docs: cli
This commit is contained in:
65
README.md
65
README.md
@@ -294,6 +294,71 @@ Once the index is built, you can ask questions like:
|
||||
|
||||
</details>
|
||||
|
||||
## 🖥️ Command Line Interface
|
||||
|
||||
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
|
||||
|
||||
```bash
|
||||
# Build an index from documents
|
||||
leann build my-docs --docs ./documents
|
||||
|
||||
# Search your documents
|
||||
leann search my-docs "machine learning concepts"
|
||||
|
||||
# Interactive chat with your documents
|
||||
leann ask my-docs --interactive
|
||||
|
||||
# List all your indexes
|
||||
leann list
|
||||
```
|
||||
|
||||
**Key CLI features:**
|
||||
- Auto-detects document formats (PDF, TXT, MD, DOCX)
|
||||
- Smart text chunking with overlap
|
||||
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
|
||||
- Organized index storage in `~/.leann/indexes/`
|
||||
- Support for advanced search parameters
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
|
||||
|
||||
**Build Command:**
|
||||
```bash
|
||||
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
|
||||
|
||||
Options:
|
||||
--backend {hnsw,diskann} Backend to use (default: hnsw)
|
||||
--embedding-model MODEL Embedding model (default: facebook/contriever)
|
||||
--graph-degree N Graph degree (default: 32)
|
||||
--complexity N Build complexity (default: 64)
|
||||
--force Force rebuild existing index
|
||||
--compact Use compact storage (default: true)
|
||||
--recompute Enable recomputation (default: true)
|
||||
```
|
||||
|
||||
**Search Command:**
|
||||
```bash
|
||||
leann search INDEX_NAME QUERY [OPTIONS]
|
||||
|
||||
Options:
|
||||
--top-k N Number of results (default: 5)
|
||||
--complexity N Search complexity (default: 64)
|
||||
--recompute-embeddings Use recomputation for highest accuracy
|
||||
--pruning-strategy {global,local,proportional}
|
||||
```
|
||||
|
||||
**Ask Command:**
|
||||
```bash
|
||||
leann ask INDEX_NAME [OPTIONS]
|
||||
|
||||
Options:
|
||||
--llm {ollama,openai,hf} LLM provider (default: ollama)
|
||||
--model MODEL Model name (default: qwen3:8b)
|
||||
--interactive Interactive chat mode
|
||||
--top-k N Retrieval count (default: 20)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 🏗️ Architecture & How It Works
|
||||
|
||||
|
||||
@@ -1,10 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import asyncio
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
import os
|
||||
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
@@ -16,20 +12,20 @@ class LeannCLI:
|
||||
def __init__(self):
|
||||
self.indexes_dir = Path.home() / ".leann" / "indexes"
|
||||
self.indexes_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
self.node_parser = SentenceSplitter(
|
||||
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
|
||||
|
||||
def get_index_path(self, index_name: str) -> str:
|
||||
index_dir = self.indexes_dir / index_name
|
||||
return str(index_dir / "documents.leann")
|
||||
|
||||
|
||||
def index_exists(self, index_name: str) -> bool:
|
||||
index_dir = self.indexes_dir / index_name
|
||||
meta_file = index_dir / "documents.leann.meta.json"
|
||||
return meta_file.exists()
|
||||
|
||||
|
||||
def create_parser(self) -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser(
|
||||
prog="leann",
|
||||
@@ -41,24 +37,32 @@ Examples:
|
||||
leann search my-docs "query" # Search in my-docs index
|
||||
leann ask my-docs "question" # Ask my-docs index
|
||||
leann list # List all stored indexes
|
||||
"""
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
subparsers = parser.add_subparsers(dest="command", help="Available commands")
|
||||
|
||||
|
||||
# Build command
|
||||
build_parser = subparsers.add_parser("build", help="Build document index")
|
||||
build_parser.add_argument("index_name", help="Index name")
|
||||
build_parser.add_argument("--docs", type=str, required=True, help="Documents directory")
|
||||
build_parser.add_argument("--backend", type=str, default="hnsw", choices=["hnsw", "diskann"])
|
||||
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
||||
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
||||
build_parser.add_argument(
|
||||
"--docs", type=str, required=True, help="Documents directory"
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--embedding-model", type=str, default="facebook/contriever"
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--force", "-f", action="store_true", help="Force rebuild"
|
||||
)
|
||||
build_parser.add_argument("--graph-degree", type=int, default=32)
|
||||
build_parser.add_argument("--complexity", type=int, default=64)
|
||||
build_parser.add_argument("--num-threads", type=int, default=1)
|
||||
build_parser.add_argument("--compact", action="store_true", default=True)
|
||||
build_parser.add_argument("--recompute", action="store_true", default=True)
|
||||
|
||||
|
||||
# Search command
|
||||
search_parser = subparsers.add_parser("search", help="Search documents")
|
||||
search_parser.add_argument("index_name", help="Index name")
|
||||
@@ -68,12 +72,21 @@ Examples:
|
||||
search_parser.add_argument("--beam-width", type=int, default=1)
|
||||
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
||||
search_parser.add_argument("--recompute-embeddings", action="store_true")
|
||||
search_parser.add_argument("--pruning-strategy", choices=["global", "local", "proportional"], default="global")
|
||||
|
||||
search_parser.add_argument(
|
||||
"--pruning-strategy",
|
||||
choices=["global", "local", "proportional"],
|
||||
default="global",
|
||||
)
|
||||
|
||||
# Ask command
|
||||
ask_parser = subparsers.add_parser("ask", help="Ask questions")
|
||||
ask_parser.add_argument("index_name", help="Index name")
|
||||
ask_parser.add_argument("--llm", type=str, default="ollama", choices=["simulated", "ollama", "hf", "openai"])
|
||||
ask_parser.add_argument(
|
||||
"--llm",
|
||||
type=str,
|
||||
default="ollama",
|
||||
choices=["simulated", "ollama", "hf", "openai"],
|
||||
)
|
||||
ask_parser.add_argument("--model", type=str, default="qwen3:8b")
|
||||
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
|
||||
ask_parser.add_argument("--interactive", "-i", action="store_true")
|
||||
@@ -82,81 +95,91 @@ Examples:
|
||||
ask_parser.add_argument("--beam-width", type=int, default=1)
|
||||
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
||||
ask_parser.add_argument("--recompute-embeddings", action="store_true")
|
||||
ask_parser.add_argument("--pruning-strategy", choices=["global", "local", "proportional"], default="global")
|
||||
|
||||
ask_parser.add_argument(
|
||||
"--pruning-strategy",
|
||||
choices=["global", "local", "proportional"],
|
||||
default="global",
|
||||
)
|
||||
|
||||
# List command
|
||||
list_parser = subparsers.add_parser("list", help="List all indexes")
|
||||
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def list_indexes(self):
|
||||
print("Stored LEANN indexes:")
|
||||
|
||||
|
||||
if not self.indexes_dir.exists():
|
||||
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
||||
print(
|
||||
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
|
||||
|
||||
|
||||
if not index_dirs:
|
||||
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
||||
print(
|
||||
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
print(f"Found {len(index_dirs)} indexes:")
|
||||
for i, index_dir in enumerate(index_dirs, 1):
|
||||
index_name = index_dir.name
|
||||
status = "✓" if self.index_exists(index_name) else "✗"
|
||||
|
||||
|
||||
print(f" {i}. {index_name} [{status}]")
|
||||
if self.index_exists(index_name):
|
||||
meta_file = index_dir / "documents.leann.meta.json"
|
||||
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (1024 * 1024)
|
||||
size_mb = sum(
|
||||
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
print(f" Size: {size_mb:.1f} MB")
|
||||
|
||||
|
||||
if index_dirs:
|
||||
example_name = index_dirs[0].name
|
||||
print(f"\nUsage:")
|
||||
print(f" leann search {example_name} \"your query\"")
|
||||
print(f' leann search {example_name} "your query"')
|
||||
print(f" leann ask {example_name} --interactive")
|
||||
|
||||
|
||||
def load_documents(self, docs_dir: str):
|
||||
print(f"Loading documents from {docs_dir}...")
|
||||
|
||||
|
||||
documents = SimpleDirectoryReader(
|
||||
docs_dir,
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md", ".docx"],
|
||||
).load_data(show_progress=True)
|
||||
|
||||
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
nodes = self.node_parser.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
|
||||
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
|
||||
return all_texts
|
||||
|
||||
|
||||
async def build_index(self, args):
|
||||
docs_dir = args.docs
|
||||
index_name = args.index_name
|
||||
index_dir = self.indexes_dir / index_name
|
||||
index_path = self.get_index_path(index_name)
|
||||
|
||||
|
||||
if index_dir.exists() and not args.force:
|
||||
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
|
||||
return
|
||||
|
||||
|
||||
all_texts = self.load_documents(docs_dir)
|
||||
if not all_texts:
|
||||
print("No documents found")
|
||||
return
|
||||
|
||||
|
||||
index_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
print(f"Building index '{index_name}' with {args.backend} backend...")
|
||||
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=args.backend,
|
||||
embedding_model=args.embedding_model,
|
||||
@@ -166,103 +189,107 @@ Examples:
|
||||
is_recompute=args.recompute,
|
||||
num_threads=args.num_threads,
|
||||
)
|
||||
|
||||
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"Index built at {index_path}")
|
||||
|
||||
|
||||
async def search_documents(self, args):
|
||||
index_name = args.index_name
|
||||
query = args.query
|
||||
index_path = self.get_index_path(index_name)
|
||||
|
||||
|
||||
if not self.index_exists(index_name):
|
||||
print(f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it.")
|
||||
print(
|
||||
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
searcher = LeannSearcher(index_path=index_path)
|
||||
results = searcher.search(
|
||||
query,
|
||||
query,
|
||||
top_k=args.top_k,
|
||||
complexity=args.complexity,
|
||||
beam_width=args.beam_width,
|
||||
prune_ratio=args.prune_ratio,
|
||||
recompute_embeddings=args.recompute_embeddings,
|
||||
pruning_strategy=args.pruning_strategy
|
||||
pruning_strategy=args.pruning_strategy,
|
||||
)
|
||||
|
||||
|
||||
print(f"Search results for '{query}' (top {len(results)}):")
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f"{i}. Score: {result.score:.3f}")
|
||||
print(f" {result.text[:200]}...")
|
||||
print()
|
||||
|
||||
|
||||
async def ask_questions(self, args):
|
||||
index_name = args.index_name
|
||||
index_path = self.get_index_path(index_name)
|
||||
|
||||
|
||||
if not self.index_exists(index_name):
|
||||
print(f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it.")
|
||||
print(
|
||||
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
print(f"Starting chat with index '{index_name}'...")
|
||||
print(f"Using {args.model} ({args.llm})")
|
||||
|
||||
|
||||
llm_config = {"type": args.llm, "model": args.model}
|
||||
if args.llm == "ollama":
|
||||
llm_config["host"] = args.host
|
||||
|
||||
|
||||
chat = LeannChat(index_path=index_path, llm_config=llm_config)
|
||||
|
||||
|
||||
if args.interactive:
|
||||
print("LEANN Assistant ready! Type 'quit' to exit")
|
||||
print("=" * 40)
|
||||
|
||||
|
||||
while True:
|
||||
user_input = input("\nYou: ").strip()
|
||||
if user_input.lower() in ['quit', 'exit', 'q']:
|
||||
if user_input.lower() in ["quit", "exit", "q"]:
|
||||
print("Goodbye!")
|
||||
break
|
||||
|
||||
|
||||
if not user_input:
|
||||
continue
|
||||
|
||||
|
||||
response = chat.ask(
|
||||
user_input,
|
||||
user_input,
|
||||
top_k=args.top_k,
|
||||
complexity=args.complexity,
|
||||
beam_width=args.beam_width,
|
||||
prune_ratio=args.prune_ratio,
|
||||
recompute_embeddings=args.recompute_embeddings,
|
||||
pruning_strategy=args.pruning_strategy
|
||||
pruning_strategy=args.pruning_strategy,
|
||||
)
|
||||
print(f"LEANN: {response}")
|
||||
else:
|
||||
query = input("Enter your question: ").strip()
|
||||
if query:
|
||||
response = chat.ask(
|
||||
query,
|
||||
query,
|
||||
top_k=args.top_k,
|
||||
complexity=args.complexity,
|
||||
beam_width=args.beam_width,
|
||||
prune_ratio=args.prune_ratio,
|
||||
recompute_embeddings=args.recompute_embeddings,
|
||||
pruning_strategy=args.pruning_strategy
|
||||
pruning_strategy=args.pruning_strategy,
|
||||
)
|
||||
print(f"LEANN: {response}")
|
||||
|
||||
|
||||
async def run(self, args=None):
|
||||
parser = self.create_parser()
|
||||
|
||||
|
||||
if args is None:
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
if not args.command:
|
||||
parser.print_help()
|
||||
return
|
||||
|
||||
|
||||
if args.command == "list":
|
||||
self.list_indexes()
|
||||
elif args.command == "build":
|
||||
@@ -277,11 +304,12 @@ Examples:
|
||||
|
||||
def main():
|
||||
import dotenv
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
cli = LeannCLI()
|
||||
asyncio.run(cli.run())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user