Merge branch 'main' into fix/clean-hang-solution

This commit is contained in:
Andy Lee
2025-08-09 16:49:51 -07:00
committed by GitHub
16 changed files with 477 additions and 281 deletions

View File

@@ -6,6 +6,7 @@
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
@@ -16,9 +17,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
> **🚀 Claude Code Integration!** LEANN now provides native MCP integration for Claude Code users. Index your codebase and get intelligent code assistance directly in Claude Code. [Setup Guide →](packages/leann-mcp/README.md)
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
@@ -28,7 +30,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p>
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
@@ -95,7 +97,6 @@ uv sync
</details>
## Quick Start
Our declarative API makes RAG as easy as writing a config file.
@@ -187,8 +188,8 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small or mlx-community/multilingual-e5-base-mlx
--embedding-mode MODE # sentence-transformers, openai, or mlx
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
@@ -221,7 +222,7 @@ Ask questions directly about your personal PDFs, documents, and any directory co
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
</p>
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
```bash
source .venv/bin/activate # Don't forget to activate the virtual environment
@@ -416,7 +417,26 @@ Once the index is built, you can ask questions like:
</details>
### 🚀 Claude Code Integration: Transform Your Development Workflow!
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
```bash
# Install LEANN globally for MCP integration
uv tool install leann-core
# Setup is automatic - just start using Claude Code!
```
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
![LEANN MCP Integration](assets/mcp_leann.png)
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
@@ -446,11 +466,8 @@ leann --help
### Usage Examples
```bash
# Build an index from current directory (default)
leann build my-docs
# Or from specific directory
leann build my-docs --docs ./documents
# build from a specific directory, and my_docs is the index name
leann build my-docs --docs ./your_documents
# Search your documents
leann search my-docs "machine learning concepts"

View File

@@ -75,7 +75,7 @@ class BaseRAGExample(ABC):
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
@@ -85,7 +85,7 @@ class BaseRAGExample(ABC):
"--llm",
type=str,
default="openai",
choices=["openai", "ollama", "hf"],
choices=["openai", "ollama", "hf", "simulated"],
help="LLM backend to use (default: openai)",
)
llm_group.add_argument(

BIN
assets/mcp_leann.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

View File

@@ -1,150 +0,0 @@
# Claude Code x LEANN 集成指南
## ✅ 现状:已经可以工作!
好消息LEANN CLI已经完全可以在Claude Code中使用无需任何修改
## 🚀 立即开始
### 1. 激活环境
```bash
# 在LEANN项目目录下
source .venv/bin/activate.fish # fish shell
# 或
source .venv/bin/activate # bash shell
```
### 2. 基本命令
#### 查看现有索引
```bash
leann list
```
#### 搜索文档
```bash
leann search my-docs "machine learning" --recompute-embeddings
```
#### 问答对话
```bash
echo "What is machine learning?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
```
#### 构建新索引
```bash
leann build project-docs --docs ./src --recompute-embeddings
```
## 💡 Claude Code 使用技巧
### 在Claude Code中直接使用
1. **激活环境**
```bash
cd /Users/andyl/Projects/LEANN-RAG
source .venv/bin/activate.fish
```
2. **搜索代码库**
```bash
leann search my-docs "authentication patterns" --recompute-embeddings --top-k 10
```
3. **智能问答**
```bash
echo "How does the authentication system work?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
```
### 批量操作示例
```bash
# 构建项目文档索引
leann build project-docs --docs ./docs --force
# 搜索多个关键词
leann search project-docs "API authentication" --recompute-embeddings
leann search project-docs "database schema" --recompute-embeddings
leann search project-docs "deployment guide" --recompute-embeddings
# 问答模式
echo "What are the API endpoints?" | leann ask project-docs --recompute-embeddings
```
## 🎯 Claude 可以立即执行的工作流
### 代码分析工作流
```bash
# 1. 构建代码库索引
leann build codebase --docs ./src --backend hnsw --recompute-embeddings
# 2. 分析架构
echo "What is the overall architecture?" | leann ask codebase --recompute-embeddings
# 3. 查找特定功能
leann search codebase "user authentication" --recompute-embeddings --top-k 5
# 4. 理解实现细节
echo "How is user authentication implemented?" | leann ask codebase --recompute-embeddings
```
### 文档理解工作流
```bash
# 1. 索引项目文档
leann build docs --docs ./docs --recompute-embeddings
# 2. 快速查找信息
leann search docs "installation requirements" --recompute-embeddings
# 3. 获取详细说明
echo "What are the system requirements?" | leann ask docs --recompute-embeddings
```
## ⚠️ 重要提示
1. **必须使用 `--recompute-embeddings`** - 这是关键参数,不加会报错
2. **需要先激活虚拟环境** - 确保有LEANN的Python环境
3. **Ollama需要预先安装** - ask功能需要本地LLM
## 🔥 立即可用的Claude提示词
```
Help me analyze this codebase using LEANN:
1. First, activate the environment:
cd /Users/andyl/Projects/LEANN-RAG && source .venv/bin/activate.fish
2. Build an index of the source code:
leann build codebase --docs ./src --recompute-embeddings
3. Search for authentication patterns:
leann search codebase "authentication middleware" --recompute-embeddings --top-k 10
4. Ask about the authentication system:
echo "How does user authentication work in this codebase?" | leann ask codebase --recompute-embeddings
Please execute these commands and help me understand the code structure.
```
## 📈 下一步改进计划
虽然现在已经可以用,但还可以进一步优化:
1. **简化命令** - 默认启用recompute-embeddings
2. **配置文件** - 避免重复输入参数
3. **状态管理** - 自动检测环境和索引
4. **输出格式** - 更适合Claude解析的格式
但这些都是锦上添花,现在就能用起来!
## 🎉 总结
**LEANN现在就可以在Claude Code中完美工作**
- ✅ 搜索功能正常
- ✅ RAG问答功能正常
- ✅ 索引构建功能正常
- ✅ 支持多种数据源
- ✅ 支持本地LLM
只需要记住加上 `--recompute-embeddings` 参数就行!

View File

@@ -49,14 +49,25 @@ Based on our experience developing LEANN, embedding models fall into three categ
- **Cons**: Slower inference, longer index build times
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
### Quick Start: OpenAI Embeddings (Fastest Setup)
### Quick Start: Cloud and Local Embedding Options
**OpenAI Embeddings (Fastest Setup)**
For immediate testing without local model downloads:
```bash
# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small
```
**Ollama Embeddings (Privacy-Focused)**
For local embeddings with complete privacy:
```bash
# First, pull an embedding model
ollama pull nomic-embed-text
# Use Ollama embeddings
--embedding-mode ollama --embedding-model nomic-embed-text
```
<details>
<summary><strong>Cloud vs Local Trade-offs</strong></summary>

View File

@@ -263,7 +263,7 @@ if __name__ == "__main__":
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)
parser.add_argument(

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.2.1"
dependencies = ["leann-core==0.2.1", "numpy", "protobuf>=3.19.0"]
version = "0.2.5"
dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path

View File

@@ -285,7 +285,7 @@ if __name__ == "__main__":
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.2.1"
version = "0.2.5"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.2.1",
"leann-core==0.2.5",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.2.1"
version = "0.2.5"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_ollama_models() -> list[str]:
def check_ollama_models(host: str) -> list[str]:
"""Check available Ollama models and return a list"""
try:
import requests
response = requests.get("http://localhost:11434/api/tags", timeout=5)
response = requests.get(f"{host}/api/tags", timeout=5)
if response.status_code == 200:
data = response.json()
return [model["name"] for model in data.get("models", [])]
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
return search_hf_models_fuzzy(query, limit)
def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
def validate_model_and_suggest(
model_name: str, llm_type: str, host: str = "http://localhost:11434"
) -> str | None:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
available_models = check_ollama_models()
available_models = check_ollama_models(host)
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
@@ -469,7 +471,7 @@ class OllamaChat(LLMInterface):
requests.get(host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama")
model_error = validate_model_and_suggest(model, "ollama", host)
if model_error:
raise ValueError(model_error)

View File

@@ -74,10 +74,11 @@ class LeannCLI:
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
leann build my-docs --docs ./documents # Build index named my-docs
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
leann build my-docs --docs ./documents # Build index named my-docs
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
""",
)
@@ -93,12 +94,24 @@ Examples:
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument("--num-threads", type=int, default=1)
build_parser.add_argument("--compact", action="store_true", default=True)
build_parser.add_argument("--recompute", action="store_true", default=True)
build_parser.add_argument(
"--file-types",
type=str,
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
)
# Search command
search_parser = subparsers.add_parser("search", help="Search documents")
@@ -108,7 +121,12 @@ Examples:
search_parser.add_argument("--complexity", type=int, default=64)
search_parser.add_argument("--beam-width", type=int, default=1)
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
search_parser.add_argument("--recompute-embeddings", action="store_true")
search_parser.add_argument(
"--recompute-embeddings",
action="store_true",
default=True,
help="Recompute embeddings (default: True)",
)
search_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
@@ -131,7 +149,12 @@ Examples:
ask_parser.add_argument("--complexity", type=int, default=32)
ask_parser.add_argument("--beam-width", type=int, default=1)
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
ask_parser.add_argument("--recompute-embeddings", action="store_true")
ask_parser.add_argument(
"--recompute-embeddings",
action="store_true",
default=True,
help="Recompute embeddings (default: True)",
)
ask_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
@@ -254,8 +277,10 @@ Examples:
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
def load_documents(self, docs_dir: str):
def load_documents(self, docs_dir: str, custom_file_types: str | None = None):
print(f"Loading documents from {docs_dir}...")
if custom_file_types:
print(f"Using custom file types: {custom_file_types}")
# Try to use better PDF parsers first
documents = []
@@ -287,66 +312,81 @@ Examples:
documents.extend(default_docs)
# Load other file types with default reader
code_extensions = [
# Original document types
".txt",
".md",
".docx",
# Code files for Claude Code integration
".py",
".js",
".ts",
".jsx",
".tsx",
".java",
".cpp",
".c",
".h",
".hpp",
".cs",
".go",
".rs",
".rb",
".php",
".swift",
".kt",
".scala",
".r",
".sql",
".sh",
".bash",
".zsh",
".fish",
".ps1",
".bat",
# Config and markup files
".json",
".yaml",
".yml",
".xml",
".toml",
".ini",
".cfg",
".conf",
".html",
".css",
".scss",
".less",
".vue",
".svelte",
# Data science
".ipynb",
".R",
".py",
".jl",
]
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=code_extensions,
).load_data(show_progress=True)
documents.extend(other_docs)
if custom_file_types:
# Parse custom file types from comma-separated string
code_extensions = [ext.strip() for ext in custom_file_types.split(",") if ext.strip()]
# Ensure extensions start with a dot
code_extensions = [ext if ext.startswith(".") else f".{ext}" for ext in code_extensions]
else:
# Use default supported file types
code_extensions = [
# Original document types
".txt",
".md",
".docx",
".pptx",
# Code files for Claude Code integration
".py",
".js",
".ts",
".jsx",
".tsx",
".java",
".cpp",
".c",
".h",
".hpp",
".cs",
".go",
".rs",
".rb",
".php",
".swift",
".kt",
".scala",
".r",
".sql",
".sh",
".bash",
".zsh",
".fish",
".ps1",
".bat",
# Config and markup files
".json",
".yaml",
".yml",
".xml",
".toml",
".ini",
".cfg",
".conf",
".html",
".css",
".scss",
".less",
".vue",
".svelte",
# Data science
".ipynb",
".R",
".py",
".jl",
]
# Try to load other file types, but don't fail if none are found
try:
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=code_extensions,
).load_data(show_progress=True)
documents.extend(other_docs)
except ValueError as e:
if "No files found" in str(e):
print("No additional files found for other supported types.")
else:
raise e
all_texts = []
@@ -424,7 +464,7 @@ Examples:
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
return
all_texts = self.load_documents(docs_dir)
all_texts = self.load_documents(docs_dir, args.file_types)
if not all_texts:
print("No documents found")
return
@@ -436,6 +476,7 @@ Examples:
builder = LeannBuilder(
backend_name=args.backend,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.complexity,
is_compact=args.compact,

View File

@@ -6,6 +6,7 @@ Preserves all optimization parameters to ensure performance
import logging
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Any
import numpy as np
@@ -35,7 +36,7 @@ def compute_embeddings(
Args:
texts: List of texts to compute embeddings for
model_name: Model name
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
is_build: Whether this is a build operation (shows progress bar)
batch_size: Batch size for processing
adaptive_optimization: Whether to use adaptive optimization based on batch size
@@ -55,6 +56,8 @@ def compute_embeddings(
return compute_embeddings_openai(texts, model_name)
elif mode == "mlx":
return compute_embeddings_mlx(texts, model_name)
elif mode == "ollama":
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
else:
raise ValueError(f"Unsupported embedding mode: {mode}")
@@ -365,3 +368,262 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
# Stack numpy arrays
return np.stack(all_embeddings)
def compute_embeddings_ollama(
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
) -> np.ndarray:
"""
Compute embeddings using Ollama API.
Args:
texts: List of texts to compute embeddings for
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
is_build: Whether this is a build operation (shows progress bar)
host: Ollama host URL (default: http://localhost:11434)
Returns:
Normalized embeddings array, shape: (len(texts), embedding_dim)
"""
try:
import requests
except ImportError:
raise ImportError(
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
)
if not texts:
raise ValueError("Cannot compute embeddings for empty text list")
logger.info(
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
)
# Check if Ollama is running
try:
response = requests.get(f"{host}/api/version", timeout=5)
response.raise_for_status()
except requests.exceptions.ConnectionError:
error_msg = (
f"❌ Could not connect to Ollama at {host}.\n\n"
"Please ensure Ollama is running:\n"
" • macOS/Linux: ollama serve\n"
" • Windows: Make sure Ollama is running in the system tray\n\n"
"Installation: https://ollama.com/download"
)
raise RuntimeError(error_msg)
except Exception as e:
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
# Check if model exists and provide helpful suggestions
try:
response = requests.get(f"{host}/api/tags", timeout=5)
response.raise_for_status()
models = response.json()
model_names = [model["name"] for model in models.get("models", [])]
# Filter for embedding models (models that support embeddings)
embedding_models = []
suggested_embedding_models = [
"nomic-embed-text",
"mxbai-embed-large",
"bge-m3",
"all-minilm",
"snowflake-arctic-embed",
]
for model in model_names:
# Check if it's an embedding model (by name patterns or known models)
base_name = model.split(":")[0]
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
embedding_models.append(model)
# Check if model exists (handle versioned names)
model_found = any(
model_name == name.split(":")[0] or model_name == name for name in model_names
)
if not model_found:
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
# Suggest pulling the model
error_msg += "📦 To install this embedding model:\n"
error_msg += f" ollama pull {model_name}\n\n"
# Show available embedding models
if embedding_models:
error_msg += "✅ Available embedding models:\n"
for model in embedding_models[:5]:
error_msg += f"{model}\n"
if len(embedding_models) > 5:
error_msg += f" ... and {len(embedding_models) - 5} more\n"
else:
error_msg += "💡 Popular embedding models to install:\n"
for model in suggested_embedding_models[:3]:
error_msg += f" • ollama pull {model}\n"
error_msg += "\n📚 Browse more: https://ollama.com/library"
raise ValueError(error_msg)
# Verify the model supports embeddings by testing it
try:
test_response = requests.post(
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
)
if test_response.status_code != 200:
error_msg = (
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
f"Please use an embedding model like:\n"
)
for model in suggested_embedding_models[:3]:
error_msg += f"{model}\n"
raise ValueError(error_msg)
except requests.exceptions.RequestException:
# If test fails, continue anyway - model might still work
pass
except requests.exceptions.RequestException as e:
logger.warning(f"Could not verify model existence: {e}")
# Process embeddings with optimized concurrent processing
import requests
def get_single_embedding(text_idx_tuple):
"""Helper function to get embedding for a single text."""
text, idx = text_idx_tuple
max_retries = 3
retry_count = 0
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
response = requests.post(
f"{host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)
response.raise_for_status()
result = response.json()
embedding = result.get("embedding")
if embedding is None:
raise ValueError(f"No embedding returned for text {idx}")
return idx, embedding
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {idx} after {max_retries} retries")
return idx, None
except Exception as e:
if retry_count >= max_retries - 1:
logger.error(f"Failed to get embedding for text {idx}: {e}")
return idx, None
retry_count += 1
return idx, None
# Determine if we should use concurrent processing
use_concurrent = (
len(texts) > 5 and not is_build
) # Don't use concurrent in build mode to avoid overwhelming
max_workers = min(4, len(texts)) # Limit concurrent requests to avoid overwhelming Ollama
all_embeddings = [None] * len(texts) # Pre-allocate list to maintain order
failed_indices = []
if use_concurrent:
logger.info(
f"Using concurrent processing with {max_workers} workers for {len(texts)} texts"
)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks
future_to_idx = {
executor.submit(get_single_embedding, (text, idx)): idx
for idx, text in enumerate(texts)
}
# Add progress bar for concurrent processing
try:
if is_build or len(texts) > 10:
from tqdm import tqdm
futures_iterator = tqdm(
as_completed(future_to_idx),
total=len(texts),
desc="Computing Ollama embeddings",
)
else:
futures_iterator = as_completed(future_to_idx)
except ImportError:
futures_iterator = as_completed(future_to_idx)
# Collect results as they complete
for future in futures_iterator:
try:
idx, embedding = future.result()
if embedding is not None:
all_embeddings[idx] = embedding
else:
failed_indices.append(idx)
except Exception as e:
idx = future_to_idx[future]
logger.error(f"Exception for text {idx}: {e}")
failed_indices.append(idx)
else:
# Sequential processing with progress bar
show_progress = is_build or len(texts) > 10
try:
if show_progress:
from tqdm import tqdm
iterator = tqdm(
enumerate(texts), total=len(texts), desc="Computing Ollama embeddings"
)
else:
iterator = enumerate(texts)
except ImportError:
iterator = enumerate(texts)
for idx, text in iterator:
result_idx, embedding = get_single_embedding((text, idx))
if embedding is not None:
all_embeddings[idx] = embedding
else:
failed_indices.append(idx)
# Handle failed embeddings
if failed_indices:
if len(failed_indices) == len(texts):
raise RuntimeError("Failed to compute any embeddings")
logger.warning(f"Failed to compute embeddings for {len(failed_indices)}/{len(texts)} texts")
# Use zero embeddings as fallback for failed ones
valid_embedding = next((e for e in all_embeddings if e is not None), None)
if valid_embedding:
embedding_dim = len(valid_embedding)
for idx in failed_indices:
all_embeddings[idx] = [0.0] * embedding_dim
# Remove None values and convert to numpy array
all_embeddings = [e for e in all_embeddings if e is not None]
# Convert to numpy array and normalize
embeddings = np.array(all_embeddings, dtype=np.float32)
# Normalize embeddings (L2 normalization)
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings

View File

@@ -1,7 +1,6 @@
#!/usr/bin/env python3
import json
import os
import subprocess
import sys
@@ -62,10 +61,6 @@ def handle_request(request):
tool_name = request["params"]["name"]
args = request["params"].get("arguments", {})
# Set working directory and environment
env = os.environ.copy()
cwd = "/Users/andyl/Projects/LEANN-RAG"
try:
if tool_name == "leann_search":
cmd = [
@@ -76,18 +71,14 @@ def handle_request(request):
"--recompute-embeddings",
f"--top-k={args.get('top_k', 5)}",
]
result = subprocess.run(cmd, capture_output=True, text=True, cwd=cwd, env=env)
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_ask":
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
result = subprocess.run(
cmd, shell=True, capture_output=True, text=True, cwd=cwd, env=env
)
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
elif tool_name == "leann_list":
result = subprocess.run(
["leann", "list"], capture_output=True, text=True, cwd=cwd, env=env
)
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
return {
"jsonrpc": "2.0",

View File

@@ -1,18 +1,25 @@
# LEANN Claude Code Integration
# 🔥 LEANN Claude Code Integration
Intelligent code assistance using LEANN's vector search directly in Claude Code.
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
## Prerequisites
First, install LEANN CLI globally:
**Step 1:** First, complete the basic LEANN installation following the [📦 Installation guide](../../README.md#installation) in the root README:
```bash
uv venv
source .venv/bin/activate
uv pip install leann
```
**Step 2:** Install LEANN globally for MCP integration:
```bash
uv tool install leann-core
```
This makes the `leann` command available system-wide, which `leann_mcp` requires.
## Quick Setup
## 🚀 Quick Setup
Add the LEANN MCP server to Claude Code:
@@ -20,23 +27,25 @@ Add the LEANN MCP server to Claude Code:
claude mcp add leann-server -- leann_mcp
```
## Available Tools
## 🛠️ Available Tools
- **`leann_list`** - List available indexes across all projects
- **`leann_search`** - Search code and documents with semantic queries
- **`leann_ask`** - Ask questions and get AI-powered answers from your codebase
Once connected, you'll have access to these powerful semantic search tools in Claude Code:
## Quick Start
- **`leann_list`** - List all available indexes across your projects
- **`leann_search`** - Perform semantic searches across code and documents
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
## 🎯 Quick Start Example
```bash
# Build an index for your project
leann build my-project
# Build an index for your project (change to your actual path)
leann build my-project --docs ./
# Start Claude Code
claude
```
Then in Claude Code:
**Try this in Claude Code:**
```
Help me understand this codebase. List available indexes and search for authentication patterns.
```
@@ -46,24 +55,37 @@ Help me understand this codebase. List available indexes and search for authenti
</p>
## How It Works
## 🧠 How It Works
- **`leann`** - Core CLI tool for indexing and searching (installed globally)
The integration consists of three key components working seamlessly together:
- **`leann`** - Core CLI tool for indexing and searching (installed globally via `uv tool install`)
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
- Claude Code calls `leann_mcp`, which executes `leann` commands and returns results
- **Claude Code** - Calls `leann_mcp`, which executes `leann` commands and returns intelligent results
## File Support
## 📁 File Support
Python, JavaScript, TypeScript, Java, Go, Rust, SQL, YAML, JSON, and 30+ more file types.
LEANN understands **30+ file types** including:
- **Programming**: Python, JavaScript, TypeScript, Java, Go, Rust, C++, C#
- **Data**: SQL, YAML, JSON, CSV, XML
- **Documentation**: Markdown, TXT, PDF
- **And many more!**
## Storage
## 💾 Storage & Organization
- Project indexes in `.leann/` directory (like `.git`)
- Global project registry at `~/.leann/projects.json`
- Multi-project support built-in
- **Project indexes**: Stored in `.leann/` directory (just like `.git`)
- **Global registry**: Project tracking at `~/.leann/projects.json`
- **Multi-project support**: Switch between different codebases seamlessly
- **Portable**: Transfer indexes between machines with minimal overhead
## Removing
## 🗑️ Uninstalling
To remove the LEANN MCP server from Claude Code:
```bash
claude mcp remove leann-server
```
To remove LEANN
```
uv pip uninstall leann leann-backend-hnsw leann-core
```

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.2.1"
version = "0.2.5"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"