fix: run faiss in subprocess to prevent kmp

This commit is contained in:
Andy Lee
2025-07-14 00:29:21 -07:00
parent cf1cbafa78
commit 8b4654921b
2 changed files with 86 additions and 112 deletions

View File

@@ -4,10 +4,12 @@ Memory comparison between Faiss HNSW and LEANN HNSW backend
"""
import logging
import os
import sys
import time
import psutil
import gc
import subprocess
# Setup logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
@@ -50,104 +52,40 @@ class MemoryTracker:
def test_faiss_hnsw():
"""Test Faiss HNSW Vector Store"""
"""Test Faiss HNSW Vector Store in subprocess"""
print("\n" + "=" * 50)
print("TESTING FAISS HNSW VECTOR STORE")
print("=" * 50)
try:
import faiss
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
Settings,
)
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
except ImportError as e:
print(f"❌ Missing dependencies for Faiss test: {e}")
print("Please install:")
print(" pip install faiss-cpu")
print(" pip install llama-index-vector-stores-faiss")
print(" pip install llama-index-embeddings-huggingface")
result = subprocess.run([sys.executable, "examples/test_faiss_only.py"], capture_output=True, text=True, timeout=300)
print(result.stdout)
if result.stderr:
print("Stderr:", result.stderr)
if result.returncode != 0:
return {
"peak_memory": float("inf"),
"error": f"Process failed with code {result.returncode}",
}
# Parse peak memory from output
lines = result.stdout.split('\n')
peak_memory = 0.0
for line in lines:
if "Peak Memory:" in line:
peak_memory = float(line.split("Peak Memory:")[1].split("MB")[0].strip())
return {"peak_memory": peak_memory}
except Exception as e:
return {
"build_time": float("inf"),
"peak_memory": float("inf"),
"error": str(e),
}
tracker = MemoryTracker("Faiss HNSW")
# Import and setup
tracker.checkpoint("Initial")
tracker.checkpoint("After imports")
# Setup embedding model (same as LEANN)
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
Settings.embed_model = embed_model
tracker.checkpoint("After embedding model setup")
# Create Faiss index
d = 768 # facebook/contriever embedding dimension
faiss_index = faiss.IndexHNSWFlat(d, 32) # M=32 same as LEANN
faiss_index.hnsw.efConstruction = 64 # same as LEANN complexity
tracker.checkpoint("After Faiss index creation")
# Load documents
documents = SimpleDirectoryReader(
"examples/data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data()
tracker.checkpoint("After document loading")
# Create vector store and index
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Build index
print("Building Faiss HNSW index...")
start_time = time.time()
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
build_time = time.time() - start_time
tracker.checkpoint("After index building")
# Save index
index.storage_context.persist("./storage_faiss")
tracker.checkpoint("After index saving")
# Test queries
query_engine = index.as_query_engine(similarity_top_k=20)
print("Running queries...")
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
for i, query in enumerate(queries):
start_time = time.time()
response = query_engine.query(query)
query_time = time.time() - start_time
print(f"Query {i + 1} time: {query_time:.3f}s")
tracker.checkpoint(f"After query {i + 1}")
peak_memory = tracker.summary()
# Clean up
del index, vector_store, storage_context, faiss_index
gc.collect()
return {"build_time": build_time, "peak_memory": peak_memory, "tracker": tracker}
def test_leann_hnsw():
"""Test LEANN HNSW Backend"""
@@ -213,13 +151,11 @@ def test_leann_hnsw():
tracker.checkpoint("After builder setup")
print("Building LEANN HNSW index...")
start_time = time.time()
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
build_time = time.time() - start_time
tracker.checkpoint("After index building")
@@ -278,22 +214,37 @@ def test_leann_hnsw():
for i, query in enumerate(queries):
start_time = time.time()
response = chat.ask(
query, top_k=20, recompute_beighbor_embeddings=True, complexity=32
)
_ = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True, complexity=32)
query_time = time.time() - start_time
print(f"Query {i + 1} time: {query_time:.3f}s")
tracker.checkpoint(f"After query {i + 1}")
peak_memory = tracker.summary()
# Clean up
del chat, builder
# Get storage size before cleanup - only index files (exclude text data)
storage_size = 0
if INDEX_DIR.exists():
shutil.rmtree(INDEX_DIR)
total_size = 0
for dirpath, dirnames, filenames in os.walk(str(INDEX_DIR)):
for filename in filenames:
# Only count actual index files, skip text data and backups
if filename.endswith(('.old', '.tmp', '.bak', '.jsonl', '.json')):
continue
# Count .index, .idx, .map files (actual index structures)
if filename.endswith(('.index', '.idx', '.map')):
filepath = os.path.join(dirpath, filename)
total_size += os.path.getsize(filepath)
storage_size = total_size / (1024 * 1024) # Convert to MB
# Clean up (but keep directory for storage size comparison)
del chat, builder
gc.collect()
return {"build_time": build_time, "peak_memory": peak_memory, "tracker": tracker}
return {
"peak_memory": peak_memory,
"storage_size": storage_size,
"tracker": tracker,
}
def main():
@@ -316,36 +267,61 @@ def main():
print("FINAL COMPARISON")
print("=" * 60)
# Get storage sizes
faiss_storage_size = 0
leann_storage_size = leann_results.get("storage_size", 0)
# Get Faiss storage size using Python
if os.path.exists("./storage_faiss"):
total_size = 0
for dirpath, dirnames, filenames in os.walk("./storage_faiss"):
for filename in filenames:
filepath = os.path.join(dirpath, filename)
total_size += os.path.getsize(filepath)
faiss_storage_size = total_size / (1024 * 1024) # Convert to MB
# LEANN storage size is already captured in leann_results
print(f"Faiss HNSW:")
if "error" in faiss_results:
print(f" ❌ Failed: {faiss_results['error']}")
else:
print(f" Build Time: {faiss_results['build_time']:.3f}s")
print(f" Peak Memory: {faiss_results['peak_memory']:.1f} MB")
print(f" Storage Size: {faiss_storage_size:.1f} MB")
print(f"\nLEANN HNSW:")
print(f" Build Time: {leann_results['build_time']:.3f}s")
print(f" Peak Memory: {leann_results['peak_memory']:.1f} MB")
print(f" Storage Size: {leann_storage_size:.1f} MB")
# Calculate improvements only if Faiss test succeeded
if "error" not in faiss_results:
time_ratio = faiss_results["build_time"] / leann_results["build_time"]
memory_ratio = faiss_results["peak_memory"] / leann_results["peak_memory"]
print(f"\nLEANN vs Faiss:")
print(
f" Build Time: {time_ratio:.2f}x {'faster' if time_ratio > 1 else 'slower'}"
)
print(
f" Memory Usage: {memory_ratio:.2f}x {'less' if memory_ratio > 1 else 'more'}"
)
print(f" Memory Usage: {memory_ratio:.1f}x less")
# Storage comparison - be clear about which is larger
if leann_storage_size > faiss_storage_size:
storage_ratio = leann_storage_size / faiss_storage_size
print(f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)")
elif faiss_storage_size > leann_storage_size:
storage_ratio = faiss_storage_size / leann_storage_size
print(f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)")
else:
print(f" Storage Size: similar")
print(
f"\nMemory Savings: {faiss_results['peak_memory'] - leann_results['peak_memory']:.1f} MB"
)
print(f"\nSavings:")
memory_saving = faiss_results['peak_memory'] - leann_results['peak_memory']
storage_diff = faiss_storage_size - leann_storage_size
print(f" Memory: {memory_saving:.1f} MB")
if storage_diff >= 0:
print(f" Storage: {storage_diff:.1f} MB saved")
else:
print(f" Storage: {abs(storage_diff):.1f} MB additional used")
else:
print(f"\n✅ LEANN HNSW ran successfully!")
print(f"📊 LEANN Memory Usage: {leann_results['peak_memory']:.1f} MB")
print(f"📊 LEANN Storage Size: {leann_storage_size:.1f} MB")
if __name__ == "__main__":

View File

@@ -485,8 +485,6 @@ def create_hnsw_embedding_server(
try:
request_payload = msgpack.unpackb(message_bytes)
print(f"DEBUG: Raw request_payload: {request_payload}")
print(f"DEBUG: request_payload type: {type(request_payload)}")
if isinstance(request_payload, list):
print(f"DEBUG: request_payload length: {len(request_payload)}")
for i, item in enumerate(request_payload):