refactor: Unify examples interface with BaseRAGExample (#12)

* refactor: Unify examples interface with BaseRAGExample

- Create BaseRAGExample base class for all RAG examples
- Refactor 4 examples to use unified interface:
  - document_rag.py (replaces main_cli_example.py)
  - email_rag.py (replaces mail_reader_leann.py)
  - browser_rag.py (replaces google_history_reader_leann.py)
  - wechat_rag.py (replaces wechat_history_reader_leann.py)
- Maintain 100% parameter compatibility with original files
- Add interactive mode support for all examples
- Unify parameter names (--max-items replaces --max-emails/--max-entries)
- Update README.md with new examples usage
- Add PARAMETER_CONSISTENCY.md documenting all parameter mappings
- Keep main_cli_example.py for backward compatibility with migration notice

All default values, LeannBuilder parameters, and chunking settings
remain identical to ensure full compatibility with existing indexes.

* fix: Update CI tests for new unified examples interface

- Rename test_main_cli.py to test_document_rag.py
- Update all references from main_cli_example.py to document_rag.py
- Update tests/README.md documentation

The tests now properly test the new unified interface while maintaining
the same test coverage and functionality.

* fix: Fix pre-commit issues and update tests

- Fix import sorting and unused imports
- Update type annotations to use built-in types (list, dict) instead of typing.List/Dict
- Fix trailing whitespace and end-of-file issues
- Fix Chinese fullwidth comma to regular comma
- Update test_main_cli.py to test_document_rag.py
- Add backward compatibility test for main_cli_example.py
- Pass all pre-commit hooks (ruff, ruff-format, etc.)

* refactor: Remove old example scripts and migration references

- Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.)
- Remove migration hints and backward compatibility
- Update tests to use new unified examples directly
- Clean up all references to old script names
- Users now only see the new unified interface

* fix: Restore embedding-mode parameter to all examples

- All examples now have --embedding-mode parameter (unified interface benefit)
- Default is 'sentence-transformers' (consistent with original behavior)
- Users can now use OpenAI or MLX embeddings with any data source
- Maintains functional equivalence with original scripts

* docs: Improve parameter categorization in README

- Clearly separate core (shared) vs specific parameters
- Move LLM and embedding examples to 'Example Commands' section
- Add descriptive comments for all specific parameters
- Keep only truly data-source-specific parameters in specific sections

* docs: Make example commands more representative

- Add default values to parameter descriptions
- Replace generic examples with real-world use cases
- Focus on data-source-specific features in examples
- Remove redundant demonstrations of common parameters

* docs: Reorganize parameter documentation structure

- Move common parameters to a dedicated section before all examples
- Rename sections to 'X-Specific Arguments' for clarity
- Remove duplicate common parameters from individual examples
- Better information architecture for users

* docs: polish applications

* docs: Add CLI installation instructions

- Add two installation options: venv and global uv tool
- Clearly explain when to use each option
- Make CLI more accessible for daily use

* docs: Clarify CLI global installation process

- Explain the transition from venv to global installation
- Add upgrade command for global installation
- Make it clear that global install allows usage without venv activation

* docs: Add collapsible section for CLI installation

- Wrap CLI installation instructions in details/summary tags
- Keep consistent with other collapsible sections in README
- Improve document readability and navigation

* style: format

* docs: Fix collapsible sections

- Make Common Parameters collapsible (as it's lengthy reference material)
- Keep CLI Installation visible (important for users to see immediately)
- Better information hierarchy

* docs: Add introduction for Common Parameters section

- Add 'Flexible Configuration' heading with descriptive sentence
- Create parallel structure with 'Generation Model Setup' section
- Improve document flow and readability

* docs: nit

* fix: Fix issues in unified examples

- Add smart path detection for data directory
- Fix add_texts -> add_text method call
- Handle both running from project root and examples directory

* fix: Fix async/await and add_text issues in unified examples

- Remove incorrect await from chat.ask() calls (not async)
- Fix add_texts -> add_text method calls
- Verify search-complexity correctly maps to efSearch parameter
- All examples now run successfully

* feat: Address review comments

- Add complexity parameter to LeannChat initialization (default: search_complexity)
- Fix chunk-size default in README documentation (256, not 2048)
- Add more index building parameters as CLI arguments:
  - --backend-name (hnsw/diskann)
  - --graph-degree (default: 32)
  - --build-complexity (default: 64)
  - --no-compact (disable compact storage)
  - --no-recompute (disable embedding recomputation)
- Update README to document all new parameters

* feat: Add chunk-size parameters and improve file type filtering

- Add --chunk-size and --chunk-overlap parameters to all RAG examples
- Preserve original default values for each data source:
  - Document: 256/128 (optimized for general documents)
  - Email: 256/25 (smaller overlap for email threads)
  - Browser: 256/128 (standard for web content)
  - WeChat: 192/64 (smaller chunks for chat messages)
- Make --file-types optional filter instead of restriction in document_rag
- Update README to clarify interactive mode and parameter usage
- Fix LLM default model documentation (gpt-4o, not gpt-4o-mini)

* feat: Update documentation based on review feedback

- Add MLX embedding example to README
- Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README)
- Move chunk parameters to common parameters section
- Remove duplicate chunk parameters from document-specific section

* docs: Emphasize diverse data sources in examples/data description

* fix: update default embedding models for better performance

- Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2
- Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases
- all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data

* add response highlight

* change rebuild logic

* fix some example

* feat: check if k is larger than #docs

* fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture

* fix email wrong -1 to process all file

* refactor: reorgnize all examples/ and test/

* refactor: reorganize examples and add link checker

* fix: add init.py

* fix: handle certificate errors in link checker

* fix wechat

* merge

* docs: update README to use proper module imports for apps

- Change from 'python apps/xxx.py' to 'python -m apps.xxx'
- More professional and pythonic module calling
- Ensures proper module resolution and imports
- Better separation between apps/ (production tools) and examples/ (demos)

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
This commit is contained in:
Andy Lee
2025-08-03 23:06:24 -07:00
committed by GitHub
parent 54df6310c5
commit 8899734952
50 changed files with 1293 additions and 3193 deletions

View File

@@ -0,0 +1,3 @@
from .history import ChromeHistoryReader
__all__ = ["ChromeHistoryReader"]

View File

@@ -0,0 +1,186 @@
import os
import sqlite3
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChromeHistoryReader(BaseReader):
"""
Chrome browser history reader that extracts browsing data from SQLite database.
Reads Chrome history from the default Chrome profile location and creates documents
with embedded metadata similar to the email reader structure.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Chrome history data from the default Chrome profile location.
Args:
input_dir: Not used for Chrome history (kept for compatibility)
**load_kwargs:
max_count (int): Maximum amount of history entries to read.
chrome_profile_path (str): Custom path to Chrome profile directory.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
chrome_profile_path = load_kwargs.get("chrome_profile_path", None)
# Default Chrome profile path on macOS
if chrome_profile_path is None:
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return docs
try:
# Connect to the Chrome history database
print(f"Connecting to database: {history_db_path}")
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
# Query to get browsing history with metadata (removed created_time column)
query = """
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
ORDER BY last_visit_time DESC
"""
print(f"Executing query on database: {history_db_path}")
cursor.execute(query)
rows = cursor.fetchall()
print(f"Query returned {len(rows)} rows")
count = 0
for row in rows:
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
# Create document content with metadata embedded in text
doc_content = f"""
[Title]: {title}
[URL of the page]: {url}
[Last visited time]: {last_visit}
[Visit times]: {visit_count}
[Typed times]: {typed_count}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={"title": title[0:150]})
# if len(title) > 150:
# print(f"Title is too long: {title}")
docs.append(doc)
count += 1
conn.close()
print(f"Loaded {len(docs)} Chrome history documents")
except Exception as e:
print(f"Error reading Chrome history: {e}")
# add you may need to close your browser to make the database file available
# also highlight in red
print(
"\033[91mYou may need to close your browser to make the database file available\033[0m"
)
return docs
return docs
@staticmethod
def find_chrome_profiles() -> list[Path]:
"""
Find all Chrome profile directories.
Returns:
List of Path objects pointing to Chrome profile directories
"""
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
profile_dirs = []
if not chrome_base_path.exists():
print(f"Chrome directory not found at: {chrome_base_path}")
return profile_dirs
# Find all profile directories
for profile_dir in chrome_base_path.iterdir():
if profile_dir.is_dir() and profile_dir.name != "System Profile":
history_path = profile_dir / "History"
if history_path.exists():
profile_dirs.append(profile_dir)
print(f"Found Chrome profile: {profile_dir}")
print(f"Found {len(profile_dirs)} Chrome profiles")
return profile_dirs
@staticmethod
def export_history_to_file(
output_file: str = "chrome_history_export.txt", max_count: int = 1000
):
"""
Export Chrome history to a text file using the same SQL query format.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
"""
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return
try:
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
query = """
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
ORDER BY last_visit_time DESC
LIMIT ?
"""
cursor.execute(query, (max_count,))
rows = cursor.fetchall()
with open(output_file, "w", encoding="utf-8") as f:
for row in rows:
last_visit, url, title, visit_count, typed_count, hidden = row
f.write(
f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n"
)
conn.close()
print(f"Exported {len(rows)} history entries to {output_file}")
except Exception as e:
print(f"Error exporting Chrome history: {e}")

View File

@@ -0,0 +1,774 @@
import json
import os
import re
import subprocess
import time
from datetime import datetime
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class WeChatHistoryReader(BaseReader):
"""
WeChat chat history reader that extracts chat data from exported JSON files.
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
and creates documents with embedded metadata similar to the Chrome history reader structure.
Also includes utilities for automatic WeChat chat history export.
"""
def __init__(self) -> None:
"""Initialize."""
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
def check_wechat_running(self) -> bool:
"""Check if WeChat is currently running."""
try:
result = subprocess.run(["pgrep", "-f", "WeChat"], capture_output=True, text=True)
return result.returncode == 0
except Exception:
return False
def install_wechattweak(self) -> bool:
"""Install WeChatTweak CLI tool."""
try:
# Create wechat-exporter directory if it doesn't exist
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
if not wechattweak_path.exists():
print("Downloading WeChatTweak CLI...")
subprocess.run(
[
"curl",
"-L",
"-o",
str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli",
],
check=True,
)
# Make executable
wechattweak_path.chmod(0o755)
# Install WeChatTweak
print("Installing WeChatTweak...")
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
return True
except Exception as e:
print(f"Error installing WeChatTweak: {e}")
return False
def restart_wechat(self):
"""Restart WeChat to apply WeChatTweak."""
try:
print("Restarting WeChat...")
subprocess.run(["pkill", "-f", "WeChat"], check=False)
time.sleep(2)
subprocess.run(["open", "-a", "WeChat"], check=True)
time.sleep(5) # Wait for WeChat to start
except Exception as e:
print(f"Error restarting WeChat: {e}")
def check_api_available(self) -> bool:
"""Check if WeChatTweak API is available."""
try:
result = subprocess.run(
["curl", "-s", "http://localhost:48065/wechat/allcontacts"],
capture_output=True,
text=True,
timeout=5,
)
return result.returncode == 0 and result.stdout.strip()
except Exception:
return False
def _extract_readable_text(self, content: str) -> str:
"""
Extract readable text from message content, removing XML and system messages.
Args:
content: The raw message content (can be string or dict)
Returns:
Cleaned, readable text
"""
if not content:
return ""
# Handle dictionary content (like quoted messages)
if isinstance(content, dict):
# Extract text from dictionary structure
text_parts = []
if "title" in content:
text_parts.append(str(content["title"]))
if "quoted" in content:
text_parts.append(str(content["quoted"]))
if "content" in content:
text_parts.append(str(content["content"]))
if "text" in content:
text_parts.append(str(content["text"]))
if text_parts:
return " | ".join(text_parts)
else:
# If we can't extract meaningful text from dict, return empty
return ""
# Handle string content
if not isinstance(content, str):
return ""
# Remove common prefixes like "wxid_xxx:\n"
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If it's just XML or system message, return empty
if clean_content.strip().startswith("<") or "recalled a message" in clean_content:
return ""
return clean_content.strip()
def _is_text_message(self, content: str) -> bool:
"""
Check if a message contains readable text content.
Args:
content: The message content (can be string or dict)
Returns:
True if the message contains readable text, False otherwise
"""
if not content:
return False
# Handle dictionary content
if isinstance(content, dict):
# Check if dict has any readable text fields
text_fields = ["title", "quoted", "content", "text"]
for field in text_fields:
if content.get(field):
return True
return False
# Handle string content
if not isinstance(content, str):
return False
# Skip image messages (contain XML with img tags)
if "<img" in content and "cdnurl" in content:
return False
# Skip emoji messages (contain emoji XML tags)
if "<emoji" in content and "productid" in content:
return False
# Skip voice messages
if "<voice" in content:
return False
# Skip video messages
if "<video" in content:
return False
# Skip file messages
if "<appmsg" in content and "appid" in content:
return False
# Skip system messages (like "recalled a message")
if "recalled a message" in content:
return False
# Check if there's actual readable text (not just XML or system messages)
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If after cleaning we have meaningful text, consider it readable
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith("<"):
return True
return False
def _concatenate_messages(
self,
messages: list[dict],
max_length: int = 128,
time_window_minutes: int = 30,
overlap_messages: int = 0,
) -> list[dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
"""
if not messages:
return []
concatenated_groups = []
current_group = []
current_length = 0
last_timestamp = None
for message in messages:
# Extract message info
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
message.get("fromUser", "")
message.get("toUser", "")
message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Skip empty messages
if not readable_text.strip():
continue
# Check time window constraint (only if time_window_minutes != -1)
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group:
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Check length constraint (only if max_length != -1)
message_length = len(readable_text)
if max_length != -1 and current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it exists
if current_group:
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
return concatenated_groups
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> str:
"""
Create concatenated content from a group of messages.
Args:
message_group: Dictionary containing messages and metadata
contact_name: Name of the contact
Returns:
Formatted concatenated content
"""
messages = message_group["messages"]
start_time = message_group["start_time"]
end_time = message_group["end_time"]
# Format timestamps
if start_time:
try:
start_timestamp = datetime.fromtimestamp(start_time)
start_time_str = start_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
start_time_str = str(start_time)
else:
start_time_str = "Unknown"
if end_time:
try:
end_timestamp = datetime.fromtimestamp(end_time)
end_time_str = end_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
end_time_str = str(end_time)
else:
end_time_str = "Unknown"
# Build concatenated message content
message_parts = []
for message in messages:
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Format individual message
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
# change to YYYY-MM-DD HH:MM:SS
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
sender = "[Me]" if is_sent_from_self else "[Contact]"
message_parts.append(f"({time_str}) {sender}: {readable_text}")
concatenated_text = "\n".join(message_parts)
# Create final document content
doc_content = f"""
Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group["total_length"]} chars):
{concatenated_text}
"""
# TODO @yichuan give better format and rich info here!
doc_content = f"""
{concatenated_text}
"""
return doc_content, contact_name
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load WeChat chat history data from exported JSON files.
Args:
input_dir: Directory containing exported WeChat JSON files
**load_kwargs:
max_count (int): Maximum amount of chat entries to read.
wechat_export_dir (str): Custom path to WeChat export directory.
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
concatenate_messages (bool): Whether to concatenate messages based on length rules.
max_length (int): Maximum length for concatenated message groups (default: 1000).
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
include_non_text = load_kwargs.get("include_non_text", False)
concatenate_messages = load_kwargs.get("concatenate_messages", False)
max_length = load_kwargs.get("max_length", 1000)
time_window_minutes = load_kwargs.get("time_window_minutes", 30)
# Default WeChat export path
if wechat_export_dir is None:
wechat_export_dir = "./wechat_export_test"
if not os.path.exists(wechat_export_dir):
print(f"WeChat export directory not found at: {wechat_export_dir}")
return docs
try:
# Find all JSON files in the export directory
json_files = list(Path(wechat_export_dir).glob("*.json"))
print(f"Found {len(json_files)} WeChat chat history files")
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, encoding="utf-8") as f:
chat_data = json.load(f)
# Extract contact name from filename
contact_name = json_file.stem
if concatenate_messages:
# Filter messages to only include readable text messages
readable_messages = []
for message in chat_data:
try:
content = message.get("content", "")
if not include_non_text and not self._is_text_message(content):
continue
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
readable_messages.append(message)
except Exception as e:
print(f"Error processing message in {json_file}: {e}")
continue
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
max_length=max_length,
time_window_minutes=time_window_minutes,
overlap_messages=0, # No overlap between groups
)
# Create documents from concatenated groups
for message_group in message_groups:
if count >= max_count and max_count > 0:
break
doc_content, contact_name = self._create_concatenated_content(
message_group, contact_name
)
doc = Document(
text=doc_content,
metadata={"contact_name": contact_name},
)
docs.append(doc)
count += 1
print(
f"Created {len(message_groups)} concatenated message groups for {contact_name}"
)
else:
# Original single-message processing
for message in chat_data:
if count >= max_count and max_count > 0:
break
# Extract message information
message.get("fromUser", "")
message.get("toUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Handle content that might be dict or string
try:
# Check if this is a readable text message
if not include_non_text and not self._is_text_message(content):
continue
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
except Exception as e:
# Skip messages that cause processing errors
print(f"Error processing message in {json_file}: {e}")
continue
# Convert timestamp to readable format
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
# Create document content with metadata header and contact info
doc_content = f"""
Contact: {contact_name}
Is sent from self: {is_sent_from_self}
Time: {time_str}
Message: {readable_text if readable_text else message_text}
"""
# Create document with embedded metadata
doc = Document(
text=doc_content, metadata={"contact_name": contact_name}
)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error reading {json_file}: {e}")
continue
print(f"Loaded {len(docs)} WeChat chat documents")
except Exception as e:
print(f"Error reading WeChat history: {e}")
return docs
return docs
@staticmethod
def find_wechat_export_dirs() -> list[Path]:
"""
Find all WeChat export directories.
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for common export directory names
possible_dirs = [
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export"),
]
for export_dir in possible_dirs:
if export_dir.exists() and export_dir.is_dir():
json_files = list(export_dir.glob("*.json"))
if json_files:
export_dirs.append(export_dir)
print(
f"Found WeChat export directory: {export_dir} with {len(json_files)} files"
)
print(f"Found {len(export_dirs)} WeChat export directories")
return export_dirs
@staticmethod
def export_chat_to_file(
output_file: str = "wechat_chat_export.txt",
max_count: int = 1000,
export_dir: str | None = None,
include_non_text: bool = False,
):
"""
Export WeChat chat history to a text file.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
export_dir: Directory containing WeChat JSON files
include_non_text: Whether to include non-text messages
"""
if export_dir is None:
export_dir = "./wechat_export_test"
if not os.path.exists(export_dir):
print(f"WeChat export directory not found at: {export_dir}")
return
try:
json_files = list(Path(export_dir).glob("*.json"))
with open(output_file, "w", encoding="utf-8") as f:
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, encoding="utf-8") as json_f:
chat_data = json.load(json_f)
contact_name = json_file.stem
f.write(f"\n=== Chat with {contact_name} ===\n")
for message in chat_data:
if count >= max_count and max_count > 0:
break
from_user = message.get("fromUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
# Skip non-text messages unless requested
if not include_non_text:
reader = WeChatHistoryReader()
if not reader._is_text_message(content):
continue
readable_text = reader._extract_readable_text(content)
if not readable_text:
continue
message_text = readable_text
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
f.write(f"[{time_str}] {from_user}: {message_text}\n")
count += 1
except Exception as e:
print(f"Error processing {json_file}: {e}")
continue
print(f"Exported {count} chat entries to {output_file}")
except Exception as e:
print(f"Error exporting WeChat chat history: {e}")
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Path | None:
"""
Export WeChat chat history using wechat-exporter tool.
Args:
export_dir: Directory to save exported chat history
Returns:
Path to export directory if successful, None otherwise
"""
try:
import subprocess
import sys
# Create export directory
export_path = Path(export_dir)
export_path.mkdir(exist_ok=True)
print(f"Exporting WeChat chat history to {export_path}...")
# Check if wechat-exporter directory exists
if not self.wechat_exporter_dir.exists():
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
return None
# Install requirements if needed
requirements_file = self.wechat_exporter_dir / "requirements.txt"
if requirements_file.exists():
print("Installing wechat-exporter requirements...")
subprocess.run(["uv", "pip", "install", "-r", str(requirements_file)], check=True)
# Run the export command
print("Running wechat-exporter...")
result = subprocess.run(
[
sys.executable,
str(self.wechat_exporter_dir / "main.py"),
"export-all",
str(export_path),
],
capture_output=True,
text=True,
check=True,
)
print("Export command output:")
print(result.stdout)
if result.stderr:
print("Export errors:")
print(result.stderr)
# Check if export was successful
if export_path.exists() and any(export_path.glob("*.json")):
json_files = list(export_path.glob("*.json"))
print(
f"Successfully exported {len(json_files)} chat history files to {export_path}"
)
return export_path
else:
print("Export completed but no JSON files found")
return None
except subprocess.CalledProcessError as e:
print(f"Export command failed: {e}")
print(f"Command output: {e.stdout}")
print(f"Command errors: {e.stderr}")
return None
except Exception as e:
print(f"Export failed: {e}")
print("Please ensure WeChat is running and WeChatTweak is installed.")
return None
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> list[Path]:
"""
Find existing WeChat exports or create new ones.
Args:
export_dir: Directory to save exported chat history if needed
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for existing exports in common locations
possible_export_dirs = [
Path("./wechat_database_export"),
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export"),
]
for export_dir_path in possible_export_dirs:
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
export_dirs.append(export_dir_path)
print(f"Found existing export: {export_dir_path}")
# If no existing exports, try to export automatically
if not export_dirs:
print("No existing WeChat exports found. Starting direct export...")
# Try to export using wechat-exporter
exported_path = self.export_wechat_chat_history(export_dir)
if exported_path:
export_dirs = [exported_path]
else:
print(
"Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed."
)
return export_dirs