Merge remote-tracking branch 'origin/main' into financebench

This commit is contained in:
Andy Lee
2025-08-22 13:39:08 -07:00
30 changed files with 4245 additions and 1308 deletions

44
benchmarks/data/README.md Executable file
View File

@@ -0,0 +1,44 @@
---
license: mit
---
# LEANN-RAG Evaluation Data
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
## Dataset Components
This dataset is structured into three main parts:
1. **Pre-built LEANN Indices**:
* `dpr/`: A pre-built index for the DPR dataset.
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
2. **Ground Truth Data**:
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
3. **Queries**:
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
## Usage
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
```bash
pip install huggingface-hub
```
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir="data"
)
```
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.

View File

@@ -12,7 +12,7 @@ import time
from pathlib import Path
import numpy as np
from leann.api import LeannBuilder, LeannSearcher
from leann.api import LeannBuilder, LeannChat, LeannSearcher
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
@@ -197,6 +197,25 @@ def main():
parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
)
parser.add_argument(
"--batch-size",
type=int,
default=0,
help="Batch size for HNSW batched search (0 disables batching)",
)
parser.add_argument(
"--llm-type",
type=str,
choices=["ollama", "hf", "openai", "gemini", "simulated"],
default="ollama",
help="LLM backend type to optionally query during evaluation (default: ollama)",
)
parser.add_argument(
"--llm-model",
type=str,
default="qwen3:1.7b",
help="LLM model identifier for the chosen backend (default: qwen3:1.7b)",
)
args = parser.parse_args()
# --- Path Configuration ---
@@ -318,9 +337,24 @@ def main():
for i in range(num_eval_queries):
start_time = time.time()
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
new_results = searcher.search(
queries[i],
top_k=args.top_k,
complexity=args.ef_search,
batch_size=args.batch_size,
)
search_times.append(time.time() - start_time)
# Optional: also call the LLM with configurable backend/model (does not affect recall)
llm_config = {"type": args.llm_type, "model": args.llm_model}
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
answer = chat.ask(
queries[i],
top_k=args.top_k,
complexity=args.ef_search,
batch_size=args.batch_size,
)
print(f"Answer: {answer}")
# Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results}

View File

@@ -20,7 +20,7 @@ except ImportError:
@dataclass
class BenchmarkConfig:
model_path: str = "facebook/contriever"
model_path: str = "facebook/contriever-msmarco"
batch_sizes: list[int] = None
seq_length: int = 256
num_runs: int = 5
@@ -34,7 +34,7 @@ class BenchmarkConfig:
def __post_init__(self):
if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
class MLXBenchmark:
@@ -179,11 +179,14 @@ class Benchmark:
def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids)
# print shape of input_ids and attention_mask
print(f"input_ids shape: {input_ids.shape}")
print(f"attention_mask shape: {attention_mask.shape}")
start_time = time.time()
with torch.no_grad():
self.model(input_ids=input_ids, attention_mask=attention_mask)
# mps sync
if torch.cuda.is_available():
torch.cuda.synchronize()
if torch.backends.mps.is_available():
torch.mps.synchronize()
end_time = time.time()