docs: config guidance

This commit is contained in:
Andy Lee
2025-08-04 16:21:13 -07:00
parent dd71ac8d71
commit 716217ae24
3 changed files with 283 additions and 1 deletions

View File

@@ -170,6 +170,13 @@ ollama pull llama3.2:1b
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
📚 **Having trouble with configuration?** Check our [Configuration Guide](docs/configuration-guide.md) for:
- Quick start configurations for each use case
- Solutions for "embedding too slow" issues
- How to choose the right chat model
- Fixing poor search quality
- Performance optimization tips
<details>
<summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>

275
docs/configuration-guide.md Normal file
View File

@@ -0,0 +1,275 @@
# LEANN Configuration Guide
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
## Getting Started: Simple is Better
When first trying LEANN, start with a small dataset to quickly validate your approach. Use the default `data/` directory which contains just a few files - this lets you test the full pipeline in minutes rather than hours.
```bash
# Quick test with minimal data
python -m apps.document_rag --max-items 100 --query "What techniques does LEANN use?"
```
Once validated, scale up gradually:
- 100 documents → 1,000 → 10,000 → full dataset
- This helps identify issues early before committing to long processing times
## Embedding Model Selection: Understanding the Trade-offs
Based on our experience developing LEANN, embedding models fall into three categories:
### Small Models (384-768 dims)
**Example**: `sentence-transformers/all-MiniLM-L6-v2`
- **Pros**: Fast inference (10-50ms, 384 dims), good for real-time applications
- **Cons**: Lower semantic understanding, may miss nuanced relationships
- **Use when**: Speed is critical, handling simple queries
### Medium Models (768-1024 dims)
**Example**: `facebook/contriever`
- **Pros**: Balanced performance, good multilingual support, reasonable speed
- **Cons**: Requires more compute than small models
- **Use when**: Need quality results without extreme compute requirements
### Large Models (1024+ dims)
**Example**: `Qwen/Qwen3-Embedding`
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support
- **Cons**: Slow inference, high memory usage, may overfit on small datasets
- **Use when**: Quality is paramount and you have sufficient compute
### Cloud vs Local Trade-offs
**OpenAI Embeddings** (`text-embedding-3-small/large`)
- **Pros**: No local compute needed, consistently fast, high quality
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- **When to use**: Prototyping, non-sensitive data, need immediate results
**Local Embeddings**
- **Pros**: Complete privacy, no ongoing costs, full control
- **Cons**: Requires GPU for good performance, setup complexity
- **When to use**: Production systems, sensitive data, cost-sensitive applications
## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World)
**Best for**: Small to medium datasets (< 10M vectors)
- Fast search (1-10ms latency)
- Full recomputation required (no double queue optimization)
- High memory usage during build phase
- Excellent recall (95%+)
```bash
# Optimal for most use cases
--backend-name hnsw --graph-degree 32 --build-complexity 64
```
### DiskANN
**Best for**: Large datasets (> 10M vectors, 10GB+ index size)
- Uses Product Quantization (PQ) for coarse filtering in double queue architecture
- Extremely fast search through selective recomputation
```bash
# For billion-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128
```
## LLM Selection: Engine and Model Comparison
### LLM Engines
**OpenAI** (`--llm openai`)
- **Pros**: Best quality, consistent performance, no local resources needed
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3-mini` (reasoning, not so expensive)
**Ollama** (`--llm ollama`)
- **Pros**: Fully local, free, privacy-preserving, good model variety
- **Cons**: Requires local GPU/CPU resources, slower than cloud
- **Models**: `qwen3:1.7b` (best general quality), `deepseek-r1:1.5b` (reasoning)
**HuggingFace** (`--llm hf`)
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
- **Cons**: API rate limits, local mode needs significant resources, more complex setup
- **Models**: `Qwen/Qwen3-1.7B-FP8`
### Model Size Trade-offs
| Model Size | Speed | Quality | Memory | Use Case |
|------------|-------|---------|---------|----------|
| 1B params | 50-100 tok/s | Basic | 2-4GB | Quick answers, simple queries |
| 3B params | 20-50 tok/s | Good | 4-8GB | General purpose RAG |
| 7B params | 10-20 tok/s | Excellent | 8-16GB | Complex reasoning |
| 13B+ params | 5-10 tok/s | Best | 16-32GB+ | Research, detailed analysis |
## Parameter Tuning Guide
### Search Complexity Parameters
**`--build-complexity`** (index building)
- Controls thoroughness during index construction
- Higher = better recall but slower build
- Recommendations:
- 32: Quick prototyping
- 64: Balanced (default)
- 128: Production systems
- 256: Maximum quality
**`--search-complexity`** (query time)
- Controls search thoroughness
- Higher = better results but slower
- Recommendations:
- 16: Fast/Interactive search (500-1000ms on consumer hardware)
- 32: High quality with diversity (1000-2000ms)
- 64+: Maximum accuracy (2000ms+)
### Top-K Selection
**`--top-k`** (number of retrieved chunks)
- More chunks = better context but slower LLM processing
- Should be always smaller than `--search-complexity`
- Guidelines:
- 3-5: Simple factual queries
- 5-10: General questions (default)
- 10+: Complex multi-hop reasoning
**Trade-off formula**:
- Retrieval time ∝ log(n) × search_complexity
- LLM processing time ∝ top_k × chunk_size
- Total context = top_k × chunk_size tokens
### Graph Degree (HNSW/DiskANN)
**`--graph-degree`**
- Number of connections per node in the graph
- Higher = better recall but more memory
- HNSW: 16-32 (default: 32)
- DiskANN: 32-128 (default: 64)
## Common Configurations by Use Case
### 1. Quick Experimentation
```bash
python -m apps.document_rag \
--max-items 1000 \
--embedding-model sentence-transformers/all-MiniLM-L6-v2 \
--backend-name hnsw \
--llm ollama --llm-model llama3.2:1b
```
### 2. Personal Knowledge Base
```bash
python -m apps.document_rag \
--embedding-model facebook/contriever \
--chunk-size 512 --chunk-overlap 128 \
--backend-name hnsw \
--llm ollama --llm-model llama3.2:3b
```
### 3. Production RAG System
```bash
python -m apps.document_rag \
--embedding-model BAAI/bge-base-en-v1.5 \
--chunk-size 256 --chunk-overlap 64 \
--backend-name diskann \
--llm openai --llm-model gpt-4o-mini \
--top-k 20 --search-complexity 64
```
### 4. Multi-lingual Support (e.g., WeChat)
```bash
python -m apps.wechat_rag \
--embedding-model intfloat/multilingual-e5-base \
--chunk-size 192 --chunk-overlap 48 \
--backend-name hnsw \
--llm ollama --llm-model qwen3:8b
```
## Performance Optimization Checklist
### If Embedding is Too Slow
1. **Switch to smaller model**:
```bash
# From large model
--embedding-model Qwen/Qwen3-Embedding
# To small model
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
2. **Use MLX on Apple Silicon**:
```bash
--embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
```
3. **Process in batches**:
```bash
--max-items 10000 # Process incrementally
```
### If Search Quality is Poor
1. **Increase retrieval count**:
```bash
--top-k 30 # Retrieve more candidates
```
2. **Tune chunk size for your content**:
- Technical docs: `--chunk-size 512`
- Chat messages: `--chunk-size 128`
- Mixed content: `--chunk-size 256`
3. **Upgrade embedding model**:
```bash
# For English
--embedding-model BAAI/bge-base-en-v1.5
# For multilingual
--embedding-model intfloat/multilingual-e5-large
```
## Understanding the Trade-offs
Every configuration choice involves trade-offs:
| Factor | Small/Fast | Large/Quality |
|--------|------------|---------------|
| Embedding Model | all-MiniLM-L6-v2 | BAAI/bge-large |
| Chunk Size | 128 tokens | 512 tokens |
| Index Type | HNSW | DiskANN |
| LLM | llama3.2:1b | gpt-4o |
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Deep Dive: Critical Configuration Decisions
### When to Disable Recomputation
LEANN's recomputation feature provides exact distance calculations but can be disabled for extreme QPS requirements:
```bash
--no-recompute # Disable selective recomputation
```
**Trade-offs**:
- **With recomputation** (default): Exact distances, best quality, higher latency
- **Without recomputation**: Approximate distances via PQ, 2-5x faster, significantly lower memory and storage usage
**Disable when**:
- QPS requirements > 1000/sec
- Slight accuracy loss is acceptable
- Running on resource-constrained hardware
## Performance Monitoring
Key metrics to watch:
- Index build time
- Query latency (p50, p95, p99)
- Memory usage during build and search
- Disk I/O patterns (for DiskANN)
- Recomputation ratio (% of candidates recomputed)
## Further Reading
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)