Merge remote-tracking branch 'origin/main' into financebench
This commit is contained in:
@@ -10,7 +10,7 @@ import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -18,6 +18,7 @@ from leann.interface import LeannBackendSearcherInterface
|
||||
|
||||
from .chat import get_llm
|
||||
from .interface import LeannBackendFactoryInterface
|
||||
from .metadata_filter import MetadataFilterEngine
|
||||
from .registry import BACKEND_REGISTRY
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -119,9 +120,13 @@ class PassageManager:
|
||||
def __init__(
|
||||
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
|
||||
):
|
||||
self.offset_maps = {}
|
||||
self.passage_files = {}
|
||||
self.global_offset_map = {} # Combined map for fast lookup
|
||||
self.offset_maps: dict[str, dict[str, int]] = {}
|
||||
self.passage_files: dict[str, str] = {}
|
||||
# Avoid materializing a single gigantic global map to reduce memory
|
||||
# footprint on very large corpora (e.g., 60M+ passages). Instead, keep
|
||||
# per-shard maps and do a lightweight per-shard lookup on demand.
|
||||
self._total_count: int = 0
|
||||
self.filter_engine = MetadataFilterEngine() # Initialize filter engine
|
||||
|
||||
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
|
||||
index_name_base = None
|
||||
@@ -142,12 +147,25 @@ class PassageManager:
|
||||
default_name: Optional[str],
|
||||
source_dict: dict[str, Any],
|
||||
) -> list[Path]:
|
||||
"""
|
||||
Build an ordered list of candidate paths. For relative paths specified in
|
||||
metadata, prefer resolution relative to the metadata file directory first,
|
||||
then fall back to CWD-based resolution, and finally to conventional
|
||||
sibling defaults (e.g., <index_base>.passages.idx / .jsonl).
|
||||
"""
|
||||
candidates: list[Path] = []
|
||||
# 1) Primary as-is (absolute or relative)
|
||||
# 1) Primary path
|
||||
if primary:
|
||||
p = Path(primary)
|
||||
candidates.append(p if p.is_absolute() else (Path.cwd() / p))
|
||||
# 2) metadata-relative explicit relative key
|
||||
if p.is_absolute():
|
||||
candidates.append(p)
|
||||
else:
|
||||
# Prefer metadata-relative resolution for relative paths
|
||||
if metadata_file_path:
|
||||
candidates.append(Path(metadata_file_path).parent / p)
|
||||
# Also consider CWD-relative as a fallback for legacy layouts
|
||||
candidates.append(Path.cwd() / p)
|
||||
# 2) metadata-relative explicit relative key (if present)
|
||||
if metadata_file_path and source_dict.get(relative_key):
|
||||
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
|
||||
# 3) metadata-relative standard sibling filename
|
||||
@@ -177,23 +195,78 @@ class PassageManager:
|
||||
raise FileNotFoundError(f"Passage index file not found: {index_file}")
|
||||
|
||||
with open(index_file, "rb") as f:
|
||||
offset_map = pickle.load(f)
|
||||
offset_map: dict[str, int] = pickle.load(f)
|
||||
self.offset_maps[passage_file] = offset_map
|
||||
self.passage_files[passage_file] = passage_file
|
||||
|
||||
# Build global map for O(1) lookup
|
||||
for passage_id, offset in offset_map.items():
|
||||
self.global_offset_map[passage_id] = (passage_file, offset)
|
||||
self._total_count += len(offset_map)
|
||||
|
||||
def get_passage(self, passage_id: str) -> dict[str, Any]:
|
||||
if passage_id in self.global_offset_map:
|
||||
passage_file, offset = self.global_offset_map[passage_id]
|
||||
# Lazy file opening - only open when needed
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
f.seek(offset)
|
||||
return json.loads(f.readline())
|
||||
# Fast path: check each shard map (there are typically few shards).
|
||||
# This avoids building a massive combined dict while keeping lookups
|
||||
# bounded by the number of shards.
|
||||
for passage_file, offset_map in self.offset_maps.items():
|
||||
try:
|
||||
offset = offset_map[passage_id]
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
f.seek(offset)
|
||||
return json.loads(f.readline())
|
||||
except KeyError:
|
||||
continue
|
||||
raise KeyError(f"Passage ID not found: {passage_id}")
|
||||
|
||||
def filter_search_results(
|
||||
self,
|
||||
search_results: list[SearchResult],
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]],
|
||||
) -> list[SearchResult]:
|
||||
"""
|
||||
Apply metadata filters to search results.
|
||||
|
||||
Args:
|
||||
search_results: List of SearchResult objects
|
||||
metadata_filters: Filter specifications to apply
|
||||
|
||||
Returns:
|
||||
Filtered list of SearchResult objects
|
||||
"""
|
||||
if not metadata_filters:
|
||||
return search_results
|
||||
|
||||
logger.debug(f"Applying metadata filters to {len(search_results)} results")
|
||||
|
||||
# Convert SearchResult objects to dictionaries for the filter engine
|
||||
result_dicts = []
|
||||
for result in search_results:
|
||||
result_dicts.append(
|
||||
{
|
||||
"id": result.id,
|
||||
"score": result.score,
|
||||
"text": result.text,
|
||||
"metadata": result.metadata,
|
||||
}
|
||||
)
|
||||
|
||||
# Apply filters using the filter engine
|
||||
filtered_dicts = self.filter_engine.apply_filters(result_dicts, metadata_filters)
|
||||
|
||||
# Convert back to SearchResult objects
|
||||
filtered_results = []
|
||||
for result_dict in filtered_dicts:
|
||||
filtered_results.append(
|
||||
SearchResult(
|
||||
id=result_dict["id"],
|
||||
score=result_dict["score"],
|
||||
text=result_dict["text"],
|
||||
metadata=result_dict["metadata"],
|
||||
)
|
||||
)
|
||||
|
||||
logger.debug(f"Filtered results: {len(filtered_results)} remaining")
|
||||
return filtered_results
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._total_count
|
||||
|
||||
|
||||
class LeannBuilder:
|
||||
def __init__(
|
||||
@@ -573,6 +646,8 @@ class LeannSearcher:
|
||||
self.passage_manager = PassageManager(
|
||||
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
||||
)
|
||||
# Preserve backend name for conditional parameter forwarding
|
||||
self.backend_name = backend_name
|
||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||
@@ -592,15 +667,44 @@ class LeannSearcher:
|
||||
recompute_embeddings: bool = True,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
**kwargs,
|
||||
) -> list[SearchResult]:
|
||||
"""
|
||||
Search for nearest neighbors with optional metadata filtering.
|
||||
|
||||
Args:
|
||||
query: Text query to search for
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored codes
|
||||
pruning_strategy: Candidate selection strategy - "global" (default), "local", or "proportional"
|
||||
expected_zmq_port: ZMQ port for embedding server communication
|
||||
metadata_filters: Optional filters to apply to search results based on metadata.
|
||||
Format: {"field_name": {"operator": value}}
|
||||
Supported operators:
|
||||
- Comparison: "==", "!=", "<", "<=", ">", ">="
|
||||
- Membership: "in", "not_in"
|
||||
- String: "contains", "starts_with", "ends_with"
|
||||
Example: {"chapter": {"<=": 5}, "tags": {"in": ["fiction", "drama"]}}
|
||||
**kwargs: Backend-specific parameters
|
||||
|
||||
Returns:
|
||||
List of SearchResult objects with text, metadata, and similarity scores
|
||||
"""
|
||||
logger.info("🔍 LeannSearcher.search() called:")
|
||||
logger.info(f" Query: '{query}'")
|
||||
logger.info(f" Top_k: {top_k}")
|
||||
logger.info(f" Metadata filters: {metadata_filters}")
|
||||
logger.info(f" Additional kwargs: {kwargs}")
|
||||
|
||||
# Smart top_k detection and adjustment
|
||||
total_docs = len(self.passage_manager.global_offset_map)
|
||||
# Use PassageManager length (sum of shard sizes) to avoid
|
||||
# depending on a massive combined map
|
||||
total_docs = len(self.passage_manager)
|
||||
original_top_k = top_k
|
||||
if top_k > total_docs:
|
||||
top_k = total_docs
|
||||
@@ -629,23 +733,33 @@ class LeannSearcher:
|
||||
use_server_if_available=recompute_embeddings,
|
||||
zmq_port=zmq_port,
|
||||
)
|
||||
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
# time.time() - start_time
|
||||
# logger.info(f" Embedding time: {embedding_time} seconds")
|
||||
logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
embedding_time = time.time() - start_time
|
||||
logger.info(f" Embedding time: {embedding_time} seconds")
|
||||
|
||||
start_time = time.time()
|
||||
backend_search_kwargs: dict[str, Any] = {
|
||||
"complexity": complexity,
|
||||
"beam_width": beam_width,
|
||||
"prune_ratio": prune_ratio,
|
||||
"recompute_embeddings": recompute_embeddings,
|
||||
"pruning_strategy": pruning_strategy,
|
||||
"zmq_port": zmq_port,
|
||||
}
|
||||
# Only HNSW supports batching; forward conditionally
|
||||
if self.backend_name == "hnsw":
|
||||
backend_search_kwargs["batch_size"] = batch_size
|
||||
|
||||
# Merge any extra kwargs last
|
||||
backend_search_kwargs.update(kwargs)
|
||||
|
||||
results = self.backend_impl.search(
|
||||
query_embedding,
|
||||
top_k,
|
||||
complexity=complexity,
|
||||
beam_width=beam_width,
|
||||
prune_ratio=prune_ratio,
|
||||
recompute_embeddings=recompute_embeddings,
|
||||
pruning_strategy=pruning_strategy,
|
||||
zmq_port=zmq_port,
|
||||
**kwargs,
|
||||
**backend_search_kwargs,
|
||||
)
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
search_time = time.time() - start_time
|
||||
logger.info(f" Search time in search() LEANN searcher: {search_time} seconds")
|
||||
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
|
||||
|
||||
enriched_results = []
|
||||
@@ -684,6 +798,13 @@ class LeannSearcher:
|
||||
f" {RED}✗{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
|
||||
)
|
||||
|
||||
# Apply metadata filters if specified
|
||||
if metadata_filters:
|
||||
logger.info(f" 🔍 Applying metadata filters: {metadata_filters}")
|
||||
enriched_results = self.passage_manager.filter_search_results(
|
||||
enriched_results, metadata_filters
|
||||
)
|
||||
|
||||
# Define color codes outside the loop for final message
|
||||
GREEN = "\033[92m"
|
||||
RESET = "\033[0m"
|
||||
@@ -724,9 +845,15 @@ class LeannChat:
|
||||
index_path: str,
|
||||
llm_config: Optional[dict[str, Any]] = None,
|
||||
enable_warmup: bool = False,
|
||||
searcher: Optional[LeannSearcher] = None,
|
||||
**kwargs,
|
||||
):
|
||||
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
||||
if searcher is None:
|
||||
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
||||
self._owns_searcher = True
|
||||
else:
|
||||
self.searcher = searcher
|
||||
self._owns_searcher = False
|
||||
self.llm = get_llm(llm_config)
|
||||
|
||||
def ask(
|
||||
@@ -740,6 +867,8 @@ class LeannChat:
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
llm_kwargs: Optional[dict[str, Any]] = None,
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
**search_kwargs,
|
||||
):
|
||||
if llm_kwargs is None:
|
||||
@@ -754,10 +883,12 @@ class LeannChat:
|
||||
recompute_embeddings=recompute_embeddings,
|
||||
pruning_strategy=pruning_strategy,
|
||||
expected_zmq_port=expected_zmq_port,
|
||||
metadata_filters=metadata_filters,
|
||||
batch_size=batch_size,
|
||||
**search_kwargs,
|
||||
)
|
||||
search_time = time.time() - search_time
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
logger.info(f" Search time: {search_time} seconds")
|
||||
context = "\n\n".join([r.text for r in results])
|
||||
prompt = (
|
||||
"Here is some retrieved context that might help answer your question:\n\n"
|
||||
@@ -793,7 +924,9 @@ class LeannChat:
|
||||
This method should be called after you're done using the chat interface,
|
||||
especially in test environments or batch processing scenarios.
|
||||
"""
|
||||
if hasattr(self.searcher, "cleanup"):
|
||||
# Only stop the embedding server if this LeannChat instance created the searcher.
|
||||
# When a shared searcher is passed in, avoid shutting down the server to enable reuse.
|
||||
if getattr(self, "_owns_searcher", False) and hasattr(self.searcher, "cleanup"):
|
||||
self.searcher.cleanup()
|
||||
|
||||
# Enable automatic cleanup patterns
|
||||
|
||||
Reference in New Issue
Block a user