Merge branch 'main' into fix/clean-hang-solution
This commit is contained in:
41
README.md
41
README.md
@@ -6,6 +6,7 @@
|
||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
|
||||
</p>
|
||||
|
||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||
@@ -16,9 +17,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
|
||||
|
||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
|
||||
> **🚀 Claude Code Integration!** LEANN now provides native MCP integration for Claude Code users. Index your codebase and get intelligent code assistance directly in Claude Code. [Setup Guide →](packages/leann-mcp/README.md)
|
||||
|
||||
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
||||
|
||||
|
||||
|
||||
@@ -28,7 +30,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||
</p>
|
||||
|
||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
|
||||
|
||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||
@@ -95,7 +97,6 @@ uv sync
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Quick Start
|
||||
|
||||
Our declarative API makes RAG as easy as writing a config file.
|
||||
@@ -187,8 +188,8 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
|
||||
--force-rebuild # Force rebuild index even if it exists
|
||||
|
||||
# Embedding Parameters
|
||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small or mlx-community/multilingual-e5-base-mlx
|
||||
--embedding-mode MODE # sentence-transformers, openai, or mlx
|
||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
|
||||
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||
|
||||
# LLM Parameters (Text generation models)
|
||||
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
||||
@@ -221,7 +222,7 @@ Ask questions directly about your personal PDFs, documents, and any directory co
|
||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
|
||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
|
||||
|
||||
```bash
|
||||
source .venv/bin/activate # Don't forget to activate the virtual environment
|
||||
@@ -416,7 +417,26 @@ Once the index is built, you can ask questions like:
|
||||
|
||||
</details>
|
||||
|
||||
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||
|
||||
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||
|
||||
**Key features:**
|
||||
- 🔍 **Semantic code search** across your entire project
|
||||
- 📚 **Context-aware assistance** for debugging and development
|
||||
- 🚀 **Zero-config setup** with automatic language detection
|
||||
|
||||
```bash
|
||||
# Install LEANN globally for MCP integration
|
||||
uv tool install leann-core
|
||||
|
||||
# Setup is automatic - just start using Claude Code!
|
||||
```
|
||||
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||
|
||||

|
||||
|
||||
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||
|
||||
## 🖥️ Command Line Interface
|
||||
|
||||
@@ -446,11 +466,8 @@ leann --help
|
||||
### Usage Examples
|
||||
|
||||
```bash
|
||||
# Build an index from current directory (default)
|
||||
leann build my-docs
|
||||
|
||||
# Or from specific directory
|
||||
leann build my-docs --docs ./documents
|
||||
# build from a specific directory, and my_docs is the index name
|
||||
leann build my-docs --docs ./your_documents
|
||||
|
||||
# Search your documents
|
||||
leann search my-docs "machine learning concepts"
|
||||
|
||||
@@ -75,7 +75,7 @@ class BaseRAGExample(ABC):
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode (default: sentence-transformers)",
|
||||
)
|
||||
|
||||
@@ -85,7 +85,7 @@ class BaseRAGExample(ABC):
|
||||
"--llm",
|
||||
type=str,
|
||||
default="openai",
|
||||
choices=["openai", "ollama", "hf"],
|
||||
choices=["openai", "ollama", "hf", "simulated"],
|
||||
help="LLM backend to use (default: openai)",
|
||||
)
|
||||
llm_group.add_argument(
|
||||
|
||||
BIN
assets/mcp_leann.png
Normal file
BIN
assets/mcp_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 224 KiB |
@@ -1,150 +0,0 @@
|
||||
# Claude Code x LEANN 集成指南
|
||||
|
||||
## ✅ 现状:已经可以工作!
|
||||
|
||||
好消息:LEANN CLI已经完全可以在Claude Code中使用,无需任何修改!
|
||||
|
||||
## 🚀 立即开始
|
||||
|
||||
### 1. 激活环境
|
||||
```bash
|
||||
# 在LEANN项目目录下
|
||||
source .venv/bin/activate.fish # fish shell
|
||||
# 或
|
||||
source .venv/bin/activate # bash shell
|
||||
```
|
||||
|
||||
### 2. 基本命令
|
||||
|
||||
#### 查看现有索引
|
||||
```bash
|
||||
leann list
|
||||
```
|
||||
|
||||
#### 搜索文档
|
||||
```bash
|
||||
leann search my-docs "machine learning" --recompute-embeddings
|
||||
```
|
||||
|
||||
#### 问答对话
|
||||
```bash
|
||||
echo "What is machine learning?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
|
||||
```
|
||||
|
||||
#### 构建新索引
|
||||
```bash
|
||||
leann build project-docs --docs ./src --recompute-embeddings
|
||||
```
|
||||
|
||||
## 💡 Claude Code 使用技巧
|
||||
|
||||
### 在Claude Code中直接使用
|
||||
|
||||
1. **激活环境**:
|
||||
```bash
|
||||
cd /Users/andyl/Projects/LEANN-RAG
|
||||
source .venv/bin/activate.fish
|
||||
```
|
||||
|
||||
2. **搜索代码库**:
|
||||
```bash
|
||||
leann search my-docs "authentication patterns" --recompute-embeddings --top-k 10
|
||||
```
|
||||
|
||||
3. **智能问答**:
|
||||
```bash
|
||||
echo "How does the authentication system work?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
|
||||
```
|
||||
|
||||
### 批量操作示例
|
||||
|
||||
```bash
|
||||
# 构建项目文档索引
|
||||
leann build project-docs --docs ./docs --force
|
||||
|
||||
# 搜索多个关键词
|
||||
leann search project-docs "API authentication" --recompute-embeddings
|
||||
leann search project-docs "database schema" --recompute-embeddings
|
||||
leann search project-docs "deployment guide" --recompute-embeddings
|
||||
|
||||
# 问答模式
|
||||
echo "What are the API endpoints?" | leann ask project-docs --recompute-embeddings
|
||||
```
|
||||
|
||||
## 🎯 Claude 可以立即执行的工作流
|
||||
|
||||
### 代码分析工作流
|
||||
```bash
|
||||
# 1. 构建代码库索引
|
||||
leann build codebase --docs ./src --backend hnsw --recompute-embeddings
|
||||
|
||||
# 2. 分析架构
|
||||
echo "What is the overall architecture?" | leann ask codebase --recompute-embeddings
|
||||
|
||||
# 3. 查找特定功能
|
||||
leann search codebase "user authentication" --recompute-embeddings --top-k 5
|
||||
|
||||
# 4. 理解实现细节
|
||||
echo "How is user authentication implemented?" | leann ask codebase --recompute-embeddings
|
||||
```
|
||||
|
||||
### 文档理解工作流
|
||||
```bash
|
||||
# 1. 索引项目文档
|
||||
leann build docs --docs ./docs --recompute-embeddings
|
||||
|
||||
# 2. 快速查找信息
|
||||
leann search docs "installation requirements" --recompute-embeddings
|
||||
|
||||
# 3. 获取详细说明
|
||||
echo "What are the system requirements?" | leann ask docs --recompute-embeddings
|
||||
```
|
||||
|
||||
## ⚠️ 重要提示
|
||||
|
||||
1. **必须使用 `--recompute-embeddings`** - 这是关键参数,不加会报错
|
||||
2. **需要先激活虚拟环境** - 确保有LEANN的Python环境
|
||||
3. **Ollama需要预先安装** - ask功能需要本地LLM
|
||||
|
||||
## 🔥 立即可用的Claude提示词
|
||||
|
||||
```
|
||||
Help me analyze this codebase using LEANN:
|
||||
|
||||
1. First, activate the environment:
|
||||
cd /Users/andyl/Projects/LEANN-RAG && source .venv/bin/activate.fish
|
||||
|
||||
2. Build an index of the source code:
|
||||
leann build codebase --docs ./src --recompute-embeddings
|
||||
|
||||
3. Search for authentication patterns:
|
||||
leann search codebase "authentication middleware" --recompute-embeddings --top-k 10
|
||||
|
||||
4. Ask about the authentication system:
|
||||
echo "How does user authentication work in this codebase?" | leann ask codebase --recompute-embeddings
|
||||
|
||||
Please execute these commands and help me understand the code structure.
|
||||
```
|
||||
|
||||
## 📈 下一步改进计划
|
||||
|
||||
虽然现在已经可以用,但还可以进一步优化:
|
||||
|
||||
1. **简化命令** - 默认启用recompute-embeddings
|
||||
2. **配置文件** - 避免重复输入参数
|
||||
3. **状态管理** - 自动检测环境和索引
|
||||
4. **输出格式** - 更适合Claude解析的格式
|
||||
|
||||
但这些都是锦上添花,现在就能用起来!
|
||||
|
||||
## 🎉 总结
|
||||
|
||||
**LEANN现在就可以在Claude Code中完美工作!**
|
||||
|
||||
- ✅ 搜索功能正常
|
||||
- ✅ RAG问答功能正常
|
||||
- ✅ 索引构建功能正常
|
||||
- ✅ 支持多种数据源
|
||||
- ✅ 支持本地LLM
|
||||
|
||||
只需要记住加上 `--recompute-embeddings` 参数就行!
|
||||
@@ -49,14 +49,25 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
||||
- **Cons**: Slower inference, longer index build times
|
||||
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
||||
|
||||
### Quick Start: OpenAI Embeddings (Fastest Setup)
|
||||
### Quick Start: Cloud and Local Embedding Options
|
||||
|
||||
**OpenAI Embeddings (Fastest Setup)**
|
||||
For immediate testing without local model downloads:
|
||||
```bash
|
||||
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
||||
--embedding-mode openai --embedding-model text-embedding-3-small
|
||||
```
|
||||
|
||||
**Ollama Embeddings (Privacy-Focused)**
|
||||
For local embeddings with complete privacy:
|
||||
```bash
|
||||
# First, pull an embedding model
|
||||
ollama pull nomic-embed-text
|
||||
|
||||
# Use Ollama embeddings
|
||||
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
||||
|
||||
|
||||
@@ -263,7 +263,7 @@ if __name__ == "__main__":
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.2.1"
|
||||
dependencies = ["leann-core==0.2.1", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.2.5"
|
||||
dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
@@ -285,7 +285,7 @@ if __name__ == "__main__":
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode",
|
||||
)
|
||||
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.2.1"
|
||||
version = "0.2.5"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.2.1",
|
||||
"leann-core==0.2.5",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.2.1"
|
||||
version = "0.2.5"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_ollama_models() -> list[str]:
|
||||
def check_ollama_models(host: str) -> list[str]:
|
||||
"""Check available Ollama models and return a list"""
|
||||
try:
|
||||
import requests
|
||||
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
return [model["name"] for model in data.get("models", [])]
|
||||
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
||||
return search_hf_models_fuzzy(query, limit)
|
||||
|
||||
|
||||
def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
|
||||
def validate_model_and_suggest(
|
||||
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
||||
) -> str | None:
|
||||
"""Validate model name and provide suggestions if invalid"""
|
||||
if llm_type == "ollama":
|
||||
available_models = check_ollama_models()
|
||||
available_models = check_ollama_models(host)
|
||||
if available_models and model_name not in available_models:
|
||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||
|
||||
@@ -469,7 +471,7 @@ class OllamaChat(LLMInterface):
|
||||
requests.get(host)
|
||||
|
||||
# Pre-check model availability with helpful suggestions
|
||||
model_error = validate_model_and_suggest(model, "ollama")
|
||||
model_error = validate_model_and_suggest(model, "ollama", host)
|
||||
if model_error:
|
||||
raise ValueError(model_error)
|
||||
|
||||
|
||||
@@ -74,10 +74,11 @@ class LeannCLI:
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
leann build my-docs --docs ./documents # Build index named my-docs
|
||||
leann search my-docs "query" # Search in my-docs index
|
||||
leann ask my-docs "question" # Ask my-docs index
|
||||
leann list # List all stored indexes
|
||||
leann build my-docs --docs ./documents # Build index named my-docs
|
||||
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
|
||||
leann search my-docs "query" # Search in my-docs index
|
||||
leann ask my-docs "question" # Ask my-docs index
|
||||
leann list # List all stored indexes
|
||||
""",
|
||||
)
|
||||
|
||||
@@ -93,12 +94,24 @@ Examples:
|
||||
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
||||
)
|
||||
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
||||
build_parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode (default: sentence-transformers)",
|
||||
)
|
||||
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
||||
build_parser.add_argument("--graph-degree", type=int, default=32)
|
||||
build_parser.add_argument("--complexity", type=int, default=64)
|
||||
build_parser.add_argument("--num-threads", type=int, default=1)
|
||||
build_parser.add_argument("--compact", action="store_true", default=True)
|
||||
build_parser.add_argument("--recompute", action="store_true", default=True)
|
||||
build_parser.add_argument(
|
||||
"--file-types",
|
||||
type=str,
|
||||
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
|
||||
)
|
||||
|
||||
# Search command
|
||||
search_parser = subparsers.add_parser("search", help="Search documents")
|
||||
@@ -108,7 +121,12 @@ Examples:
|
||||
search_parser.add_argument("--complexity", type=int, default=64)
|
||||
search_parser.add_argument("--beam-width", type=int, default=1)
|
||||
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
||||
search_parser.add_argument("--recompute-embeddings", action="store_true")
|
||||
search_parser.add_argument(
|
||||
"--recompute-embeddings",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Recompute embeddings (default: True)",
|
||||
)
|
||||
search_parser.add_argument(
|
||||
"--pruning-strategy",
|
||||
choices=["global", "local", "proportional"],
|
||||
@@ -131,7 +149,12 @@ Examples:
|
||||
ask_parser.add_argument("--complexity", type=int, default=32)
|
||||
ask_parser.add_argument("--beam-width", type=int, default=1)
|
||||
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
||||
ask_parser.add_argument("--recompute-embeddings", action="store_true")
|
||||
ask_parser.add_argument(
|
||||
"--recompute-embeddings",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Recompute embeddings (default: True)",
|
||||
)
|
||||
ask_parser.add_argument(
|
||||
"--pruning-strategy",
|
||||
choices=["global", "local", "proportional"],
|
||||
@@ -254,8 +277,10 @@ Examples:
|
||||
print(f' leann search {example_name} "your query"')
|
||||
print(f" leann ask {example_name} --interactive")
|
||||
|
||||
def load_documents(self, docs_dir: str):
|
||||
def load_documents(self, docs_dir: str, custom_file_types: str | None = None):
|
||||
print(f"Loading documents from {docs_dir}...")
|
||||
if custom_file_types:
|
||||
print(f"Using custom file types: {custom_file_types}")
|
||||
|
||||
# Try to use better PDF parsers first
|
||||
documents = []
|
||||
@@ -287,66 +312,81 @@ Examples:
|
||||
documents.extend(default_docs)
|
||||
|
||||
# Load other file types with default reader
|
||||
code_extensions = [
|
||||
# Original document types
|
||||
".txt",
|
||||
".md",
|
||||
".docx",
|
||||
# Code files for Claude Code integration
|
||||
".py",
|
||||
".js",
|
||||
".ts",
|
||||
".jsx",
|
||||
".tsx",
|
||||
".java",
|
||||
".cpp",
|
||||
".c",
|
||||
".h",
|
||||
".hpp",
|
||||
".cs",
|
||||
".go",
|
||||
".rs",
|
||||
".rb",
|
||||
".php",
|
||||
".swift",
|
||||
".kt",
|
||||
".scala",
|
||||
".r",
|
||||
".sql",
|
||||
".sh",
|
||||
".bash",
|
||||
".zsh",
|
||||
".fish",
|
||||
".ps1",
|
||||
".bat",
|
||||
# Config and markup files
|
||||
".json",
|
||||
".yaml",
|
||||
".yml",
|
||||
".xml",
|
||||
".toml",
|
||||
".ini",
|
||||
".cfg",
|
||||
".conf",
|
||||
".html",
|
||||
".css",
|
||||
".scss",
|
||||
".less",
|
||||
".vue",
|
||||
".svelte",
|
||||
# Data science
|
||||
".ipynb",
|
||||
".R",
|
||||
".py",
|
||||
".jl",
|
||||
]
|
||||
other_docs = SimpleDirectoryReader(
|
||||
docs_dir,
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=code_extensions,
|
||||
).load_data(show_progress=True)
|
||||
documents.extend(other_docs)
|
||||
if custom_file_types:
|
||||
# Parse custom file types from comma-separated string
|
||||
code_extensions = [ext.strip() for ext in custom_file_types.split(",") if ext.strip()]
|
||||
# Ensure extensions start with a dot
|
||||
code_extensions = [ext if ext.startswith(".") else f".{ext}" for ext in code_extensions]
|
||||
else:
|
||||
# Use default supported file types
|
||||
code_extensions = [
|
||||
# Original document types
|
||||
".txt",
|
||||
".md",
|
||||
".docx",
|
||||
".pptx",
|
||||
# Code files for Claude Code integration
|
||||
".py",
|
||||
".js",
|
||||
".ts",
|
||||
".jsx",
|
||||
".tsx",
|
||||
".java",
|
||||
".cpp",
|
||||
".c",
|
||||
".h",
|
||||
".hpp",
|
||||
".cs",
|
||||
".go",
|
||||
".rs",
|
||||
".rb",
|
||||
".php",
|
||||
".swift",
|
||||
".kt",
|
||||
".scala",
|
||||
".r",
|
||||
".sql",
|
||||
".sh",
|
||||
".bash",
|
||||
".zsh",
|
||||
".fish",
|
||||
".ps1",
|
||||
".bat",
|
||||
# Config and markup files
|
||||
".json",
|
||||
".yaml",
|
||||
".yml",
|
||||
".xml",
|
||||
".toml",
|
||||
".ini",
|
||||
".cfg",
|
||||
".conf",
|
||||
".html",
|
||||
".css",
|
||||
".scss",
|
||||
".less",
|
||||
".vue",
|
||||
".svelte",
|
||||
# Data science
|
||||
".ipynb",
|
||||
".R",
|
||||
".py",
|
||||
".jl",
|
||||
]
|
||||
# Try to load other file types, but don't fail if none are found
|
||||
try:
|
||||
other_docs = SimpleDirectoryReader(
|
||||
docs_dir,
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=code_extensions,
|
||||
).load_data(show_progress=True)
|
||||
documents.extend(other_docs)
|
||||
except ValueError as e:
|
||||
if "No files found" in str(e):
|
||||
print("No additional files found for other supported types.")
|
||||
else:
|
||||
raise e
|
||||
|
||||
all_texts = []
|
||||
|
||||
@@ -424,7 +464,7 @@ Examples:
|
||||
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
|
||||
return
|
||||
|
||||
all_texts = self.load_documents(docs_dir)
|
||||
all_texts = self.load_documents(docs_dir, args.file_types)
|
||||
if not all_texts:
|
||||
print("No documents found")
|
||||
return
|
||||
@@ -436,6 +476,7 @@ Examples:
|
||||
builder = LeannBuilder(
|
||||
backend_name=args.backend,
|
||||
embedding_model=args.embedding_model,
|
||||
embedding_mode=args.embedding_mode,
|
||||
graph_degree=args.graph_degree,
|
||||
complexity=args.complexity,
|
||||
is_compact=args.compact,
|
||||
|
||||
@@ -6,6 +6,7 @@ Preserves all optimization parameters to ensure performance
|
||||
|
||||
import logging
|
||||
import os
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
@@ -35,7 +36,7 @@ def compute_embeddings(
|
||||
Args:
|
||||
texts: List of texts to compute embeddings for
|
||||
model_name: Model name
|
||||
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
|
||||
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
batch_size: Batch size for processing
|
||||
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
||||
@@ -55,6 +56,8 @@ def compute_embeddings(
|
||||
return compute_embeddings_openai(texts, model_name)
|
||||
elif mode == "mlx":
|
||||
return compute_embeddings_mlx(texts, model_name)
|
||||
elif mode == "ollama":
|
||||
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding mode: {mode}")
|
||||
|
||||
@@ -365,3 +368,262 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
|
||||
|
||||
# Stack numpy arrays
|
||||
return np.stack(all_embeddings)
|
||||
|
||||
|
||||
def compute_embeddings_ollama(
|
||||
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using Ollama API.
|
||||
|
||||
Args:
|
||||
texts: List of texts to compute embeddings for
|
||||
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
host: Ollama host URL (default: http://localhost:11434)
|
||||
|
||||
Returns:
|
||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||
"""
|
||||
try:
|
||||
import requests
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
|
||||
)
|
||||
|
||||
if not texts:
|
||||
raise ValueError("Cannot compute embeddings for empty text list")
|
||||
|
||||
logger.info(
|
||||
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
|
||||
)
|
||||
|
||||
# Check if Ollama is running
|
||||
try:
|
||||
response = requests.get(f"{host}/api/version", timeout=5)
|
||||
response.raise_for_status()
|
||||
except requests.exceptions.ConnectionError:
|
||||
error_msg = (
|
||||
f"❌ Could not connect to Ollama at {host}.\n\n"
|
||||
"Please ensure Ollama is running:\n"
|
||||
" • macOS/Linux: ollama serve\n"
|
||||
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
||||
"Installation: https://ollama.com/download"
|
||||
)
|
||||
raise RuntimeError(error_msg)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
|
||||
|
||||
# Check if model exists and provide helpful suggestions
|
||||
try:
|
||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||
response.raise_for_status()
|
||||
models = response.json()
|
||||
model_names = [model["name"] for model in models.get("models", [])]
|
||||
|
||||
# Filter for embedding models (models that support embeddings)
|
||||
embedding_models = []
|
||||
suggested_embedding_models = [
|
||||
"nomic-embed-text",
|
||||
"mxbai-embed-large",
|
||||
"bge-m3",
|
||||
"all-minilm",
|
||||
"snowflake-arctic-embed",
|
||||
]
|
||||
|
||||
for model in model_names:
|
||||
# Check if it's an embedding model (by name patterns or known models)
|
||||
base_name = model.split(":")[0]
|
||||
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
|
||||
embedding_models.append(model)
|
||||
|
||||
# Check if model exists (handle versioned names)
|
||||
model_found = any(
|
||||
model_name == name.split(":")[0] or model_name == name for name in model_names
|
||||
)
|
||||
|
||||
if not model_found:
|
||||
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
|
||||
|
||||
# Suggest pulling the model
|
||||
error_msg += "📦 To install this embedding model:\n"
|
||||
error_msg += f" ollama pull {model_name}\n\n"
|
||||
|
||||
# Show available embedding models
|
||||
if embedding_models:
|
||||
error_msg += "✅ Available embedding models:\n"
|
||||
for model in embedding_models[:5]:
|
||||
error_msg += f" • {model}\n"
|
||||
if len(embedding_models) > 5:
|
||||
error_msg += f" ... and {len(embedding_models) - 5} more\n"
|
||||
else:
|
||||
error_msg += "💡 Popular embedding models to install:\n"
|
||||
for model in suggested_embedding_models[:3]:
|
||||
error_msg += f" • ollama pull {model}\n"
|
||||
|
||||
error_msg += "\n📚 Browse more: https://ollama.com/library"
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Verify the model supports embeddings by testing it
|
||||
try:
|
||||
test_response = requests.post(
|
||||
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
|
||||
)
|
||||
if test_response.status_code != 200:
|
||||
error_msg = (
|
||||
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
|
||||
f"Please use an embedding model like:\n"
|
||||
)
|
||||
for model in suggested_embedding_models[:3]:
|
||||
error_msg += f" • {model}\n"
|
||||
raise ValueError(error_msg)
|
||||
except requests.exceptions.RequestException:
|
||||
# If test fails, continue anyway - model might still work
|
||||
pass
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.warning(f"Could not verify model existence: {e}")
|
||||
|
||||
# Process embeddings with optimized concurrent processing
|
||||
import requests
|
||||
|
||||
def get_single_embedding(text_idx_tuple):
|
||||
"""Helper function to get embedding for a single text."""
|
||||
text, idx = text_idx_tuple
|
||||
max_retries = 3
|
||||
retry_count = 0
|
||||
|
||||
# Truncate very long texts to avoid API issues
|
||||
truncated_text = text[:8000] if len(text) > 8000 else text
|
||||
|
||||
while retry_count < max_retries:
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{host}/api/embeddings",
|
||||
json={"model": model_name, "prompt": truncated_text},
|
||||
timeout=30,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
result = response.json()
|
||||
embedding = result.get("embedding")
|
||||
|
||||
if embedding is None:
|
||||
raise ValueError(f"No embedding returned for text {idx}")
|
||||
|
||||
return idx, embedding
|
||||
|
||||
except requests.exceptions.Timeout:
|
||||
retry_count += 1
|
||||
if retry_count >= max_retries:
|
||||
logger.warning(f"Timeout for text {idx} after {max_retries} retries")
|
||||
return idx, None
|
||||
|
||||
except Exception as e:
|
||||
if retry_count >= max_retries - 1:
|
||||
logger.error(f"Failed to get embedding for text {idx}: {e}")
|
||||
return idx, None
|
||||
retry_count += 1
|
||||
|
||||
return idx, None
|
||||
|
||||
# Determine if we should use concurrent processing
|
||||
use_concurrent = (
|
||||
len(texts) > 5 and not is_build
|
||||
) # Don't use concurrent in build mode to avoid overwhelming
|
||||
max_workers = min(4, len(texts)) # Limit concurrent requests to avoid overwhelming Ollama
|
||||
|
||||
all_embeddings = [None] * len(texts) # Pre-allocate list to maintain order
|
||||
failed_indices = []
|
||||
|
||||
if use_concurrent:
|
||||
logger.info(
|
||||
f"Using concurrent processing with {max_workers} workers for {len(texts)} texts"
|
||||
)
|
||||
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
# Submit all tasks
|
||||
future_to_idx = {
|
||||
executor.submit(get_single_embedding, (text, idx)): idx
|
||||
for idx, text in enumerate(texts)
|
||||
}
|
||||
|
||||
# Add progress bar for concurrent processing
|
||||
try:
|
||||
if is_build or len(texts) > 10:
|
||||
from tqdm import tqdm
|
||||
|
||||
futures_iterator = tqdm(
|
||||
as_completed(future_to_idx),
|
||||
total=len(texts),
|
||||
desc="Computing Ollama embeddings",
|
||||
)
|
||||
else:
|
||||
futures_iterator = as_completed(future_to_idx)
|
||||
except ImportError:
|
||||
futures_iterator = as_completed(future_to_idx)
|
||||
|
||||
# Collect results as they complete
|
||||
for future in futures_iterator:
|
||||
try:
|
||||
idx, embedding = future.result()
|
||||
if embedding is not None:
|
||||
all_embeddings[idx] = embedding
|
||||
else:
|
||||
failed_indices.append(idx)
|
||||
except Exception as e:
|
||||
idx = future_to_idx[future]
|
||||
logger.error(f"Exception for text {idx}: {e}")
|
||||
failed_indices.append(idx)
|
||||
|
||||
else:
|
||||
# Sequential processing with progress bar
|
||||
show_progress = is_build or len(texts) > 10
|
||||
|
||||
try:
|
||||
if show_progress:
|
||||
from tqdm import tqdm
|
||||
|
||||
iterator = tqdm(
|
||||
enumerate(texts), total=len(texts), desc="Computing Ollama embeddings"
|
||||
)
|
||||
else:
|
||||
iterator = enumerate(texts)
|
||||
except ImportError:
|
||||
iterator = enumerate(texts)
|
||||
|
||||
for idx, text in iterator:
|
||||
result_idx, embedding = get_single_embedding((text, idx))
|
||||
if embedding is not None:
|
||||
all_embeddings[idx] = embedding
|
||||
else:
|
||||
failed_indices.append(idx)
|
||||
|
||||
# Handle failed embeddings
|
||||
if failed_indices:
|
||||
if len(failed_indices) == len(texts):
|
||||
raise RuntimeError("Failed to compute any embeddings")
|
||||
|
||||
logger.warning(f"Failed to compute embeddings for {len(failed_indices)}/{len(texts)} texts")
|
||||
|
||||
# Use zero embeddings as fallback for failed ones
|
||||
valid_embedding = next((e for e in all_embeddings if e is not None), None)
|
||||
if valid_embedding:
|
||||
embedding_dim = len(valid_embedding)
|
||||
for idx in failed_indices:
|
||||
all_embeddings[idx] = [0.0] * embedding_dim
|
||||
|
||||
# Remove None values and convert to numpy array
|
||||
all_embeddings = [e for e in all_embeddings if e is not None]
|
||||
|
||||
# Convert to numpy array and normalize
|
||||
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||
|
||||
# Normalize embeddings (L2 normalization)
|
||||
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
|
||||
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
|
||||
return embeddings
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
@@ -62,10 +61,6 @@ def handle_request(request):
|
||||
tool_name = request["params"]["name"]
|
||||
args = request["params"].get("arguments", {})
|
||||
|
||||
# Set working directory and environment
|
||||
env = os.environ.copy()
|
||||
cwd = "/Users/andyl/Projects/LEANN-RAG"
|
||||
|
||||
try:
|
||||
if tool_name == "leann_search":
|
||||
cmd = [
|
||||
@@ -76,18 +71,14 @@ def handle_request(request):
|
||||
"--recompute-embeddings",
|
||||
f"--top-k={args.get('top_k', 5)}",
|
||||
]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, cwd=cwd, env=env)
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_ask":
|
||||
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
|
||||
result = subprocess.run(
|
||||
cmd, shell=True, capture_output=True, text=True, cwd=cwd, env=env
|
||||
)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_list":
|
||||
result = subprocess.run(
|
||||
["leann", "list"], capture_output=True, text=True, cwd=cwd, env=env
|
||||
)
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
|
||||
@@ -1,18 +1,25 @@
|
||||
# LEANN Claude Code Integration
|
||||
# 🔥 LEANN Claude Code Integration
|
||||
|
||||
Intelligent code assistance using LEANN's vector search directly in Claude Code.
|
||||
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
First, install LEANN CLI globally:
|
||||
**Step 1:** First, complete the basic LEANN installation following the [📦 Installation guide](../../README.md#installation) in the root README:
|
||||
|
||||
```bash
|
||||
uv venv
|
||||
source .venv/bin/activate
|
||||
uv pip install leann
|
||||
```
|
||||
|
||||
**Step 2:** Install LEANN globally for MCP integration:
|
||||
```bash
|
||||
uv tool install leann-core
|
||||
```
|
||||
|
||||
This makes the `leann` command available system-wide, which `leann_mcp` requires.
|
||||
|
||||
## Quick Setup
|
||||
## 🚀 Quick Setup
|
||||
|
||||
Add the LEANN MCP server to Claude Code:
|
||||
|
||||
@@ -20,23 +27,25 @@ Add the LEANN MCP server to Claude Code:
|
||||
claude mcp add leann-server -- leann_mcp
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
## 🛠️ Available Tools
|
||||
|
||||
- **`leann_list`** - List available indexes across all projects
|
||||
- **`leann_search`** - Search code and documents with semantic queries
|
||||
- **`leann_ask`** - Ask questions and get AI-powered answers from your codebase
|
||||
Once connected, you'll have access to these powerful semantic search tools in Claude Code:
|
||||
|
||||
## Quick Start
|
||||
- **`leann_list`** - List all available indexes across your projects
|
||||
- **`leann_search`** - Perform semantic searches across code and documents
|
||||
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
|
||||
|
||||
## 🎯 Quick Start Example
|
||||
|
||||
```bash
|
||||
# Build an index for your project
|
||||
leann build my-project
|
||||
# Build an index for your project (change to your actual path)
|
||||
leann build my-project --docs ./
|
||||
|
||||
# Start Claude Code
|
||||
claude
|
||||
```
|
||||
|
||||
Then in Claude Code:
|
||||
**Try this in Claude Code:**
|
||||
```
|
||||
Help me understand this codebase. List available indexes and search for authentication patterns.
|
||||
```
|
||||
@@ -46,24 +55,37 @@ Help me understand this codebase. List available indexes and search for authenti
|
||||
</p>
|
||||
|
||||
|
||||
## How It Works
|
||||
## 🧠 How It Works
|
||||
|
||||
- **`leann`** - Core CLI tool for indexing and searching (installed globally)
|
||||
The integration consists of three key components working seamlessly together:
|
||||
|
||||
- **`leann`** - Core CLI tool for indexing and searching (installed globally via `uv tool install`)
|
||||
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
|
||||
- Claude Code calls `leann_mcp`, which executes `leann` commands and returns results
|
||||
- **Claude Code** - Calls `leann_mcp`, which executes `leann` commands and returns intelligent results
|
||||
|
||||
## File Support
|
||||
## 📁 File Support
|
||||
|
||||
Python, JavaScript, TypeScript, Java, Go, Rust, SQL, YAML, JSON, and 30+ more file types.
|
||||
LEANN understands **30+ file types** including:
|
||||
- **Programming**: Python, JavaScript, TypeScript, Java, Go, Rust, C++, C#
|
||||
- **Data**: SQL, YAML, JSON, CSV, XML
|
||||
- **Documentation**: Markdown, TXT, PDF
|
||||
- **And many more!**
|
||||
|
||||
## Storage
|
||||
## 💾 Storage & Organization
|
||||
|
||||
- Project indexes in `.leann/` directory (like `.git`)
|
||||
- Global project registry at `~/.leann/projects.json`
|
||||
- Multi-project support built-in
|
||||
- **Project indexes**: Stored in `.leann/` directory (just like `.git`)
|
||||
- **Global registry**: Project tracking at `~/.leann/projects.json`
|
||||
- **Multi-project support**: Switch between different codebases seamlessly
|
||||
- **Portable**: Transfer indexes between machines with minimal overhead
|
||||
|
||||
## Removing
|
||||
## 🗑️ Uninstalling
|
||||
|
||||
To remove the LEANN MCP server from Claude Code:
|
||||
|
||||
```bash
|
||||
claude mcp remove leann-server
|
||||
```
|
||||
To remove LEANN
|
||||
```
|
||||
uv pip uninstall leann leann-backend-hnsw leann-core
|
||||
```
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.2.1"
|
||||
version = "0.2.5"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
Reference in New Issue
Block a user