Merge remote-tracking branch 'origin/main' into financebench

This commit is contained in:
Andy Lee
2025-08-22 13:39:08 -07:00
30 changed files with 4245 additions and 1308 deletions

View File

@@ -10,7 +10,7 @@ import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Literal, Optional
from typing import Any, Literal, Optional, Union
import numpy as np
@@ -18,6 +18,7 @@ from leann.interface import LeannBackendSearcherInterface
from .chat import get_llm
from .interface import LeannBackendFactoryInterface
from .metadata_filter import MetadataFilterEngine
from .registry import BACKEND_REGISTRY
logger = logging.getLogger(__name__)
@@ -119,9 +120,13 @@ class PassageManager:
def __init__(
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
):
self.offset_maps = {}
self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup
self.offset_maps: dict[str, dict[str, int]] = {}
self.passage_files: dict[str, str] = {}
# Avoid materializing a single gigantic global map to reduce memory
# footprint on very large corpora (e.g., 60M+ passages). Instead, keep
# per-shard maps and do a lightweight per-shard lookup on demand.
self._total_count: int = 0
self.filter_engine = MetadataFilterEngine() # Initialize filter engine
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
index_name_base = None
@@ -142,12 +147,25 @@ class PassageManager:
default_name: Optional[str],
source_dict: dict[str, Any],
) -> list[Path]:
"""
Build an ordered list of candidate paths. For relative paths specified in
metadata, prefer resolution relative to the metadata file directory first,
then fall back to CWD-based resolution, and finally to conventional
sibling defaults (e.g., <index_base>.passages.idx / .jsonl).
"""
candidates: list[Path] = []
# 1) Primary as-is (absolute or relative)
# 1) Primary path
if primary:
p = Path(primary)
candidates.append(p if p.is_absolute() else (Path.cwd() / p))
# 2) metadata-relative explicit relative key
if p.is_absolute():
candidates.append(p)
else:
# Prefer metadata-relative resolution for relative paths
if metadata_file_path:
candidates.append(Path(metadata_file_path).parent / p)
# Also consider CWD-relative as a fallback for legacy layouts
candidates.append(Path.cwd() / p)
# 2) metadata-relative explicit relative key (if present)
if metadata_file_path and source_dict.get(relative_key):
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
# 3) metadata-relative standard sibling filename
@@ -177,23 +195,78 @@ class PassageManager:
raise FileNotFoundError(f"Passage index file not found: {index_file}")
with open(index_file, "rb") as f:
offset_map = pickle.load(f)
offset_map: dict[str, int] = pickle.load(f)
self.offset_maps[passage_file] = offset_map
self.passage_files[passage_file] = passage_file
# Build global map for O(1) lookup
for passage_id, offset in offset_map.items():
self.global_offset_map[passage_id] = (passage_file, offset)
self._total_count += len(offset_map)
def get_passage(self, passage_id: str) -> dict[str, Any]:
if passage_id in self.global_offset_map:
passage_file, offset = self.global_offset_map[passage_id]
# Lazy file opening - only open when needed
with open(passage_file, encoding="utf-8") as f:
f.seek(offset)
return json.loads(f.readline())
# Fast path: check each shard map (there are typically few shards).
# This avoids building a massive combined dict while keeping lookups
# bounded by the number of shards.
for passage_file, offset_map in self.offset_maps.items():
try:
offset = offset_map[passage_id]
with open(passage_file, encoding="utf-8") as f:
f.seek(offset)
return json.loads(f.readline())
except KeyError:
continue
raise KeyError(f"Passage ID not found: {passage_id}")
def filter_search_results(
self,
search_results: list[SearchResult],
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]],
) -> list[SearchResult]:
"""
Apply metadata filters to search results.
Args:
search_results: List of SearchResult objects
metadata_filters: Filter specifications to apply
Returns:
Filtered list of SearchResult objects
"""
if not metadata_filters:
return search_results
logger.debug(f"Applying metadata filters to {len(search_results)} results")
# Convert SearchResult objects to dictionaries for the filter engine
result_dicts = []
for result in search_results:
result_dicts.append(
{
"id": result.id,
"score": result.score,
"text": result.text,
"metadata": result.metadata,
}
)
# Apply filters using the filter engine
filtered_dicts = self.filter_engine.apply_filters(result_dicts, metadata_filters)
# Convert back to SearchResult objects
filtered_results = []
for result_dict in filtered_dicts:
filtered_results.append(
SearchResult(
id=result_dict["id"],
score=result_dict["score"],
text=result_dict["text"],
metadata=result_dict["metadata"],
)
)
logger.debug(f"Filtered results: {len(filtered_results)} remaining")
return filtered_results
def __len__(self) -> int:
return self._total_count
class LeannBuilder:
def __init__(
@@ -573,6 +646,8 @@ class LeannSearcher:
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
# Preserve backend name for conditional parameter forwarding
self.backend_name = backend_name
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found.")
@@ -592,15 +667,44 @@ class LeannSearcher:
recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
expected_zmq_port: int = 5557,
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
batch_size: int = 0,
**kwargs,
) -> list[SearchResult]:
"""
Search for nearest neighbors with optional metadata filtering.
Args:
query: Text query to search for
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored codes
pruning_strategy: Candidate selection strategy - "global" (default), "local", or "proportional"
expected_zmq_port: ZMQ port for embedding server communication
metadata_filters: Optional filters to apply to search results based on metadata.
Format: {"field_name": {"operator": value}}
Supported operators:
- Comparison: "==", "!=", "<", "<=", ">", ">="
- Membership: "in", "not_in"
- String: "contains", "starts_with", "ends_with"
Example: {"chapter": {"<=": 5}, "tags": {"in": ["fiction", "drama"]}}
**kwargs: Backend-specific parameters
Returns:
List of SearchResult objects with text, metadata, and similarity scores
"""
logger.info("🔍 LeannSearcher.search() called:")
logger.info(f" Query: '{query}'")
logger.info(f" Top_k: {top_k}")
logger.info(f" Metadata filters: {metadata_filters}")
logger.info(f" Additional kwargs: {kwargs}")
# Smart top_k detection and adjustment
total_docs = len(self.passage_manager.global_offset_map)
# Use PassageManager length (sum of shard sizes) to avoid
# depending on a massive combined map
total_docs = len(self.passage_manager)
original_top_k = top_k
if top_k > total_docs:
top_k = total_docs
@@ -629,23 +733,33 @@ class LeannSearcher:
use_server_if_available=recompute_embeddings,
zmq_port=zmq_port,
)
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
# time.time() - start_time
# logger.info(f" Embedding time: {embedding_time} seconds")
logger.info(f" Generated embedding shape: {query_embedding.shape}")
embedding_time = time.time() - start_time
logger.info(f" Embedding time: {embedding_time} seconds")
start_time = time.time()
backend_search_kwargs: dict[str, Any] = {
"complexity": complexity,
"beam_width": beam_width,
"prune_ratio": prune_ratio,
"recompute_embeddings": recompute_embeddings,
"pruning_strategy": pruning_strategy,
"zmq_port": zmq_port,
}
# Only HNSW supports batching; forward conditionally
if self.backend_name == "hnsw":
backend_search_kwargs["batch_size"] = batch_size
# Merge any extra kwargs last
backend_search_kwargs.update(kwargs)
results = self.backend_impl.search(
query_embedding,
top_k,
complexity=complexity,
beam_width=beam_width,
prune_ratio=prune_ratio,
recompute_embeddings=recompute_embeddings,
pruning_strategy=pruning_strategy,
zmq_port=zmq_port,
**kwargs,
**backend_search_kwargs,
)
# logger.info(f" Search time: {search_time} seconds")
search_time = time.time() - start_time
logger.info(f" Search time in search() LEANN searcher: {search_time} seconds")
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
enriched_results = []
@@ -684,6 +798,13 @@ class LeannSearcher:
f" {RED}{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
)
# Apply metadata filters if specified
if metadata_filters:
logger.info(f" 🔍 Applying metadata filters: {metadata_filters}")
enriched_results = self.passage_manager.filter_search_results(
enriched_results, metadata_filters
)
# Define color codes outside the loop for final message
GREEN = "\033[92m"
RESET = "\033[0m"
@@ -724,9 +845,15 @@ class LeannChat:
index_path: str,
llm_config: Optional[dict[str, Any]] = None,
enable_warmup: bool = False,
searcher: Optional[LeannSearcher] = None,
**kwargs,
):
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
if searcher is None:
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
self._owns_searcher = True
else:
self.searcher = searcher
self._owns_searcher = False
self.llm = get_llm(llm_config)
def ask(
@@ -740,6 +867,8 @@ class LeannChat:
pruning_strategy: Literal["global", "local", "proportional"] = "global",
llm_kwargs: Optional[dict[str, Any]] = None,
expected_zmq_port: int = 5557,
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
batch_size: int = 0,
**search_kwargs,
):
if llm_kwargs is None:
@@ -754,10 +883,12 @@ class LeannChat:
recompute_embeddings=recompute_embeddings,
pruning_strategy=pruning_strategy,
expected_zmq_port=expected_zmq_port,
metadata_filters=metadata_filters,
batch_size=batch_size,
**search_kwargs,
)
search_time = time.time() - search_time
# logger.info(f" Search time: {search_time} seconds")
logger.info(f" Search time: {search_time} seconds")
context = "\n\n".join([r.text for r in results])
prompt = (
"Here is some retrieved context that might help answer your question:\n\n"
@@ -793,7 +924,9 @@ class LeannChat:
This method should be called after you're done using the chat interface,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.searcher, "cleanup"):
# Only stop the embedding server if this LeannChat instance created the searcher.
# When a shared searcher is passed in, avoid shutting down the server to enable reuse.
if getattr(self, "_owns_searcher", False) and hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()
# Enable automatic cleanup patterns