format: prune only embeddings, keep original graph
|
||||
ok = prune_embeddings_preserve_graph_inplace(str(index_file))
|
||||
if not ok:
|
||||
raise RuntimeError(
|
||||
"Pruning embeddings while preserving graph failed for non-compact index"
|
||||
)
|
||||
|
||||
def _convert_to_csr(self, index_file: Path):
|
||||
"""Convert built index to CSR format"""
|
||||
@@ -148,7 +157,13 @@ class HNSWSearcher(BaseSearcher):
|
||||
self.is_pruned
|
||||
) # In C++ code, it's called is_recompute, but it's only for loading IIUC.
|
||||
|
||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||
# If pruned (recompute mode), explicitly skip storage to avoid reading
|
||||
# the pruned section. Still allow MMAP for graph.
|
||||
io_flags = faiss.IO_FLAG_MMAP
|
||||
if self.is_pruned:
|
||||
io_flags |= faiss.IO_FLAG_SKIP_STORAGE
|
||||
|
||||
self._index = faiss.read_index(str(index_file), io_flags, hnsw_config)
|
||||
|
||||
def search(
|
||||
self,
|
||||
@@ -251,3 +266,55 @@ class HNSWSearcher(BaseSearcher):
|
||||
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
|
||||
# ---------- Helper API for incremental add (Python-level) ----------
|
||||
def add_vectors(
|
||||
index_file_path: str,
|
||||
embeddings: np.ndarray,
|
||||
*,
|
||||
ef_construction: Optional[int] = None,
|
||||
recompute: bool = False,
|
||||
) -> None:
|
||||
"""Append vectors to an existing non-compact HNSW index.
|
||||
|
||||
Args:
|
||||
index_file_path: Path to the HNSW .index file
|
||||
embeddings: float32 numpy array (N, D)
|
||||
ef_construction: Optional override for efConstruction during insertion
|
||||
recompute: Reserved for future use to control insertion-time recompute behaviors
|
||||
"""
|
||||
from . import faiss # type: ignore
|
||||
|
||||
if embeddings.dtype != np.float32:
|
||||
embeddings = embeddings.astype(np.float32)
|
||||
if not embeddings.flags.c_contiguous:
|
||||
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
|
||||
# Load index normally to ensure storage is present; toggle is_recompute on the object
|
||||
index = faiss.read_index(str(index_file_path), faiss.IO_FLAG_MMAP)
|
||||
|
||||
# Best-effort: explicitly set flag on the object if the binding exposes it
|
||||
try:
|
||||
index.is_recompute = bool(recompute)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
if ef_construction is not None:
|
||||
index.hnsw.efConstruction = int(ef_construction)
|
||||
except Exception:
|
||||
# Best-effort; ignore if backend doesn't expose setter
|
||||
pass
|
||||
|
||||
# For non-compact HNSW, calling add directly is sufficient. When is_recompute is set
|
||||
# (via config or attribute), FAISS will run the insertion/search path accordingly.
|
||||
# To strictly follow per-point insert semantics in recompute mode, add one-by-one.
|
||||
if recompute:
|
||||
# Insert row by row
|
||||
n = embeddings.shape[0]
|
||||
for i in range(n):
|
||||
row = embeddings[i : i + 1]
|
||||
index.add(1, faiss.swig_ptr(row))
|
||||
else:
|
||||
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
|
||||
faiss.write_index(index, str(index_file_path))
|
||||
|
||||
149
packages/leann-backend-hnsw/leann_backend_hnsw/prune_index.py
Normal file
149
packages/leann-backend-hnsw/leann_backend_hnsw/prune_index.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import os
|
||||
import struct
|
||||
from pathlib import Path
|
||||
|
||||
from .convert_to_csr import (
|
||||
EXPECTED_HNSW_FOURCCS,
|
||||
NULL_INDEX_FOURCC,
|
||||
read_struct,
|
||||
read_vector_raw,
|
||||
)
|
||||
|
||||
|
||||
def _write_vector_raw(f_out, count: int, data_bytes: bytes) -> None:
|
||||
"""Write a vector in the same binary layout as read_vector_raw reads: <Q count> + raw bytes."""
|
||||
f_out.write(struct.pack("<Q", count))
|
||||
if count > 0 and data_bytes:
|
||||
f_out.write(data_bytes)
|
||||
|
||||
|
||||
def prune_embeddings_preserve_graph(input_filename: str, output_filename: str) -> bool:
|
||||
"""
|
||||
Copy an original (non-compact) HNSW index file while pruning the trailing embedding storage.
|
||||
Preserves the graph structure and metadata exactly; only writes a NULL storage marker instead of
|
||||
the original storage fourcc and payload.
|
||||
|
||||
Returns True on success.
|
||||
"""
|
||||
print(f"Pruning embeddings from {input_filename} to {output_filename}")
|
||||
print("--------------------------------")
|
||||
# running in mode is-recompute=True and is-compact=False
|
||||
in_path = Path(input_filename)
|
||||
out_path = Path(output_filename)
|
||||
|
||||
try:
|
||||
with open(in_path, "rb") as f_in, open(out_path, "wb") as f_out:
|
||||
# Header
|
||||
index_fourcc = read_struct(f_in, "<I")
|
||||
if index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||
# Still proceed, but this is unexpected
|
||||
pass
|
||||
f_out.write(struct.pack("<I", index_fourcc))
|
||||
|
||||
d = read_struct(f_in, "<i")
|
||||
ntotal_hdr = read_struct(f_in, "<q")
|
||||
dummy1 = read_struct(f_in, "<q")
|
||||
dummy2 = read_struct(f_in, "<q")
|
||||
is_trained = read_struct(f_in, "?")
|
||||
metric_type = read_struct(f_in, "<i")
|
||||
f_out.write(struct.pack("<i", d))
|
||||
f_out.write(struct.pack("<q", ntotal_hdr))
|
||||
f_out.write(struct.pack("<q", dummy1))
|
||||
f_out.write(struct.pack("<q", dummy2))
|
||||
f_out.write(struct.pack("<?", is_trained))
|
||||
f_out.write(struct.pack("<i", metric_type))
|
||||
|
||||
if metric_type > 1:
|
||||
metric_arg = read_struct(f_in, "<f")
|
||||
f_out.write(struct.pack("<f", metric_arg))
|
||||
|
||||
# Vectors: assign_probas (double), cum_nneighbor_per_level (int32), levels (int32)
|
||||
cnt, data = read_vector_raw(f_in, "d")
|
||||
_write_vector_raw(f_out, cnt, data)
|
||||
|
||||
cnt, data = read_vector_raw(f_in, "i")
|
||||
_write_vector_raw(f_out, cnt, data)
|
||||
|
||||
cnt, data = read_vector_raw(f_in, "i")
|
||||
_write_vector_raw(f_out, cnt, data)
|
||||
|
||||
# Probe potential extra alignment/flag byte present in some original formats
|
||||
probe = f_in.read(1)
|
||||
if probe:
|
||||
if probe == b"\x00":
|
||||
# Preserve this unexpected 0x00 byte
|
||||
f_out.write(probe)
|
||||
else:
|
||||
# Likely part of the next vector; rewind
|
||||
f_in.seek(-1, os.SEEK_CUR)
|
||||
|
||||
# Offsets (uint64) and neighbors (int32)
|
||||
cnt, data = read_vector_raw(f_in, "Q")
|
||||
_write_vector_raw(f_out, cnt, data)
|
||||
|
||||
cnt, data = read_vector_raw(f_in, "i")
|
||||
_write_vector_raw(f_out, cnt, data)
|
||||
|
||||
# Scalar params
|
||||
entry_point = read_struct(f_in, "<i")
|
||||
max_level = read_struct(f_in, "<i")
|
||||
ef_construction = read_struct(f_in, "<i")
|
||||
ef_search = read_struct(f_in, "<i")
|
||||
dummy_upper_beam = read_struct(f_in, "<i")
|
||||
f_out.write(struct.pack("<i", entry_point))
|
||||
f_out.write(struct.pack("<i", max_level))
|
||||
f_out.write(struct.pack("<i", ef_construction))
|
||||
f_out.write(struct.pack("<i", ef_search))
|
||||
f_out.write(struct.pack("<i", dummy_upper_beam))
|
||||
|
||||
# Storage fourcc (if present) — write NULL marker and drop any remaining data
|
||||
try:
|
||||
read_struct(f_in, "<I")
|
||||
# Regardless of original, write NULL
|
||||
f_out.write(struct.pack("<I", NULL_INDEX_FOURCC))
|
||||
# Discard the rest of the file (embedding payload)
|
||||
# (Do not copy anything else)
|
||||
except EOFError:
|
||||
# No storage section; nothing else to write
|
||||
pass
|
||||
|
||||
return True
|
||||
except Exception:
|
||||
# Best-effort cleanup
|
||||
try:
|
||||
if out_path.exists():
|
||||
out_path.unlink()
|
||||
except OSError:
|
||||
pass
|
||||
return False
|
||||
|
||||
|
||||
def prune_embeddings_preserve_graph_inplace(index_file_path: str) -> bool:
|
||||
"""
|
||||
Convenience wrapper: write pruned file to a temporary path next to the
|
||||
original, then atomically replace on success.
|
||||
"""
|
||||
print(f"Pruning embeddings from {index_file_path} to {index_file_path}")
|
||||
print("--------------------------------")
|
||||
# running in mode is-recompute=True and is-compact=False
|
||||
src = Path(index_file_path)
|
||||
tmp = src.with_suffix(".pruned.tmp")
|
||||
ok = prune_embeddings_preserve_graph(str(src), str(tmp))
|
||||
if not ok:
|
||||
if tmp.exists():
|
||||
try:
|
||||
tmp.unlink()
|
||||
except OSError:
|
||||
pass
|
||||
return False
|
||||
try:
|
||||
os.replace(str(tmp), str(src))
|
||||
except Exception:
|
||||
# Rollback on failure
|
||||
try:
|
||||
if tmp.exists():
|
||||
tmp.unlink()
|
||||
except OSError:
|
||||
pass
|
||||
return False
|
||||
return True
|
||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: ed96ff7dba...ea86d06ceb
@@ -5,6 +5,7 @@ with the correct, original embedding logic from the user's reference code.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
import re
|
||||
import subprocess
|
||||
@@ -19,6 +20,7 @@ import numpy as np
|
||||
from leann.interface import LeannBackendSearcherInterface
|
||||
|
||||
from .chat import get_llm
|
||||
from .embedding_server_manager import EmbeddingServerManager
|
||||
from .interface import LeannBackendFactoryInterface
|
||||
from .metadata_filter import MetadataFilterEngine
|
||||
from .registry import BACKEND_REGISTRY
|
||||
@@ -490,9 +492,7 @@ class LeannBuilder:
|
||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||
meta_data["is_compact"] = is_compact
|
||||
meta_data["is_pruned"] = (
|
||||
is_compact and is_recompute
|
||||
) # Pruned only if compact and recompute
|
||||
meta_data["is_pruned"] = is_recompute # Pruned only if compact and recompute
|
||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta_data, f, indent=2)
|
||||
|
||||
@@ -1105,6 +1105,8 @@ def incremental_add_texts(
|
||||
*,
|
||||
embedding_model: Optional[str] = None,
|
||||
embedding_mode: Optional[str] = None,
|
||||
ef_construction: Optional[int] = None,
|
||||
recompute: bool = False,
|
||||
) -> int:
|
||||
"""Incrementally add text chunks to an existing HNSW index built with no-recompute.
|
||||
|
||||
@@ -1139,38 +1141,70 @@ def incremental_add_texts(
|
||||
assigned_ids = _append_passages_and_update_offsets(passages_file, offsets_file, texts)
|
||||
|
||||
# Compute embeddings
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name=model_name,
|
||||
mode=mode_name,
|
||||
use_server=False,
|
||||
is_build=True,
|
||||
)
|
||||
# Embedding computation path
|
||||
esm = None
|
||||
port = None
|
||||
if recompute:
|
||||
# Determine distance metric early for server config
|
||||
distance_metric = meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
|
||||
# Start embedding server and compute via ZMQ for consistency with recompute semantics
|
||||
passages_source_file = f"{index_path}.meta.json"
|
||||
esm = EmbeddingServerManager(
|
||||
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
|
||||
)
|
||||
started, port = esm.start_server(
|
||||
port=5557,
|
||||
model_name=model_name,
|
||||
embedding_mode=mode_name,
|
||||
passages_file=passages_source_file,
|
||||
distance_metric=distance_metric,
|
||||
enable_warmup=False,
|
||||
)
|
||||
if not started:
|
||||
raise RuntimeError("Failed to start embedding server for recompute add")
|
||||
embeddings = compute_embeddings_via_server(texts, model_name, port)
|
||||
else:
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name=model_name,
|
||||
mode=mode_name,
|
||||
use_server=False,
|
||||
is_build=True,
|
||||
)
|
||||
|
||||
# Normalize for cosine if needed
|
||||
distance_metric = meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
|
||||
if "distance_metric" not in locals():
|
||||
distance_metric = meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
|
||||
if distance_metric == "cosine":
|
||||
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
|
||||
# Load vector index and append
|
||||
# Append via backend helper (supports ef_construction/recompute plumbing)
|
||||
try:
|
||||
from leann_backend_hnsw import faiss as hnsw_faiss # type: ignore
|
||||
from leann_backend_hnsw.hnsw_backend import add_vectors as hnsw_add_vectors # type: ignore
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
"Failed to import leann_backend_hnsw.faiss. Ensure HNSW backend is installed."
|
||||
"Failed to import HNSW backend add helper. Ensure HNSW backend is installed."
|
||||
) from e
|
||||
|
||||
index = hnsw_faiss.read_index(str(vector_index_file), hnsw_faiss.IO_FLAG_MMAP)
|
||||
if embeddings.dtype != np.float32:
|
||||
embeddings = embeddings.astype(np.float32)
|
||||
if not embeddings.flags.c_contiguous:
|
||||
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
# Propagate ZMQ port to FAISS add path when recompute is True
|
||||
if recompute and port is not None:
|
||||
os.environ["LEANN_ZMQ_PORT"] = str(port)
|
||||
|
||||
# C++-style signature (n, swig_ptr(x))
|
||||
index.add(embeddings.shape[0], hnsw_faiss.swig_ptr(embeddings))
|
||||
hnsw_faiss.write_index(index, str(vector_index_file))
|
||||
hnsw_add_vectors(
|
||||
str(vector_index_file),
|
||||
embeddings,
|
||||
ef_construction=ef_construction,
|
||||
recompute=recompute,
|
||||
)
|
||||
|
||||
# Stop server after add when recompute path used
|
||||
if esm is not None:
|
||||
try:
|
||||
esm.stop_server()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Sanity: ids length should match embeddings rows
|
||||
if len(assigned_ids) != embeddings.shape[0]:
|
||||
@@ -1265,8 +1299,17 @@ def create_incremental_add_context(
|
||||
)
|
||||
|
||||
|
||||
def incremental_add_texts_with_context(ctx: IncrementalAddContext, texts: list[str]) -> int:
|
||||
"""Incrementally add texts using a prepared context (no repeated validation)."""
|
||||
def incremental_add_texts_with_context(
|
||||
ctx: IncrementalAddContext,
|
||||
texts: list[str],
|
||||
*,
|
||||
ef_construction: Optional[int] = None,
|
||||
recompute: bool = False,
|
||||
) -> int:
|
||||
"""Incrementally add texts using a prepared context (no repeated validation).
|
||||
|
||||
For non-compact HNSW, ef_construction (efConstruction) can be overridden during insertion.
|
||||
"""
|
||||
if not texts:
|
||||
return 0
|
||||
|
||||
@@ -1274,13 +1317,33 @@ def incremental_add_texts_with_context(ctx: IncrementalAddContext, texts: list[s
|
||||
_append_passages_and_update_offsets(ctx.passages_file, ctx.offsets_file, texts)
|
||||
|
||||
# Compute embeddings
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name=ctx.embedding_model,
|
||||
mode=ctx.embedding_mode,
|
||||
use_server=False,
|
||||
is_build=True,
|
||||
)
|
||||
# Embedding computation path
|
||||
esm = None
|
||||
port = None
|
||||
if recompute:
|
||||
passages_source_file = f"{ctx.index_path}.meta.json"
|
||||
esm = EmbeddingServerManager(
|
||||
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
|
||||
)
|
||||
started, port = esm.start_server(
|
||||
port=5557,
|
||||
model_name=ctx.embedding_model,
|
||||
embedding_mode=ctx.embedding_mode,
|
||||
passages_file=passages_source_file,
|
||||
distance_metric=ctx.distance_metric,
|
||||
enable_warmup=False,
|
||||
)
|
||||
if not started:
|
||||
raise RuntimeError("Failed to start embedding server for recompute add")
|
||||
embeddings = compute_embeddings_via_server(texts, ctx.embedding_model, port)
|
||||
else:
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name=ctx.embedding_model,
|
||||
mode=ctx.embedding_mode,
|
||||
use_server=False,
|
||||
is_build=True,
|
||||
)
|
||||
|
||||
# Normalize for cosine if needed
|
||||
if ctx.distance_metric == "cosine":
|
||||
@@ -1288,21 +1351,30 @@ def incremental_add_texts_with_context(ctx: IncrementalAddContext, texts: list[s
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
|
||||
# Load vector index and append
|
||||
# Append via backend helper (supports ef_construction/recompute plumbing)
|
||||
try:
|
||||
from leann_backend_hnsw import faiss as hnsw_faiss # type: ignore
|
||||
from leann_backend_hnsw.hnsw_backend import add_vectors as hnsw_add_vectors # type: ignore
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
"Failed to import leann_backend_hnsw.faiss. Ensure HNSW backend is installed."
|
||||
"Failed to import HNSW backend add helper. Ensure HNSW backend is installed."
|
||||
) from e
|
||||
|
||||
index = hnsw_faiss.read_index(str(ctx.vector_index_file), hnsw_faiss.IO_FLAG_MMAP)
|
||||
if embeddings.dtype != np.float32:
|
||||
embeddings = embeddings.astype(np.float32)
|
||||
if not embeddings.flags.c_contiguous:
|
||||
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
index.add(embeddings.shape[0], hnsw_faiss.swig_ptr(embeddings))
|
||||
hnsw_faiss.write_index(index, str(ctx.vector_index_file))
|
||||
if recompute and port is not None:
|
||||
os.environ["LEANN_ZMQ_PORT"] = str(port)
|
||||
|
||||
hnsw_add_vectors(
|
||||
str(ctx.vector_index_file),
|
||||
embeddings,
|
||||
ef_construction=ef_construction,
|
||||
recompute=recompute,
|
||||
)
|
||||
|
||||
# Stop server after add when recompute path used
|
||||
if esm is not None:
|
||||
try:
|
||||
esm.stop_server()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return embeddings.shape[0]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user