feat: make diskann runnable
This commit is contained in:
@@ -1,10 +1,13 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List, Literal
|
||||
from typing import Dict, Any, List, Literal, Optional
|
||||
import contextlib
|
||||
|
||||
import logging
|
||||
|
||||
from leann.searcher_base import BaseSearcher
|
||||
from leann.registry import register_backend
|
||||
from leann.interface import (
|
||||
@@ -13,6 +16,46 @@ from leann.interface import (
|
||||
LeannBackendSearcherInterface,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_cpp_output_if_needed():
|
||||
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
|
||||
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
|
||||
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
|
||||
should_suppress = log_level in ["WARNING", "ERROR", "CRITICAL"]
|
||||
|
||||
if not should_suppress:
|
||||
# Don't suppress, just yield
|
||||
yield
|
||||
return
|
||||
|
||||
# Save original file descriptors
|
||||
stdout_fd = sys.stdout.fileno()
|
||||
stderr_fd = sys.stderr.fileno()
|
||||
|
||||
# Save original stdout/stderr
|
||||
stdout_dup = os.dup(stdout_fd)
|
||||
stderr_dup = os.dup(stderr_fd)
|
||||
|
||||
try:
|
||||
# Redirect to /dev/null
|
||||
devnull = os.open(os.devnull, os.O_WRONLY)
|
||||
os.dup2(devnull, stdout_fd)
|
||||
os.dup2(devnull, stderr_fd)
|
||||
os.close(devnull)
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
# Restore original file descriptors
|
||||
os.dup2(stdout_dup, stdout_fd)
|
||||
os.dup2(stderr_dup, stderr_fd)
|
||||
os.close(stdout_dup)
|
||||
os.close(stderr_dup)
|
||||
|
||||
|
||||
def _get_diskann_metrics():
|
||||
from . import _diskannpy as diskannpy # type: ignore
|
||||
@@ -64,6 +107,7 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
index_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if data.dtype != np.float32:
|
||||
logger.warning(f"Converting data to float32, shape: {data.shape}")
|
||||
data = data.astype(np.float32)
|
||||
|
||||
data_filename = f"{index_prefix}_data.bin"
|
||||
@@ -74,7 +118,9 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
build_kwargs.get("distance_metric", "mips").lower()
|
||||
)
|
||||
if metric_enum is None:
|
||||
raise ValueError("Unsupported distance_metric.")
|
||||
raise ValueError(
|
||||
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
|
||||
)
|
||||
|
||||
try:
|
||||
from . import _diskannpy as diskannpy # type: ignore
|
||||
@@ -96,36 +142,40 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
temp_data_file = index_dir / data_filename
|
||||
if temp_data_file.exists():
|
||||
os.remove(temp_data_file)
|
||||
logger.debug(f"Cleaned up temporary data file: {temp_data_file}")
|
||||
|
||||
|
||||
class DiskannSearcher(BaseSearcher):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
super().__init__(
|
||||
index_path,
|
||||
backend_module_name="leann_backend_diskann.embedding_server",
|
||||
backend_module_name="leann_backend_diskann.diskann_embedding_server",
|
||||
**kwargs,
|
||||
)
|
||||
from . import _diskannpy as diskannpy # type: ignore
|
||||
|
||||
distance_metric = kwargs.get("distance_metric", "mips").lower()
|
||||
metric_enum = _get_diskann_metrics().get(distance_metric)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
|
||||
# Initialize DiskANN index with suppressed C++ output based on log level
|
||||
with suppress_cpp_output_if_needed():
|
||||
from . import _diskannpy as diskannpy # type: ignore
|
||||
|
||||
self.num_threads = kwargs.get("num_threads", 8)
|
||||
self.zmq_port = kwargs.get("zmq_port", 6666)
|
||||
distance_metric = kwargs.get("distance_metric", "mips").lower()
|
||||
metric_enum = _get_diskann_metrics().get(distance_metric)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
|
||||
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum,
|
||||
full_index_prefix,
|
||||
self.num_threads,
|
||||
kwargs.get("num_nodes_to_cache", 0),
|
||||
1,
|
||||
self.zmq_port,
|
||||
"",
|
||||
"",
|
||||
)
|
||||
self.num_threads = kwargs.get("num_threads", 8)
|
||||
|
||||
fake_zmq_port = 6666
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum,
|
||||
full_index_prefix,
|
||||
self.num_threads,
|
||||
kwargs.get("num_nodes_to_cache", 0),
|
||||
1,
|
||||
fake_zmq_port, # Initial port, can be updated at runtime
|
||||
"",
|
||||
"",
|
||||
)
|
||||
|
||||
def search(
|
||||
self,
|
||||
@@ -136,7 +186,7 @@ class DiskannSearcher(BaseSearcher):
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int = 5557,
|
||||
zmq_port: Optional[int] = None,
|
||||
batch_recompute: bool = False,
|
||||
dedup_node_dis: bool = False,
|
||||
**kwargs,
|
||||
@@ -155,7 +205,7 @@ class DiskannSearcher(BaseSearcher):
|
||||
- "global": Use global pruning strategy (default)
|
||||
- "local": Use local pruning strategy
|
||||
- "proportional": Not supported in DiskANN, falls back to global
|
||||
zmq_port: ZMQ port for embedding server
|
||||
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
|
||||
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
|
||||
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
|
||||
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
|
||||
@@ -163,22 +213,25 @@ class DiskannSearcher(BaseSearcher):
|
||||
Returns:
|
||||
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||
"""
|
||||
# Handle zmq_port compatibility: DiskANN can now update port at runtime
|
||||
if recompute_embeddings:
|
||||
if zmq_port is None:
|
||||
raise ValueError(
|
||||
"zmq_port must be provided if recompute_embeddings is True"
|
||||
)
|
||||
current_port = self._index.get_zmq_port()
|
||||
if zmq_port != current_port:
|
||||
logger.debug(
|
||||
f"Updating DiskANN zmq_port from {current_port} to {zmq_port}"
|
||||
)
|
||||
self._index.set_zmq_port(zmq_port)
|
||||
|
||||
# DiskANN doesn't support "proportional" strategy
|
||||
if pruning_strategy == "proportional":
|
||||
raise NotImplementedError(
|
||||
"DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead."
|
||||
)
|
||||
|
||||
# Use recompute_embeddings parameter
|
||||
use_recompute = recompute_embeddings
|
||||
if use_recompute:
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(
|
||||
f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}"
|
||||
)
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
|
||||
@@ -188,21 +241,23 @@ class DiskannSearcher(BaseSearcher):
|
||||
else: # "global"
|
||||
use_global_pruning = True
|
||||
|
||||
labels, distances = self._index.batch_search(
|
||||
query,
|
||||
query.shape[0],
|
||||
top_k,
|
||||
complexity,
|
||||
beam_width,
|
||||
self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False),
|
||||
kwargs.get("skip_search_reorder", False),
|
||||
use_recompute,
|
||||
dedup_node_dis,
|
||||
prune_ratio,
|
||||
batch_recompute,
|
||||
use_global_pruning,
|
||||
)
|
||||
# Perform search with suppressed C++ output based on log level
|
||||
with suppress_cpp_output_if_needed():
|
||||
labels, distances = self._index.batch_search(
|
||||
query,
|
||||
query.shape[0],
|
||||
top_k,
|
||||
complexity,
|
||||
beam_width,
|
||||
self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False),
|
||||
kwargs.get("skip_search_reorder", False),
|
||||
recompute_embeddings,
|
||||
dedup_node_dis,
|
||||
prune_ratio,
|
||||
batch_recompute,
|
||||
use_global_pruning,
|
||||
)
|
||||
|
||||
string_labels = [
|
||||
[str(int_label) for int_label in batch_labels] for batch_labels in labels
|
||||
|
||||
Reference in New Issue
Block a user