feat: laion, also required idmaps support
This commit is contained in:
1
benchmarks/laion/.gitignore
vendored
Normal file
1
benchmarks/laion/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
data/
|
||||
169
benchmarks/laion/README.md
Normal file
169
benchmarks/laion/README.md
Normal file
@@ -0,0 +1,169 @@
|
||||
# LAION Multimodal Benchmark
|
||||
|
||||
A multimodal benchmark for evaluating image retrieval performance using LEANN with CLIP embeddings on LAION dataset subset.
|
||||
|
||||
## Overview
|
||||
|
||||
This benchmark evaluates:
|
||||
- **Image retrieval timing** using caption-based queries
|
||||
- **Recall@K performance** for image search
|
||||
- **Complexity analysis** across different search parameters
|
||||
- **Index size and storage efficiency**
|
||||
|
||||
## Dataset Configuration
|
||||
|
||||
- **Dataset**: LAION-400M subset (10,000 images)
|
||||
- **Embeddings**: Pre-computed CLIP ViT-B/32 (512 dimensions)
|
||||
- **Queries**: 200 random captions from the dataset
|
||||
- **Ground Truth**: Self-recall (query caption → original image)
|
||||
|
||||
## Quick Start
|
||||
|
||||
### 1. Setup the benchmark
|
||||
|
||||
```bash
|
||||
cd benchmarks/laion
|
||||
python setup_laion.py --num-samples 10000 --num-queries 200
|
||||
```
|
||||
|
||||
This will:
|
||||
- Create dummy LAION data (10K samples)
|
||||
- Generate CLIP embeddings (512-dim)
|
||||
- Build LEANN index with HNSW backend
|
||||
- Create 200 evaluation queries
|
||||
|
||||
### 2. Run evaluation
|
||||
|
||||
```bash
|
||||
# Run all evaluation stages
|
||||
python evaluate_laion.py --index data/laion_index.leann
|
||||
|
||||
# Run specific stages
|
||||
python evaluate_laion.py --index data/laion_index.leann --stage timing
|
||||
python evaluate_laion.py --index data/laion_index.leann --stage recall
|
||||
python evaluate_laion.py --index data/laion_index.leann --stage complexity
|
||||
```
|
||||
|
||||
### 3. Save results
|
||||
|
||||
```bash
|
||||
python evaluate_laion.py --index data/laion_index.leann --output results.json
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
### Setup Options
|
||||
```bash
|
||||
python setup_laion.py \
|
||||
--num-samples 10000 \
|
||||
--num-queries 200 \
|
||||
--index-path data/laion_index.leann \
|
||||
--backend hnsw
|
||||
```
|
||||
|
||||
### Evaluation Options
|
||||
```bash
|
||||
python evaluate_laion.py \
|
||||
--index data/laion_index.leann \
|
||||
--queries data/evaluation_queries.jsonl \
|
||||
--complexity 64 \
|
||||
--top-k 3 \
|
||||
--num-samples 100 \
|
||||
--stage all
|
||||
```
|
||||
|
||||
## Evaluation Stages
|
||||
|
||||
### Stage 1: Index Analysis
|
||||
- Analyzes index file sizes and metadata
|
||||
- Reports storage efficiency
|
||||
|
||||
### Stage 2: Search Timing
|
||||
- Measures average search latency
|
||||
- Tests with configurable complexity and top-k
|
||||
- Reports searches per second
|
||||
|
||||
### Stage 3: Recall Evaluation
|
||||
- Evaluates Recall@K using ground truth
|
||||
- Self-recall: query caption should retrieve original image
|
||||
|
||||
### Stage 4: Complexity Analysis
|
||||
- Tests performance across different complexity levels [16, 32, 64, 128]
|
||||
- Analyzes speed vs. accuracy tradeoffs
|
||||
|
||||
## Output Metrics
|
||||
|
||||
### Timing Metrics
|
||||
- Average/median/min/max search time
|
||||
- Standard deviation
|
||||
- Searches per second
|
||||
- Latency in milliseconds
|
||||
|
||||
### Recall Metrics
|
||||
- Recall@K percentage
|
||||
- Number of queries with ground truth
|
||||
|
||||
### Index Metrics
|
||||
- Total index size (MB)
|
||||
- Component breakdown (index, passages, metadata)
|
||||
- Backend and embedding model info
|
||||
|
||||
## Example Results
|
||||
|
||||
```
|
||||
🎯 LAION MULTIMODAL BENCHMARK RESULTS
|
||||
============================================================
|
||||
|
||||
📏 Index Information:
|
||||
Total size: 145.2 MB
|
||||
Backend: hnsw
|
||||
Embedding model: clip-vit-b-32
|
||||
Total passages: 10000
|
||||
|
||||
⚡ Search Performance:
|
||||
Total queries: 200
|
||||
Average search time: 0.023s
|
||||
Median search time: 0.021s
|
||||
Min/Max search time: 0.012s / 0.089s
|
||||
Std dev: 0.008s
|
||||
Complexity: 64
|
||||
Top-K: 3
|
||||
|
||||
📊 Recall Performance:
|
||||
Recall@3: 85.5%
|
||||
Queries with ground truth: 200
|
||||
|
||||
⚙️ Complexity Analysis:
|
||||
Complexity 16: 0.015s avg
|
||||
Complexity 32: 0.019s avg
|
||||
Complexity 64: 0.023s avg
|
||||
Complexity 128: 0.031s avg
|
||||
|
||||
🚀 Performance Summary:
|
||||
Searches per second: 43.5
|
||||
Latency (ms): 23.0ms
|
||||
```
|
||||
|
||||
## Directory Structure
|
||||
|
||||
```
|
||||
benchmarks/laion/
|
||||
├── setup_laion.py # Setup script
|
||||
├── evaluate_laion.py # Evaluation script
|
||||
├── README.md # This file
|
||||
└── data/ # Generated data
|
||||
├── laion_images/ # Image files (placeholder)
|
||||
├── laion_metadata.jsonl # Image metadata
|
||||
├── laion_passages.jsonl # LEANN passages
|
||||
├── laion_embeddings.npy # CLIP embeddings
|
||||
├── evaluation_queries.jsonl # Evaluation queries
|
||||
└── laion_index.leann/ # LEANN index files
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Current implementation uses dummy data for demonstration
|
||||
- For real LAION data, implement actual download logic in `setup_laion.py`
|
||||
- CLIP embeddings are randomly generated - replace with real CLIP model for production
|
||||
- Adjust `num_samples` and `num_queries` based on available resources
|
||||
- Consider using `--num-samples` during evaluation for faster testing
|
||||
630
benchmarks/laion/evaluate_laion.py
Normal file
630
benchmarks/laion/evaluate_laion.py
Normal file
@@ -0,0 +1,630 @@
|
||||
"""
|
||||
LAION Multimodal Benchmark Evaluation Script - Modular Recall-based Evaluation
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from leann import LeannSearcher
|
||||
from leann_backend_hnsw import faiss
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
|
||||
class RecallEvaluator:
|
||||
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS baseline for multimodal retrieval)"""
|
||||
|
||||
def __init__(self, index_path: str, baseline_dir: str):
|
||||
self.index_path = index_path
|
||||
self.baseline_dir = baseline_dir
|
||||
self.searcher = LeannSearcher(index_path)
|
||||
|
||||
# Load FAISS flat baseline (image embeddings)
|
||||
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
|
||||
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
|
||||
|
||||
self.faiss_index = faiss.read_index(baseline_index_path)
|
||||
with open(metadata_path, "rb") as f:
|
||||
self.image_ids = pickle.load(f)
|
||||
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} image vectors")
|
||||
|
||||
# Load sentence-transformers CLIP for text embedding (ViT-L/14)
|
||||
self.st_clip = SentenceTransformer("clip-ViT-L-14")
|
||||
|
||||
def evaluate_recall_at_3(
|
||||
self, captions: list[str], complexity: int = 64, recompute_embeddings: bool = True
|
||||
) -> float:
|
||||
"""Evaluate recall@3 for multimodal retrieval: caption queries -> image results"""
|
||||
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
|
||||
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
|
||||
|
||||
total_recall = 0.0
|
||||
num_queries = len(captions)
|
||||
|
||||
for i, caption in enumerate(captions):
|
||||
# Get ground truth: search with FAISS flat using caption text embedding
|
||||
# Generate CLIP text embedding for caption via sentence-transformers (normalized)
|
||||
query_embedding = self.st_clip.encode(
|
||||
[caption], convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
|
||||
).astype(np.float32)
|
||||
|
||||
# Search FAISS flat for ground truth using LEANN's modified faiss API
|
||||
n = query_embedding.shape[0] # Number of queries
|
||||
k = 3 # Number of nearest neighbors
|
||||
distances = np.zeros((n, k), dtype=np.float32)
|
||||
labels = np.zeros((n, k), dtype=np.int64)
|
||||
|
||||
self.faiss_index.search(
|
||||
n,
|
||||
faiss.swig_ptr(query_embedding),
|
||||
k,
|
||||
faiss.swig_ptr(distances),
|
||||
faiss.swig_ptr(labels),
|
||||
)
|
||||
|
||||
# Extract the results (image IDs from FAISS)
|
||||
baseline_ids = {self.image_ids[idx] for idx in labels[0]}
|
||||
|
||||
# Search with LEANN at specified complexity (using caption as text query)
|
||||
test_results = self.searcher.search(
|
||||
caption,
|
||||
top_k=3,
|
||||
complexity=complexity,
|
||||
recompute_embeddings=recompute_embeddings,
|
||||
)
|
||||
test_ids = {result.id for result in test_results}
|
||||
|
||||
# Calculate recall@3 = |intersection| / |ground_truth|
|
||||
intersection = test_ids.intersection(baseline_ids)
|
||||
recall = len(intersection) / 3.0 # Ground truth size is 3
|
||||
total_recall += recall
|
||||
|
||||
if i < 3: # Show first few examples
|
||||
print(f" Query {i + 1}: '{caption[:50]}...' -> Recall@3: {recall:.3f}")
|
||||
print(f" FAISS ground truth: {list(baseline_ids)}")
|
||||
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
|
||||
print(f" Intersection: {list(intersection)}")
|
||||
|
||||
avg_recall = total_recall / num_queries
|
||||
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
|
||||
return avg_recall
|
||||
|
||||
def cleanup(self):
|
||||
"""Cleanup resources"""
|
||||
if hasattr(self, "searcher"):
|
||||
self.searcher.cleanup()
|
||||
|
||||
|
||||
class LAIONEvaluator:
|
||||
def __init__(self, index_path: str):
|
||||
self.index_path = index_path
|
||||
self.searcher = LeannSearcher(index_path)
|
||||
|
||||
def load_queries(self, queries_file: str) -> list[str]:
|
||||
"""Load caption queries from evaluation file"""
|
||||
captions = []
|
||||
with open(queries_file, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
query_data = json.loads(line)
|
||||
captions.append(query_data["query"])
|
||||
|
||||
print(f"📊 Loaded {len(captions)} caption queries")
|
||||
return captions
|
||||
|
||||
def analyze_index_sizes(self) -> dict:
|
||||
"""Analyze index sizes, emphasizing .index only (exclude passages)."""
|
||||
print("📏 Analyzing index sizes (.index only)...")
|
||||
|
||||
# Get all index-related files
|
||||
index_path = Path(self.index_path)
|
||||
index_dir = index_path.parent
|
||||
index_name = index_path.stem # Remove .leann extension
|
||||
|
||||
sizes: dict[str, float] = {}
|
||||
|
||||
# Core index files
|
||||
index_file = index_dir / f"{index_name}.index"
|
||||
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
|
||||
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
|
||||
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
|
||||
|
||||
# Core index size (.index only)
|
||||
index_mb = index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
|
||||
sizes["index_only_mb"] = index_mb
|
||||
|
||||
# Other files for reference (not counted in index_only_mb)
|
||||
sizes["metadata_mb"] = meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
|
||||
sizes["passages_text_mb"] = (
|
||||
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
|
||||
)
|
||||
sizes["passages_index_mb"] = (
|
||||
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
|
||||
)
|
||||
|
||||
print(f" 📁 .index size: {index_mb:.1f} MB")
|
||||
if sizes["metadata_mb"]:
|
||||
print(f" 🧾 metadata: {sizes['metadata_mb']:.3f} MB")
|
||||
if sizes["passages_text_mb"] or sizes["passages_index_mb"]:
|
||||
print(
|
||||
f" (passages excluded) text: {sizes['passages_text_mb']:.1f} MB, idx: {sizes['passages_index_mb']:.1f} MB"
|
||||
)
|
||||
|
||||
return sizes
|
||||
|
||||
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
|
||||
"""Create a non-compact index for comparison purposes"""
|
||||
print("🏗️ Building non-compact index from existing passages...")
|
||||
|
||||
# Load existing passages from current index
|
||||
from leann import LeannBuilder
|
||||
|
||||
current_index_path = Path(self.index_path)
|
||||
current_index_dir = current_index_path.parent
|
||||
current_index_name = current_index_path.name
|
||||
|
||||
# Read metadata to get passage source
|
||||
meta_path = current_index_dir / f"{current_index_name}.meta.json"
|
||||
with open(meta_path) as f:
|
||||
meta = json.load(f)
|
||||
|
||||
passage_source = meta["passage_sources"][0]
|
||||
passage_file = passage_source["path"]
|
||||
|
||||
# Convert relative path to absolute
|
||||
if not Path(passage_file).is_absolute():
|
||||
passage_file = current_index_dir / Path(passage_file).name
|
||||
|
||||
print(f"📄 Loading passages from {passage_file}...")
|
||||
|
||||
# Load CLIP embeddings
|
||||
embeddings_file = current_index_dir / "clip_image_embeddings.npy"
|
||||
embeddings = np.load(embeddings_file)
|
||||
print(f"📐 Loaded embeddings shape: {embeddings.shape}")
|
||||
|
||||
# Build non-compact index with same passages and embeddings
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
# Use CLIP text encoder (ViT-L/14) to match image embeddings (768-dim)
|
||||
embedding_model="clip-ViT-L-14",
|
||||
embedding_mode="sentence-transformers",
|
||||
is_recompute=False, # Disable recompute (store embeddings)
|
||||
is_compact=False, # Disable compact storage
|
||||
distance_metric="cosine",
|
||||
**{
|
||||
k: v
|
||||
for k, v in meta.get("backend_kwargs", {}).items()
|
||||
if k not in ["is_recompute", "is_compact", "distance_metric"]
|
||||
},
|
||||
)
|
||||
|
||||
# Prepare ids and add passages
|
||||
ids: list[str] = []
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
data = json.loads(line)
|
||||
ids.append(str(data["id"]))
|
||||
# Ensure metadata contains the id used by the vector index
|
||||
metadata = {**data.get("metadata", {}), "id": data["id"]}
|
||||
builder.add_text(text=data["text"], metadata=metadata)
|
||||
|
||||
if len(ids) != embeddings.shape[0]:
|
||||
raise ValueError(
|
||||
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
|
||||
)
|
||||
|
||||
# Persist a pickle for build_index_from_embeddings
|
||||
pkl_path = current_index_dir / "clip_image_embeddings.pkl"
|
||||
with open(pkl_path, "wb") as pf:
|
||||
pickle.dump((ids, embeddings.astype(np.float32)), pf)
|
||||
|
||||
print(
|
||||
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
|
||||
)
|
||||
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
|
||||
|
||||
# Analyze the non-compact index size
|
||||
temp_evaluator = LAIONEvaluator(non_compact_index_path)
|
||||
non_compact_sizes = temp_evaluator.analyze_index_sizes()
|
||||
non_compact_sizes["index_type"] = "non_compact"
|
||||
|
||||
return non_compact_sizes
|
||||
|
||||
def compare_index_performance(
|
||||
self, non_compact_path: str, compact_path: str, test_captions: list, complexity: int
|
||||
) -> dict:
|
||||
"""Compare performance between non-compact and compact indexes"""
|
||||
print("⚡ Comparing search performance between indexes...")
|
||||
|
||||
# Test queries
|
||||
test_queries = test_captions[:5]
|
||||
|
||||
results = {
|
||||
"non_compact": {"search_times": []},
|
||||
"compact": {"search_times": []},
|
||||
"avg_search_times": {},
|
||||
"speed_ratio": 0.0,
|
||||
}
|
||||
|
||||
# Test non-compact index (no recompute)
|
||||
print(" 🔍 Testing non-compact index (no recompute)...")
|
||||
non_compact_searcher = LeannSearcher(non_compact_path)
|
||||
|
||||
for caption in test_queries:
|
||||
start_time = time.time()
|
||||
search_results = non_compact_searcher.search(
|
||||
caption, top_k=3, complexity=complexity, recompute_embeddings=False
|
||||
)
|
||||
search_time = time.time() - start_time
|
||||
results["non_compact"]["search_times"].append(search_time)
|
||||
|
||||
# Test compact index (with recompute)
|
||||
print(" 🔍 Testing compact index (with recompute)...")
|
||||
compact_searcher = LeannSearcher(compact_path)
|
||||
|
||||
for caption in test_queries:
|
||||
start_time = time.time()
|
||||
search_results = compact_searcher.search(
|
||||
caption, top_k=3, complexity=complexity, recompute_embeddings=True
|
||||
)
|
||||
search_time = time.time() - start_time
|
||||
results["compact"]["search_times"].append(search_time)
|
||||
|
||||
# Calculate averages
|
||||
results["avg_search_times"]["non_compact"] = sum(
|
||||
results["non_compact"]["search_times"]
|
||||
) / len(results["non_compact"]["search_times"])
|
||||
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
|
||||
results["compact"]["search_times"]
|
||||
)
|
||||
|
||||
# Performance ratio
|
||||
if results["avg_search_times"]["compact"] > 0:
|
||||
results["speed_ratio"] = (
|
||||
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
|
||||
)
|
||||
else:
|
||||
results["speed_ratio"] = float("inf")
|
||||
|
||||
print(
|
||||
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
|
||||
)
|
||||
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
|
||||
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
|
||||
|
||||
# Cleanup
|
||||
non_compact_searcher.cleanup()
|
||||
compact_searcher.cleanup()
|
||||
|
||||
return results
|
||||
|
||||
def _print_results(self, timing_metrics: dict):
|
||||
"""Print evaluation results"""
|
||||
print("\n🎯 LAION MULTIMODAL BENCHMARK RESULTS")
|
||||
print("=" * 60)
|
||||
|
||||
# Index comparison analysis
|
||||
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
|
||||
print("\n📏 Index Comparison Analysis:")
|
||||
current = timing_metrics["current_index"]
|
||||
non_compact = timing_metrics["non_compact_index"]
|
||||
|
||||
print(f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB")
|
||||
print(
|
||||
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
|
||||
)
|
||||
print(
|
||||
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
|
||||
)
|
||||
|
||||
print(" Component breakdown (non-compact):")
|
||||
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
|
||||
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
|
||||
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
|
||||
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
|
||||
|
||||
# Performance comparison
|
||||
if "performance_comparison" in timing_metrics:
|
||||
perf = timing_metrics["performance_comparison"]
|
||||
print("\n⚡ Performance Comparison:")
|
||||
print(
|
||||
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
|
||||
)
|
||||
print(
|
||||
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
|
||||
)
|
||||
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
|
||||
|
||||
# Legacy single index analysis (fallback)
|
||||
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
|
||||
print("\n📏 Index Size Analysis:")
|
||||
print(
|
||||
f" Index with embeddings: {timing_metrics.get('total_with_embeddings', 0):.1f} MB"
|
||||
)
|
||||
print(
|
||||
f" Estimated pruned index: {timing_metrics.get('total_without_embeddings', 0):.1f} MB"
|
||||
)
|
||||
print(f" Compression ratio: {timing_metrics.get('compression_ratio', 0):.2f}x")
|
||||
|
||||
def cleanup(self):
|
||||
"""Cleanup resources"""
|
||||
if self.searcher:
|
||||
self.searcher.cleanup()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="LAION Multimodal Benchmark Evaluation")
|
||||
parser.add_argument("--index", required=True, help="Path to LEANN index")
|
||||
parser.add_argument(
|
||||
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stage",
|
||||
choices=["2", "3", "4", "all"],
|
||||
default="all",
|
||||
help="Which stage to run (2=recall, 3=complexity, 4=index comparison)",
|
||||
)
|
||||
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
|
||||
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
|
||||
parser.add_argument("--output", help="Save results to JSON file")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
# Check if baseline exists
|
||||
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
|
||||
if not os.path.exists(baseline_index_path):
|
||||
print(f"❌ FAISS baseline not found at {baseline_index_path}")
|
||||
print("💡 Please run setup_laion.py first to build the baseline")
|
||||
exit(1)
|
||||
|
||||
if args.stage == "2" or args.stage == "all":
|
||||
# Stage 2: Recall@3 evaluation
|
||||
print("🚀 Starting Stage 2: Recall@3 evaluation for multimodal retrieval")
|
||||
|
||||
evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||
|
||||
# Load caption queries for testing
|
||||
laion_evaluator = LAIONEvaluator(args.index)
|
||||
captions = laion_evaluator.load_queries(args.queries)
|
||||
|
||||
# Test with queries for robust measurement
|
||||
test_captions = captions[:100] # Use subset for speed
|
||||
print(f"🧪 Testing with {len(test_captions)} caption queries")
|
||||
|
||||
# Test with complexity 64
|
||||
complexity = 64
|
||||
recall = evaluator.evaluate_recall_at_3(test_captions, complexity)
|
||||
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
|
||||
|
||||
evaluator.cleanup()
|
||||
print("✅ Stage 2 completed!\n")
|
||||
|
||||
# Shared non-compact index path for Stage 3 and 4
|
||||
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
|
||||
complexity = args.complexity
|
||||
|
||||
if args.stage == "3" or args.stage == "all":
|
||||
# Stage 3: Binary search for 90% recall complexity
|
||||
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
|
||||
print(
|
||||
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
|
||||
)
|
||||
|
||||
# Create non-compact index for binary search
|
||||
print("🏗️ Creating non-compact index for binary search...")
|
||||
evaluator = LAIONEvaluator(args.index)
|
||||
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
|
||||
|
||||
# Use non-compact index for binary search
|
||||
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
|
||||
|
||||
# Load caption queries for testing
|
||||
captions = evaluator.load_queries(args.queries)
|
||||
|
||||
# Use subset for robust measurement
|
||||
test_captions = captions[:50] # Smaller subset for binary search speed
|
||||
print(f"🧪 Testing with {len(test_captions)} caption queries")
|
||||
|
||||
# Binary search for 90% recall complexity
|
||||
target_recall = 0.9
|
||||
min_complexity, max_complexity = 1, 64
|
||||
|
||||
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
|
||||
print(f"Search range: {min_complexity} to {max_complexity}")
|
||||
|
||||
best_complexity = None
|
||||
best_recall = 0.0
|
||||
|
||||
while min_complexity <= max_complexity:
|
||||
mid_complexity = (min_complexity + max_complexity) // 2
|
||||
|
||||
print(
|
||||
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
|
||||
)
|
||||
# Use recompute_embeddings=False on non-compact index for fast binary search
|
||||
recall = binary_search_evaluator.evaluate_recall_at_3(
|
||||
test_captions, mid_complexity, recompute_embeddings=False
|
||||
)
|
||||
|
||||
print(
|
||||
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
|
||||
)
|
||||
|
||||
if recall >= target_recall:
|
||||
best_complexity = mid_complexity
|
||||
best_recall = recall
|
||||
max_complexity = mid_complexity - 1
|
||||
print(" ✅ Target reached! Searching for lower complexity...")
|
||||
else:
|
||||
min_complexity = mid_complexity + 1
|
||||
print(" ❌ Below target. Searching for higher complexity...")
|
||||
|
||||
if best_complexity is not None:
|
||||
print("\n🎯 Optimal complexity found!")
|
||||
print(f" Complexity: {best_complexity}")
|
||||
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
|
||||
|
||||
# Test a few complexities around the optimal one for verification
|
||||
print("\n🔬 Verification test around optimal complexity:")
|
||||
verification_complexities = [
|
||||
max(1, best_complexity - 2),
|
||||
max(1, best_complexity - 1),
|
||||
best_complexity,
|
||||
best_complexity + 1,
|
||||
best_complexity + 2,
|
||||
]
|
||||
|
||||
for complexity in verification_complexities:
|
||||
if complexity <= 512: # reasonable upper bound
|
||||
recall = binary_search_evaluator.evaluate_recall_at_3(
|
||||
test_captions, complexity, recompute_embeddings=False
|
||||
)
|
||||
status = "✅" if recall >= target_recall else "❌"
|
||||
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
|
||||
|
||||
# Now test the optimal complexity with compact index and recompute for comparison
|
||||
print(
|
||||
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
|
||||
)
|
||||
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
|
||||
test_captions[:10], best_complexity, recompute_embeddings=True
|
||||
)
|
||||
print(
|
||||
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
|
||||
)
|
||||
complexity = best_complexity
|
||||
print(
|
||||
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
|
||||
)
|
||||
compact_evaluator.cleanup()
|
||||
else:
|
||||
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
|
||||
print("All tested complexities were below target.")
|
||||
|
||||
# Cleanup evaluators (keep non-compact index for Stage 4)
|
||||
binary_search_evaluator.cleanup()
|
||||
evaluator.cleanup()
|
||||
|
||||
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
|
||||
|
||||
if args.stage == "4" or args.stage == "all":
|
||||
# Stage 4: Index comparison (without LLM generation)
|
||||
print("🚀 Starting Stage 4: Index comparison analysis")
|
||||
|
||||
# Use LAION evaluator for index comparison
|
||||
evaluator = LAIONEvaluator(args.index)
|
||||
|
||||
# Load caption queries
|
||||
captions = evaluator.load_queries(args.queries)
|
||||
|
||||
# Step 1: Analyze current (compact) index
|
||||
print("\n📏 Analyzing current index (compact, pruned)...")
|
||||
compact_size_metrics = evaluator.analyze_index_sizes()
|
||||
compact_size_metrics["index_type"] = "compact"
|
||||
|
||||
# Step 2: Use existing non-compact index or create if needed
|
||||
if Path(non_compact_index_path).exists():
|
||||
print(
|
||||
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
|
||||
)
|
||||
temp_evaluator = LAIONEvaluator(non_compact_index_path)
|
||||
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
|
||||
non_compact_size_metrics["index_type"] = "non_compact"
|
||||
else:
|
||||
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
|
||||
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
|
||||
non_compact_index_path
|
||||
)
|
||||
|
||||
# Step 3: Compare index sizes (.index only)
|
||||
print("\n📊 Index size comparison (.index only):")
|
||||
print(
|
||||
f" Compact index (current): {compact_size_metrics.get('index_only_mb', 0):.1f} MB"
|
||||
)
|
||||
print(
|
||||
f" Non-compact index: {non_compact_size_metrics.get('index_only_mb', 0):.1f} MB"
|
||||
)
|
||||
|
||||
storage_saving = 0.0
|
||||
if non_compact_size_metrics.get("index_only_mb", 0) > 0:
|
||||
storage_saving = (
|
||||
(
|
||||
non_compact_size_metrics.get("index_only_mb", 0)
|
||||
- compact_size_metrics.get("index_only_mb", 0)
|
||||
)
|
||||
/ non_compact_size_metrics.get("index_only_mb", 1)
|
||||
* 100
|
||||
)
|
||||
print(f" Storage saving by compact: {storage_saving:.1f}%")
|
||||
|
||||
# Step 4: Performance comparison between the two indexes
|
||||
if complexity is None:
|
||||
raise ValueError("Complexity is required for index comparison")
|
||||
|
||||
print("\n⚡ Performance comparison between indexes...")
|
||||
performance_metrics = evaluator.compare_index_performance(
|
||||
non_compact_index_path, args.index, captions[:10], complexity=complexity
|
||||
)
|
||||
|
||||
# Combine all metrics
|
||||
combined_metrics = {
|
||||
"current_index": compact_size_metrics,
|
||||
"non_compact_index": non_compact_size_metrics,
|
||||
"performance_comparison": performance_metrics,
|
||||
"storage_saving_percent": storage_saving,
|
||||
}
|
||||
|
||||
# Print comprehensive results
|
||||
evaluator._print_results(combined_metrics)
|
||||
|
||||
# Save results if requested
|
||||
if args.output:
|
||||
print(f"\n💾 Saving results to {args.output}...")
|
||||
with open(args.output, "w") as f:
|
||||
json.dump(combined_metrics, f, indent=2, default=str)
|
||||
print(f"✅ Results saved to {args.output}")
|
||||
|
||||
evaluator.cleanup()
|
||||
print("✅ Stage 4 completed!\n")
|
||||
|
||||
if args.stage == "all":
|
||||
print("🎉 All evaluation stages completed successfully!")
|
||||
print("\n📋 Summary:")
|
||||
print(" Stage 2: ✅ Multimodal Recall@3 evaluation completed")
|
||||
print(" Stage 3: ✅ Optimal complexity found")
|
||||
print(" Stage 4: ✅ Index comparison analysis completed")
|
||||
print("\n🔧 Recommended next steps:")
|
||||
print(" - Use optimal complexity for best speed/accuracy balance")
|
||||
print(" - Review index comparison for storage vs performance tradeoffs")
|
||||
|
||||
# Clean up non-compact index after all stages complete
|
||||
print("\n🧹 Cleaning up temporary non-compact index...")
|
||||
if Path(non_compact_index_path).exists():
|
||||
temp_index_dir = Path(non_compact_index_path).parent
|
||||
temp_index_name = Path(non_compact_index_path).name
|
||||
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
|
||||
temp_file.unlink()
|
||||
print(f"✅ Cleaned up {non_compact_index_path}")
|
||||
else:
|
||||
print("📝 No temporary index to clean up")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Evaluation interrupted by user")
|
||||
exit(1)
|
||||
except Exception as e:
|
||||
print(f"\n❌ Stage {args.stage} failed: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
576
benchmarks/laion/setup_laion.py
Normal file
576
benchmarks/laion/setup_laion.py
Normal file
@@ -0,0 +1,576 @@
|
||||
"""
|
||||
LAION Multimodal Benchmark Setup Script
|
||||
Downloads LAION subset and builds LEANN index with sentence embeddings
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import aiohttp
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
from leann import LeannBuilder
|
||||
from PIL import Image
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class LAIONSetup:
|
||||
def __init__(self, data_dir: str = "data"):
|
||||
self.data_dir = Path(data_dir)
|
||||
self.images_dir = self.data_dir / "laion_images"
|
||||
self.metadata_file = self.data_dir / "laion_metadata.jsonl"
|
||||
|
||||
# Create directories
|
||||
self.data_dir.mkdir(exist_ok=True)
|
||||
self.images_dir.mkdir(exist_ok=True)
|
||||
|
||||
async def download_single_image(self, session, sample_data, semaphore, progress_bar):
|
||||
"""Download a single image asynchronously"""
|
||||
async with semaphore: # Limit concurrent downloads
|
||||
try:
|
||||
image_url = sample_data["url"]
|
||||
image_path = sample_data["image_path"]
|
||||
|
||||
# Skip if already exists
|
||||
if os.path.exists(image_path):
|
||||
progress_bar.update(1)
|
||||
return sample_data
|
||||
|
||||
async with session.get(image_url, timeout=10) as response:
|
||||
if response.status == 200:
|
||||
content = await response.read()
|
||||
|
||||
# Verify it's a valid image
|
||||
try:
|
||||
img = Image.open(io.BytesIO(content))
|
||||
img = img.convert("RGB")
|
||||
img.save(image_path, "JPEG")
|
||||
progress_bar.update(1)
|
||||
return sample_data
|
||||
except Exception:
|
||||
progress_bar.update(1)
|
||||
return None # Skip invalid images
|
||||
else:
|
||||
progress_bar.update(1)
|
||||
return None
|
||||
|
||||
except Exception:
|
||||
progress_bar.update(1)
|
||||
return None
|
||||
|
||||
def download_laion_subset(self, num_samples: int = 1000):
|
||||
"""Download LAION subset from HuggingFace datasets with async parallel downloading"""
|
||||
print(f"📥 Downloading LAION subset ({num_samples} samples)...")
|
||||
|
||||
# Load LAION-400M subset from HuggingFace
|
||||
print("🤗 Loading from HuggingFace datasets...")
|
||||
dataset = load_dataset("laion/laion400m", split="train", streaming=True)
|
||||
|
||||
# Collect sample metadata first (fast)
|
||||
print("📋 Collecting sample metadata...")
|
||||
candidates = []
|
||||
for i, sample in enumerate(dataset):
|
||||
if len(candidates) >= num_samples * 3: # Get 3x more candidates in case some fail
|
||||
break
|
||||
|
||||
image_url = sample.get("url", "")
|
||||
caption = sample.get("caption", "")
|
||||
|
||||
if not image_url or not caption:
|
||||
continue
|
||||
|
||||
image_filename = f"laion_{len(candidates):06d}.jpg"
|
||||
image_path = self.images_dir / image_filename
|
||||
|
||||
candidate = {
|
||||
"id": f"laion_{len(candidates):06d}",
|
||||
"url": image_url,
|
||||
"caption": caption,
|
||||
"image_path": str(image_path),
|
||||
"width": sample.get("original_width", 512),
|
||||
"height": sample.get("original_height", 512),
|
||||
"similarity": sample.get("similarity", 0.0),
|
||||
}
|
||||
candidates.append(candidate)
|
||||
|
||||
print(
|
||||
f"📊 Collected {len(candidates)} candidates, downloading {num_samples} in parallel..."
|
||||
)
|
||||
|
||||
# Download images in parallel
|
||||
async def download_batch():
|
||||
semaphore = asyncio.Semaphore(20) # Limit to 20 concurrent downloads
|
||||
connector = aiohttp.TCPConnector(limit=100, limit_per_host=20)
|
||||
timeout = aiohttp.ClientTimeout(total=30)
|
||||
|
||||
progress_bar = tqdm(total=len(candidates[: num_samples * 2]), desc="Downloading images")
|
||||
|
||||
async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session:
|
||||
tasks = []
|
||||
for candidate in candidates[: num_samples * 2]: # Try 2x more than needed
|
||||
task = self.download_single_image(session, candidate, semaphore, progress_bar)
|
||||
tasks.append(task)
|
||||
|
||||
# Wait for all downloads
|
||||
results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||
progress_bar.close()
|
||||
|
||||
# Filter successful downloads
|
||||
successful = [r for r in results if r is not None and not isinstance(r, Exception)]
|
||||
return successful[:num_samples]
|
||||
|
||||
# Run async download
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
try:
|
||||
samples = loop.run_until_complete(download_batch())
|
||||
finally:
|
||||
loop.close()
|
||||
|
||||
# Save metadata
|
||||
with open(self.metadata_file, "w", encoding="utf-8") as f:
|
||||
for sample in samples:
|
||||
f.write(json.dumps(sample) + "\n")
|
||||
|
||||
print(f"✅ Downloaded {len(samples)} real LAION samples with async parallel downloading")
|
||||
return samples
|
||||
|
||||
def generate_clip_image_embeddings(self, samples: list[dict]):
|
||||
"""Generate CLIP image embeddings for downloaded images"""
|
||||
print("🔍 Generating CLIP image embeddings...")
|
||||
|
||||
# Load sentence-transformers CLIP (ViT-L/14, 768-dim) for image embeddings
|
||||
# This single model can encode both images and text.
|
||||
model = SentenceTransformer("clip-ViT-L-14")
|
||||
|
||||
embeddings = []
|
||||
valid_samples = []
|
||||
|
||||
for sample in tqdm(samples, desc="Processing images"):
|
||||
try:
|
||||
# Load image
|
||||
image_path = sample["image_path"]
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
|
||||
# Encode image to 768-dim embedding via sentence-transformers (normalized)
|
||||
vec = model.encode(
|
||||
[image],
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=True,
|
||||
batch_size=1,
|
||||
show_progress_bar=False,
|
||||
)[0]
|
||||
embeddings.append(vec.astype(np.float32))
|
||||
valid_samples.append(sample)
|
||||
|
||||
except Exception as e:
|
||||
print(f" ⚠️ Failed to process {sample['id']}: {e}")
|
||||
# Skip invalid images
|
||||
|
||||
embeddings = np.array(embeddings, dtype=np.float32)
|
||||
|
||||
# Save embeddings
|
||||
embeddings_file = self.data_dir / "clip_image_embeddings.npy"
|
||||
np.save(embeddings_file, embeddings)
|
||||
print(f"✅ Generated {len(embeddings)} image embeddings, shape: {embeddings.shape}")
|
||||
|
||||
return embeddings, valid_samples
|
||||
|
||||
def build_faiss_baseline(
|
||||
self, embeddings: np.ndarray, samples: list[dict], output_dir: str = "baseline"
|
||||
):
|
||||
"""Build FAISS flat baseline using CLIP image embeddings"""
|
||||
print("🔨 Building FAISS Flat baseline...")
|
||||
|
||||
from leann_backend_hnsw import faiss
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
baseline_path = os.path.join(output_dir, "faiss_flat.index")
|
||||
metadata_path = os.path.join(output_dir, "metadata.pkl")
|
||||
|
||||
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
|
||||
print(f"✅ Baseline already exists at {baseline_path}")
|
||||
return baseline_path
|
||||
|
||||
# Extract image IDs (must be present)
|
||||
if not samples or "id" not in samples[0]:
|
||||
raise KeyError("samples missing 'id' field for FAISS baseline")
|
||||
image_ids: list[str] = [str(sample["id"]) for sample in samples]
|
||||
|
||||
print(f"📐 Embedding shape: {embeddings.shape}")
|
||||
print(f"📄 Processing {len(image_ids)} images")
|
||||
|
||||
# Build FAISS flat index
|
||||
print("🏗️ Building FAISS IndexFlatIP...")
|
||||
dimension = embeddings.shape[1]
|
||||
index = faiss.IndexFlatIP(dimension)
|
||||
|
||||
# Add embeddings to flat index
|
||||
embeddings_f32 = embeddings.astype(np.float32)
|
||||
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
|
||||
|
||||
# Save index and metadata
|
||||
faiss.write_index(index, baseline_path)
|
||||
with open(metadata_path, "wb") as f:
|
||||
pickle.dump(image_ids, f)
|
||||
|
||||
print(f"✅ FAISS baseline saved to {baseline_path}")
|
||||
print(f"✅ Metadata saved to {metadata_path}")
|
||||
print(f"📊 Total vectors: {index.ntotal}")
|
||||
|
||||
return baseline_path
|
||||
|
||||
def create_leann_passages(self, samples: list[dict]):
|
||||
"""Create LEANN-compatible passages from LAION data"""
|
||||
print("📝 Creating LEANN passages...")
|
||||
|
||||
passages_file = self.data_dir / "laion_passages.jsonl"
|
||||
|
||||
with open(passages_file, "w", encoding="utf-8") as f:
|
||||
for i, sample in enumerate(samples):
|
||||
passage = {
|
||||
"id": sample["id"],
|
||||
"text": sample["caption"], # Use caption as searchable text
|
||||
"metadata": {
|
||||
"image_url": sample["url"],
|
||||
"image_path": sample.get("image_path", ""),
|
||||
"width": sample["width"],
|
||||
"height": sample["height"],
|
||||
"similarity": sample["similarity"],
|
||||
"image_index": i, # Index for embedding lookup
|
||||
},
|
||||
}
|
||||
f.write(json.dumps(passage) + "\n")
|
||||
|
||||
print(f"✅ Created {len(samples)} passages")
|
||||
return passages_file
|
||||
|
||||
def build_compact_index(
|
||||
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
|
||||
):
|
||||
"""Build compact LEANN index with CLIP embeddings (recompute=True, compact=True)"""
|
||||
print(f"🏗️ Building compact LEANN index with {backend} backend...")
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Save CLIP embeddings (npy) and also a pickle with (ids, embeddings)
|
||||
npy_path = self.data_dir / "clip_image_embeddings.npy"
|
||||
np.save(npy_path, embeddings)
|
||||
print(f"💾 Saved CLIP embeddings to {npy_path}")
|
||||
|
||||
# Prepare ids in the same order as passages_file (matches embeddings order)
|
||||
ids: list[str] = []
|
||||
with open(passages_file, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
rec = json.loads(line)
|
||||
ids.append(str(rec["id"]))
|
||||
|
||||
if len(ids) != embeddings.shape[0]:
|
||||
raise ValueError(
|
||||
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
|
||||
)
|
||||
|
||||
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
|
||||
with open(pkl_path, "wb") as pf:
|
||||
pickle.dump((ids, embeddings.astype(np.float32)), pf)
|
||||
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
|
||||
|
||||
# Initialize builder - compact with recompute
|
||||
# Note: For multimodal case, we need to handle embeddings differently
|
||||
# Let's try using sentence-transformers mode but with custom embeddings
|
||||
builder = LeannBuilder(
|
||||
backend_name=backend,
|
||||
# Use CLIP text encoder (ViT-L/14) to match image space (768-dim)
|
||||
embedding_model="clip-ViT-L-14",
|
||||
embedding_mode="sentence-transformers",
|
||||
# HNSW params (or forwarded to chosen backend)
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
# Compact/pruned with recompute at query time
|
||||
is_recompute=True,
|
||||
is_compact=True,
|
||||
distance_metric="cosine", # CLIP uses normalized vectors; cosine is appropriate
|
||||
num_threads=4,
|
||||
)
|
||||
|
||||
# Add passages (text + metadata)
|
||||
print("📚 Adding passages...")
|
||||
self._add_passages_with_embeddings(builder, passages_file, embeddings)
|
||||
|
||||
print(f"🔨 Building compact index at {index_path} from precomputed embeddings...")
|
||||
builder.build_index_from_embeddings(index_path, str(pkl_path))
|
||||
|
||||
build_time = time.time() - start_time
|
||||
print(f"✅ Compact index built in {build_time:.2f}s")
|
||||
|
||||
# Analyze index size
|
||||
self._analyze_index_size(index_path)
|
||||
|
||||
return index_path
|
||||
|
||||
def build_non_compact_index(
|
||||
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
|
||||
):
|
||||
"""Build non-compact LEANN index with CLIP embeddings (recompute=False, compact=False)"""
|
||||
print(f"🏗️ Building non-compact LEANN index with {backend} backend...")
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Ensure embeddings are saved (npy + pickle)
|
||||
npy_path = self.data_dir / "clip_image_embeddings.npy"
|
||||
if not npy_path.exists():
|
||||
np.save(npy_path, embeddings)
|
||||
print(f"💾 Saved CLIP embeddings to {npy_path}")
|
||||
# Prepare ids in same order as passages_file
|
||||
ids: list[str] = []
|
||||
with open(passages_file, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
rec = json.loads(line)
|
||||
ids.append(str(rec["id"]))
|
||||
if len(ids) != embeddings.shape[0]:
|
||||
raise ValueError(
|
||||
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
|
||||
)
|
||||
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
|
||||
if not pkl_path.exists():
|
||||
with open(pkl_path, "wb") as pf:
|
||||
pickle.dump((ids, embeddings.astype(np.float32)), pf)
|
||||
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
|
||||
|
||||
# Initialize builder - non-compact without recompute
|
||||
builder = LeannBuilder(
|
||||
backend_name=backend,
|
||||
embedding_model="clip-ViT-L-14",
|
||||
embedding_mode="sentence-transformers",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_recompute=False, # Store embeddings (no recompute needed)
|
||||
is_compact=False, # Store full index (not pruned)
|
||||
distance_metric="cosine",
|
||||
num_threads=4,
|
||||
)
|
||||
|
||||
# Add passages - embeddings will be loaded from file
|
||||
print("📚 Adding passages...")
|
||||
self._add_passages_with_embeddings(builder, passages_file, embeddings)
|
||||
|
||||
print(f"🔨 Building non-compact index at {index_path} from precomputed embeddings...")
|
||||
builder.build_index_from_embeddings(index_path, str(pkl_path))
|
||||
|
||||
build_time = time.time() - start_time
|
||||
print(f"✅ Non-compact index built in {build_time:.2f}s")
|
||||
|
||||
# Analyze index size
|
||||
self._analyze_index_size(index_path)
|
||||
|
||||
return index_path
|
||||
|
||||
def _add_passages_with_embeddings(self, builder, passages_file: Path, embeddings: np.ndarray):
|
||||
"""Helper to add passages with pre-computed CLIP embeddings"""
|
||||
with open(passages_file, encoding="utf-8") as f:
|
||||
for i, line in enumerate(tqdm(f, desc="Adding passages")):
|
||||
if line.strip():
|
||||
passage = json.loads(line)
|
||||
|
||||
# Add image metadata - LEANN will handle embeddings separately
|
||||
# Note: We store image metadata and caption text for searchability
|
||||
# Important: ensure passage ID in metadata matches vector ID
|
||||
builder.add_text(
|
||||
text=passage["text"], # Image caption for searchability
|
||||
metadata={**passage["metadata"], "id": passage["id"]},
|
||||
)
|
||||
|
||||
def _analyze_index_size(self, index_path: str):
|
||||
"""Analyze index file sizes"""
|
||||
print("📏 Analyzing index sizes...")
|
||||
|
||||
index_path = Path(index_path)
|
||||
index_dir = index_path.parent
|
||||
index_name = index_path.name # e.g., laion_index.leann
|
||||
index_prefix = index_path.stem # e.g., laion_index
|
||||
|
||||
files = [
|
||||
(f"{index_prefix}.index", ".index", "core"),
|
||||
(f"{index_name}.meta.json", ".meta.json", "core"),
|
||||
(f"{index_name}.ids.txt", ".ids.txt", "core"),
|
||||
(f"{index_name}.passages.jsonl", ".passages.jsonl", "passages"),
|
||||
(f"{index_name}.passages.idx", ".passages.idx", "passages"),
|
||||
]
|
||||
|
||||
def _fmt_size(bytes_val: int) -> str:
|
||||
if bytes_val < 1024:
|
||||
return f"{bytes_val} B"
|
||||
kb = bytes_val / 1024
|
||||
if kb < 1024:
|
||||
return f"{kb:.1f} KB"
|
||||
mb = kb / 1024
|
||||
if mb < 1024:
|
||||
return f"{mb:.2f} MB"
|
||||
gb = mb / 1024
|
||||
return f"{gb:.2f} GB"
|
||||
|
||||
total_index_only_mb = 0.0
|
||||
total_all_mb = 0.0
|
||||
for filename, label, group in files:
|
||||
file_path = index_dir / filename
|
||||
if file_path.exists():
|
||||
size_bytes = file_path.stat().st_size
|
||||
print(f" {label}: {_fmt_size(size_bytes)}")
|
||||
size_mb = size_bytes / (1024 * 1024)
|
||||
total_all_mb += size_mb
|
||||
if group == "core":
|
||||
total_index_only_mb += size_mb
|
||||
else:
|
||||
print(f" {label}: (missing)")
|
||||
print(f" Total (index only, exclude passages): {total_index_only_mb:.2f} MB")
|
||||
print(f" Total (including passages): {total_all_mb:.2f} MB")
|
||||
|
||||
def create_evaluation_queries(self, samples: list[dict], num_queries: int = 200):
|
||||
"""Create evaluation queries from captions"""
|
||||
print(f"📝 Creating {num_queries} evaluation queries...")
|
||||
|
||||
# Sample random captions as queries
|
||||
import random
|
||||
|
||||
random.seed(42) # For reproducibility
|
||||
|
||||
query_samples = random.sample(samples, min(num_queries, len(samples)))
|
||||
|
||||
queries_file = self.data_dir / "evaluation_queries.jsonl"
|
||||
with open(queries_file, "w", encoding="utf-8") as f:
|
||||
for sample in query_samples:
|
||||
query = {
|
||||
"id": sample["id"],
|
||||
"query": sample["caption"],
|
||||
"ground_truth_id": sample["id"], # For potential recall evaluation
|
||||
}
|
||||
f.write(json.dumps(query) + "\n")
|
||||
|
||||
print(f"✅ Created {len(query_samples)} evaluation queries")
|
||||
return queries_file
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Setup LAION Multimodal Benchmark")
|
||||
parser.add_argument("--data-dir", default="data", help="Data directory")
|
||||
parser.add_argument("--num-samples", type=int, default=1000, help="Number of LAION samples")
|
||||
parser.add_argument("--num-queries", type=int, default=50, help="Number of evaluation queries")
|
||||
parser.add_argument("--index-path", default="data/laion_index.leann", help="Output index path")
|
||||
parser.add_argument(
|
||||
"--backend", default="hnsw", choices=["hnsw", "diskann"], help="LEANN backend"
|
||||
)
|
||||
parser.add_argument("--skip-download", action="store_true", help="Skip LAION dataset download")
|
||||
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("🚀 Setting up LAION Multimodal Benchmark")
|
||||
print("=" * 50)
|
||||
|
||||
try:
|
||||
# Initialize setup
|
||||
setup = LAIONSetup(args.data_dir)
|
||||
|
||||
# Step 1: Download LAION subset
|
||||
if not args.skip_download:
|
||||
print("\n📦 Step 1: Download LAION subset")
|
||||
samples = setup.download_laion_subset(args.num_samples)
|
||||
|
||||
# Step 2: Generate CLIP image embeddings
|
||||
print("\n🔍 Step 2: Generate CLIP image embeddings")
|
||||
embeddings, valid_samples = setup.generate_clip_image_embeddings(samples)
|
||||
|
||||
# Step 3: Create LEANN passages (image metadata with embeddings)
|
||||
print("\n📝 Step 3: Create LEANN passages")
|
||||
passages_file = setup.create_leann_passages(valid_samples)
|
||||
else:
|
||||
print("⏭️ Skipping LAION dataset download")
|
||||
# Load existing data
|
||||
passages_file = setup.data_dir / "laion_passages.jsonl"
|
||||
embeddings_file = setup.data_dir / "clip_image_embeddings.npy"
|
||||
|
||||
if not passages_file.exists() or not embeddings_file.exists():
|
||||
raise FileNotFoundError(
|
||||
"Passages or embeddings file not found. Run without --skip-download first."
|
||||
)
|
||||
|
||||
embeddings = np.load(embeddings_file)
|
||||
print(f"📊 Loaded {len(embeddings)} embeddings from {embeddings_file}")
|
||||
|
||||
# Step 4: Build LEANN indexes (both compact and non-compact)
|
||||
if not args.skip_build:
|
||||
print("\n🏗️ Step 4: Build LEANN indexes with CLIP image embeddings")
|
||||
|
||||
# Build compact index (production mode - small, recompute required)
|
||||
compact_index_path = args.index_path
|
||||
print(f"Building compact index: {compact_index_path}")
|
||||
setup.build_compact_index(passages_file, embeddings, compact_index_path, args.backend)
|
||||
|
||||
# Build non-compact index (comparison mode - large, fast search)
|
||||
non_compact_index_path = args.index_path.replace(".leann", "_noncompact.leann")
|
||||
print(f"Building non-compact index: {non_compact_index_path}")
|
||||
setup.build_non_compact_index(
|
||||
passages_file, embeddings, non_compact_index_path, args.backend
|
||||
)
|
||||
|
||||
# Step 5: Build FAISS flat baseline
|
||||
print("\n🔨 Step 5: Build FAISS flat baseline")
|
||||
if not args.skip_download:
|
||||
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
|
||||
else:
|
||||
# Load valid_samples from passages file for FAISS baseline
|
||||
valid_samples = []
|
||||
with open(passages_file, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
passage = json.loads(line)
|
||||
valid_samples.append({"id": passage["id"], "caption": passage["text"]})
|
||||
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
|
||||
|
||||
# Step 6: Create evaluation queries
|
||||
print("\n📝 Step 6: Create evaluation queries")
|
||||
queries_file = setup.create_evaluation_queries(valid_samples, args.num_queries)
|
||||
else:
|
||||
print("⏭️ Skipping index building")
|
||||
baseline_path = "data/baseline/faiss_index.bin"
|
||||
queries_file = setup.data_dir / "evaluation_queries.jsonl"
|
||||
|
||||
print("\n🎉 Setup completed successfully!")
|
||||
print("📊 Summary:")
|
||||
if not args.skip_download:
|
||||
print(f" Downloaded samples: {len(samples)}")
|
||||
print(f" Valid samples with embeddings: {len(valid_samples)}")
|
||||
else:
|
||||
print(f" Loaded {len(embeddings)} embeddings")
|
||||
|
||||
if not args.skip_build:
|
||||
print(f" Compact index: {compact_index_path}")
|
||||
print(f" Non-compact index: {non_compact_index_path}")
|
||||
print(f" FAISS baseline: {baseline_path}")
|
||||
print(f" Queries: {queries_file}")
|
||||
|
||||
print("\n🔧 Next steps:")
|
||||
print(f" Run evaluation: python evaluate_laion.py --index {compact_index_path}")
|
||||
print(f" Or compare with: python evaluate_laion.py --index {non_compact_index_path}")
|
||||
else:
|
||||
print(" Skipped building indexes")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Setup interrupted by user")
|
||||
exit(1)
|
||||
except Exception as e:
|
||||
print(f"\n❌ Setup failed: {e}")
|
||||
exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -89,6 +89,15 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
# Persist ID map so searcher can map FAISS integer labels back to passage IDs
|
||||
try:
|
||||
idmap_file = index_dir / f"{index_prefix}.ids.txt"
|
||||
with open(idmap_file, "w", encoding="utf-8") as f:
|
||||
for id_str in ids:
|
||||
f.write(str(id_str) + "\n")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to write ID map: {e}")
|
||||
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
|
||||
@@ -149,6 +158,16 @@ class HNSWSearcher(BaseSearcher):
|
||||
|
||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||
|
||||
# Load ID map if available
|
||||
self._id_map: list[str] = []
|
||||
try:
|
||||
idmap_file = self.index_dir / f"{self.index_path.stem}.ids.txt"
|
||||
if idmap_file.exists():
|
||||
with open(idmap_file, encoding="utf-8") as f:
|
||||
self._id_map = [line.rstrip("\n") for line in f]
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load ID map: {e}")
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: np.ndarray,
|
||||
@@ -244,7 +263,17 @@ class HNSWSearcher(BaseSearcher):
|
||||
faiss.swig_ptr(labels),
|
||||
params,
|
||||
)
|
||||
if self._id_map:
|
||||
|
||||
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
||||
def map_label(x: int) -> str:
|
||||
if 0 <= x < len(self._id_map):
|
||||
return self._id_map[x]
|
||||
return str(x)
|
||||
|
||||
string_labels = [[map_label(int(l)) for l in batch_labels] for batch_labels in labels]
|
||||
else:
|
||||
string_labels = [
|
||||
[str(int_label) for int_label in batch_labels] for batch_labels in labels
|
||||
]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
@@ -94,6 +94,35 @@ def create_hnsw_embedding_server(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
|
||||
# Attempt to load ID map (maps FAISS integer labels -> passage IDs)
|
||||
id_map: list[str] = []
|
||||
try:
|
||||
meta_path = Path(passages_file)
|
||||
base = meta_path.name
|
||||
if base.endswith(".meta.json"):
|
||||
base = base[: -len(".meta.json")] # e.g., laion_index.leann
|
||||
if base.endswith(".leann"):
|
||||
base = base[: -len(".leann")] # e.g., laion_index
|
||||
idmap_file = meta_path.parent / f"{base}.ids.txt"
|
||||
if idmap_file.exists():
|
||||
with open(idmap_file, encoding="utf-8") as f:
|
||||
id_map = [line.rstrip("\n") for line in f]
|
||||
logger.info(f"Loaded ID map with {len(id_map)} entries from {idmap_file}")
|
||||
else:
|
||||
logger.warning(f"ID map file not found at {idmap_file}; will use raw labels")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load ID map: {e}")
|
||||
|
||||
def _map_node_id(nid) -> str:
|
||||
try:
|
||||
if id_map is not None and len(id_map) > 0 and isinstance(nid, (int, np.integer)):
|
||||
idx = int(nid)
|
||||
if 0 <= idx < len(id_map):
|
||||
return id_map[idx]
|
||||
except Exception:
|
||||
pass
|
||||
return str(nid)
|
||||
|
||||
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
||||
|
||||
def zmq_server_thread_with_shutdown(shutdown_event):
|
||||
@@ -170,13 +199,14 @@ def create_hnsw_embedding_server(
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_data = passages.get_passage(str(nid))
|
||||
passage_id = _map_node_id(nid)
|
||||
passage_data = passages.get_passage(passage_id)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {nid}")
|
||||
logger.error(f"Empty text for passage ID {passage_id}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage ID {nid} not found")
|
||||
except Exception as e:
|
||||
@@ -240,13 +270,14 @@ def create_hnsw_embedding_server(
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_data = passages.get_passage(str(nid))
|
||||
passage_id = _map_node_id(nid)
|
||||
passage_data = passages.get_passage(passage_id)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {nid}")
|
||||
logger.error(f"Empty text for passage ID {passage_id}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage with ID {nid} not found")
|
||||
except Exception as e:
|
||||
|
||||
@@ -372,6 +372,14 @@ class LeannBuilder:
|
||||
is_build=True,
|
||||
)
|
||||
string_ids = [chunk["id"] for chunk in self.chunks]
|
||||
# Persist ID map alongside index so backends that return integer labels can remap to passage IDs
|
||||
try:
|
||||
idmap_file = index_dir / f"{index_name[: -len('.leann')] if index_name.endswith('.leann') else index_name}.ids.txt"
|
||||
with open(idmap_file, "w", encoding="utf-8") as f:
|
||||
for sid in string_ids:
|
||||
f.write(str(sid) + "\n")
|
||||
except Exception:
|
||||
pass
|
||||
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
||||
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
||||
builder_instance.build(embeddings, string_ids, index_path, **current_backend_kwargs)
|
||||
@@ -490,6 +498,14 @@ class LeannBuilder:
|
||||
|
||||
# Build the vector index using precomputed embeddings
|
||||
string_ids = [str(id_val) for id_val in ids]
|
||||
# Persist ID map (order == embeddings order)
|
||||
try:
|
||||
idmap_file = index_dir / f"{index_name[: -len('.leann')] if index_name.endswith('.leann') else index_name}.ids.txt"
|
||||
with open(idmap_file, "w", encoding="utf-8") as f:
|
||||
for sid in string_ids:
|
||||
f.write(str(sid) + "\n")
|
||||
except Exception:
|
||||
pass
|
||||
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
||||
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
||||
builder_instance.build(embeddings, string_ids, index_path)
|
||||
|
||||
Reference in New Issue
Block a user