feat: support more embedders
This commit is contained in:
@@ -3,11 +3,17 @@ Simple demo showing basic leann usage
|
||||
Run: uv run python examples/simple_demo.py
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
|
||||
def main():
|
||||
print("=== Leann Simple Demo ===")
|
||||
parser = argparse.ArgumentParser(description="Simple demo of Leann with selectable embedding models.")
|
||||
parser.add_argument("--embedding_model", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.")
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
|
||||
print()
|
||||
|
||||
# Sample knowledge base
|
||||
@@ -24,10 +30,11 @@ def main():
|
||||
|
||||
print("1. Building index (no embeddings stored)...")
|
||||
builder = LeannBuilder(
|
||||
embedding_model="sentence-transformers/all-mpnet-base-v2",
|
||||
prune_ratio=0.7, # Keep 30% of connections
|
||||
embedding_model=args.embedding_model,
|
||||
backend_name="hnsw",
|
||||
)
|
||||
builder.add_chunks(chunks)
|
||||
for chunk in chunks:
|
||||
builder.add_text(chunk)
|
||||
builder.build_index("demo_knowledge.leann")
|
||||
print()
|
||||
|
||||
@@ -49,14 +56,7 @@ def main():
|
||||
print(f" Text: {result.text[:100]}...")
|
||||
print()
|
||||
|
||||
print("3. Memory stats:")
|
||||
stats = searcher.get_memory_stats()
|
||||
print(f" Cache size: {stats.embedding_cache_size}")
|
||||
print(f" Cache memory: {stats.embedding_cache_memory_mb:.1f} MB")
|
||||
print(f" Total chunks: {stats.total_chunks}")
|
||||
print()
|
||||
|
||||
print("4. Interactive chat demo:")
|
||||
print("3. Interactive chat demo:")
|
||||
print(" (Note: Requires OpenAI API key for real responses)")
|
||||
|
||||
chat = LeannChat("demo_knowledge.leann")
|
||||
|
||||
@@ -143,20 +143,16 @@ class DiskannBackend(LeannBackendFactoryInterface):
|
||||
path = Path(index_path)
|
||||
meta_path = path.parent / f"{path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
||||
|
||||
with open(meta_path, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
model = SentenceTransformer(meta.get("embedding_model"))
|
||||
dimensions = model.get_sentence_embedding_dimension()
|
||||
kwargs['dimensions'] = dimensions
|
||||
except ImportError:
|
||||
raise ImportError("sentence-transformers is required to infer embedding dimensions. Please install it.")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Could not load SentenceTransformer model to get dimension: {e}")
|
||||
|
||||
dimensions = meta.get("dimensions")
|
||||
if not dimensions:
|
||||
raise ValueError("Dimensions not found in Leann metadata. Please rebuild the index with a newer version of Leann.")
|
||||
|
||||
kwargs['dimensions'] = dimensions
|
||||
return DiskannSearcher(index_path, **kwargs)
|
||||
|
||||
class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
@@ -44,7 +44,7 @@ class HNSWEmbeddingServerManager:
|
||||
self.server_port = None
|
||||
atexit.register(self.stop_server)
|
||||
|
||||
def start_server(self, port=5556, model_name="sentence-transformers/all-mpnet-base-v2", passages_file=None):
|
||||
def start_server(self, port=5556, model_name="sentence-transformers/all-mpnet-base-v2", passages_file=None, distance_metric="mips"):
|
||||
"""
|
||||
Start the HNSW embedding server process.
|
||||
|
||||
@@ -52,6 +52,7 @@ class HNSWEmbeddingServerManager:
|
||||
port: ZMQ port for the server
|
||||
model_name: Name of the embedding model to use
|
||||
passages_file: Optional path to passages JSON file
|
||||
distance_metric: The distance metric to use
|
||||
"""
|
||||
if self.server_process and self.server_process.poll() is None:
|
||||
print(f"INFO: Reusing existing HNSW server process for this session (PID {self.server_process.pid})")
|
||||
@@ -69,7 +70,8 @@ class HNSWEmbeddingServerManager:
|
||||
sys.executable,
|
||||
"-m", "leann_backend_hnsw.hnsw_embedding_server",
|
||||
"--zmq-port", str(port),
|
||||
"--model-name", model_name
|
||||
"--model-name", model_name,
|
||||
"--distance-metric", distance_metric
|
||||
]
|
||||
|
||||
if passages_file:
|
||||
@@ -150,21 +152,16 @@ class HNSWBackend(LeannBackendFactoryInterface):
|
||||
path = Path(index_path)
|
||||
meta_path = path.parent / f"{path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
||||
|
||||
with open(meta_path, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
model = SentenceTransformer(meta.get("embedding_model"))
|
||||
dimensions = model.get_sentence_embedding_dimension()
|
||||
kwargs['dimensions'] = dimensions
|
||||
except ImportError:
|
||||
raise ImportError("sentence-transformers is required to infer embedding dimensions. Please install it.")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Could not load SentenceTransformer model to get dimension: {e}")
|
||||
|
||||
dimensions = meta.get("dimensions")
|
||||
if not dimensions:
|
||||
raise ValueError("Dimensions not found in Leann metadata. Please rebuild the index with a newer version of Leann.")
|
||||
|
||||
kwargs['dimensions'] = dimensions
|
||||
return HNSWSearcher(index_path, **kwargs)
|
||||
|
||||
class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
@@ -172,10 +169,8 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
self.build_params = kwargs.copy()
|
||||
|
||||
# --- Configuration defaults with standardized names ---
|
||||
# Apply defaults and write them back to the build_params dict
|
||||
# so they can be saved in the metadata file by LeannBuilder.
|
||||
self.is_compact = self.build_params.setdefault("is_compact", True)
|
||||
self.is_recompute = self.build_params.setdefault("is_recompute", True) # Default: prune embeddings
|
||||
self.is_recompute = self.build_params.setdefault("is_recompute", True)
|
||||
|
||||
# --- Additional Options ---
|
||||
self.is_skip_neighbors = self.build_params.setdefault("is_skip_neighbors", False)
|
||||
@@ -186,6 +181,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
self.M = self.build_params.setdefault("M", 32)
|
||||
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
|
||||
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
|
||||
self.dimensions = self.build_params.get("dimensions")
|
||||
|
||||
if self.is_skip_neighbors and not self.is_compact:
|
||||
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
||||
@@ -210,30 +206,25 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
metric_str = self.distance_metric.lower()
|
||||
metric_enum = get_metric_map().get(metric_str)
|
||||
print('metric_enum', metric_enum,' metric_str', metric_str)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
||||
|
||||
M = self.M
|
||||
efConstruction = self.efConstruction
|
||||
dim = data.shape[1]
|
||||
dim = self.dimensions
|
||||
if not dim:
|
||||
dim = data.shape[1]
|
||||
|
||||
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
|
||||
|
||||
try:
|
||||
if metric_enum == faiss.METRIC_INNER_PRODUCT:
|
||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
||||
else: # L2
|
||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
||||
|
||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
||||
index.hnsw.efConstruction = efConstruction
|
||||
|
||||
if metric_str == "cosine":
|
||||
faiss.normalize_L2(data)
|
||||
|
||||
print('starting to add vectors to index')
|
||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||
print('vectors added to index')
|
||||
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
faiss.write_index(index, str(index_file))
|
||||
@@ -243,7 +234,6 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
|
||||
# Generate passages file for recompute mode
|
||||
if self.is_recompute:
|
||||
self._generate_passages_file(index_dir, index_prefix, **kwargs)
|
||||
|
||||
@@ -423,13 +413,11 @@ class HNSWSearcher(LeannBackendSearcherInterface):
|
||||
|
||||
# Apply additional configuration options with strict validation
|
||||
hnsw_config.is_skip_neighbors = self.config.get("is_skip_neighbors", False)
|
||||
# If index is pruned, force recompute mode regardless of user setting
|
||||
hnsw_config.is_recompute = self.is_pruned or self.config.get("is_recompute", False)
|
||||
hnsw_config.disk_cache_ratio = self.config.get("disk_cache_ratio", 0.0)
|
||||
hnsw_config.external_storage_path = self.config.get("external_storage_path")
|
||||
hnsw_config.zmq_port = self.config.get("zmq_port", 5557)
|
||||
|
||||
# CRITICAL ASSERTION: If index is pruned, recompute MUST be enabled
|
||||
if self.is_pruned and not hnsw_config.is_recompute:
|
||||
raise RuntimeError("Index is pruned (embeddings removed) but recompute is disabled. This is impossible - recompute must be enabled for pruned indices.")
|
||||
|
||||
@@ -487,7 +475,7 @@ class HNSWSearcher(LeannBackendSearcherInterface):
|
||||
if _check_port(zmq_port):
|
||||
print(f"INFO: Embedding server already running on port {zmq_port}")
|
||||
else:
|
||||
if not self.embedding_server_manager.start_server(zmq_port, embedding_model, passages_file):
|
||||
if not self.embedding_server_manager.start_server(zmq_port, embedding_model, passages_file, self.metric_str):
|
||||
raise RuntimeError(f"Failed to start HNSW embedding server on port {zmq_port}")
|
||||
|
||||
# Give server extra time to fully initialize
|
||||
|
||||
@@ -85,6 +85,7 @@ def create_hnsw_embedding_server(
|
||||
max_batch_size: int = 128,
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
custom_max_length_param: Optional[int] = None,
|
||||
distance_metric: str = "mips",
|
||||
):
|
||||
"""
|
||||
Create and start a ZMQ-based embedding server for HNSW backend.
|
||||
@@ -100,6 +101,7 @@ def create_hnsw_embedding_server(
|
||||
max_batch_size: Maximum batch size for processing
|
||||
model_name: Transformer model name
|
||||
custom_max_length_param: Custom max sequence length
|
||||
distance_metric: The distance metric to use
|
||||
"""
|
||||
print(f"Loading tokenizer for {model_name}...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
@@ -222,6 +224,7 @@ def create_hnsw_embedding_server(
|
||||
def process_batch(texts_batch, ids_batch, missing_ids):
|
||||
"""Process a batch of texts and return embeddings"""
|
||||
_is_e5_model = "e5" in model_name.lower()
|
||||
_is_bge_model = "bge" in model_name.lower()
|
||||
batch_size = len(texts_batch)
|
||||
|
||||
# E5 model preprocessing
|
||||
@@ -262,7 +265,9 @@ def create_hnsw_embedding_server(
|
||||
out = model(enc["input_ids"], enc["attention_mask"])
|
||||
|
||||
with pool_timer.timing():
|
||||
if not hasattr(out, 'last_hidden_state'):
|
||||
if _is_bge_model:
|
||||
pooled_embeddings = out.last_hidden_state[:, 0]
|
||||
elif not hasattr(out, 'last_hidden_state'):
|
||||
if isinstance(out, torch.Tensor) and len(out.shape) == 2:
|
||||
pooled_embeddings = out
|
||||
else:
|
||||
@@ -279,7 +284,7 @@ def create_hnsw_embedding_server(
|
||||
pooled_embeddings = sum_embeddings / sum_mask
|
||||
|
||||
final_embeddings = pooled_embeddings
|
||||
if _is_e5_model:
|
||||
if _is_e5_model or _is_bge_model:
|
||||
with norm_timer.timing():
|
||||
final_embeddings = F.normalize(pooled_embeddings, p=2, dim=1)
|
||||
|
||||
@@ -408,14 +413,14 @@ def create_hnsw_embedding_server(
|
||||
calc_timer = DeviceTimer("distance calculation", device)
|
||||
with calc_timer.timing():
|
||||
with torch.no_grad():
|
||||
if is_similarity_metric():
|
||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy()
|
||||
query_np = query_tensor.cpu().numpy()
|
||||
distances = -np.dot(node_embeddings_np, query_np)
|
||||
else:
|
||||
if distance_metric == "l2":
|
||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy().astype(np.float32)
|
||||
query_np = query_tensor.cpu().numpy().astype(np.float32)
|
||||
distances = np.sum(np.square(node_embeddings_np - query_np.reshape(1, -1)), axis=1)
|
||||
else: # mips or cosine
|
||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy()
|
||||
query_np = query_tensor.cpu().numpy()
|
||||
distances = -np.dot(node_embeddings_np, query_np)
|
||||
calc_timer.print_elapsed()
|
||||
|
||||
try:
|
||||
@@ -572,6 +577,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="Embedding model name")
|
||||
parser.add_argument("--custom-max-length", type=int, default=None, help="Override model's default max sequence length")
|
||||
parser.add_argument("--distance-metric", type=str, default="mips", help="Distance metric to use")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -586,4 +592,5 @@ if __name__ == "__main__":
|
||||
max_batch_size=args.max_batch_size,
|
||||
model_name=args.model_name,
|
||||
custom_max_length_param=args.custom_max_length,
|
||||
distance_metric=args.distance_metric,
|
||||
)
|
||||
17
packages/leann-core/src/leann/__init__.py
Normal file
17
packages/leann-core/src/leann/__init__.py
Normal file
@@ -0,0 +1,17 @@
|
||||
# This file makes the 'leann' directory a Python package.
|
||||
|
||||
from .api import LeannBuilder, LeannSearcher, LeannChat, SearchResult
|
||||
|
||||
# Import backends to ensure they are registered
|
||||
try:
|
||||
import leann_backend_hnsw
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
import leann_backend_diskann
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
__all__ = ['LeannBuilder', 'LeannSearcher', 'LeannChat', 'SearchResult']
|
||||
@@ -6,22 +6,69 @@ import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
import openai
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
# --- Helper Functions for Embeddings ---
|
||||
|
||||
def _get_openai_client():
|
||||
"""Initializes and returns an OpenAI client, ensuring the API key is set."""
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError("OPENAI_API_KEY environment variable not set, which is required for OpenAI models.")
|
||||
return openai.OpenAI(api_key=api_key)
|
||||
|
||||
def _is_openai_model(model_name: str) -> bool:
|
||||
"""Checks if the model is likely an OpenAI embedding model."""
|
||||
# This is a simple check, can be improved with a more robust list.
|
||||
return "ada" in model_name or "babbage" in model_name or model_name.startswith("text-embedding-")
|
||||
|
||||
def _compute_embeddings(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
# TODO: use a better embedding model
|
||||
model = SentenceTransformer(model_name)
|
||||
print(f"INFO: Computing embeddings for {len(chunks)} chunks using '{model_name}'...")
|
||||
embeddings = model.encode(chunks, show_progress_bar=True)
|
||||
"""Computes embeddings for a list of text chunks using either SentenceTransformers or OpenAI."""
|
||||
if _is_openai_model(model_name):
|
||||
print(f"INFO: Computing embeddings for {len(chunks)} chunks using OpenAI model '{model_name}'...")
|
||||
client = _get_openai_client()
|
||||
response = client.embeddings.create(model=model_name, input=chunks)
|
||||
embeddings = [item.embedding for item in response.data]
|
||||
else:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
model = SentenceTransformer(model_name)
|
||||
print(f"INFO: Computing embeddings for {len(chunks)} chunks using SentenceTransformer model '{model_name}'...")
|
||||
embeddings = model.encode(chunks, show_progress_bar=True)
|
||||
|
||||
return np.asarray(embeddings, dtype=np.float32)
|
||||
|
||||
def _get_embedding_dimensions(model_name: str) -> int:
|
||||
"""Gets the embedding dimensions for a given model."""
|
||||
print(f"INFO: Calculating dimensions for model '{model_name}'...")
|
||||
if _is_openai_model(model_name):
|
||||
client = _get_openai_client()
|
||||
response = client.embeddings.create(model=model_name, input=["dummy text"])
|
||||
return len(response.data[0].embedding)
|
||||
else:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
model = SentenceTransformer(model_name)
|
||||
dimension = model.get_sentence_embedding_dimension()
|
||||
if dimension is None:
|
||||
raise ValueError(f"Model '{model_name}' does not have a valid embedding dimension.")
|
||||
return dimension
|
||||
|
||||
|
||||
@dataclass
|
||||
class SearchResult:
|
||||
"""Represents a single search result."""
|
||||
id: int
|
||||
score: float
|
||||
text: str
|
||||
metadata: Dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
# --- Core Classes ---
|
||||
|
||||
class LeannBuilder:
|
||||
"""
|
||||
The builder is responsible for building the index, it will compute the embeddings and then build the index.
|
||||
It will also save the metadata of the index.
|
||||
"""
|
||||
def __init__(self, backend_name: str, embedding_model: str = "sentence-transformers/all-mpnet-base-v2", **backend_kwargs):
|
||||
def __init__(self, backend_name: str, embedding_model: str = "sentence-transformers/all-mpnet-base-v2", dimensions: Optional[int] = None, **backend_kwargs):
|
||||
self.backend_name = backend_name
|
||||
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
@@ -29,6 +76,7 @@ class LeannBuilder:
|
||||
self.backend_factory = backend_factory
|
||||
|
||||
self.embedding_model = embedding_model
|
||||
self.dimensions = dimensions
|
||||
self.backend_kwargs = backend_kwargs
|
||||
self.chunks: List[Dict[str, Any]] = []
|
||||
print(f"INFO: LeannBuilder initialized with '{backend_name}' backend.")
|
||||
@@ -40,12 +88,18 @@ class LeannBuilder:
|
||||
if not self.chunks:
|
||||
raise ValueError("No chunks added. Use add_text() first.")
|
||||
|
||||
if self.dimensions is None:
|
||||
self.dimensions = _get_embedding_dimensions(self.embedding_model)
|
||||
print(f"INFO: Auto-detected dimensions for '{self.embedding_model}': {self.dimensions}")
|
||||
|
||||
texts_to_embed = [c["text"] for c in self.chunks]
|
||||
embeddings = _compute_embeddings(texts_to_embed, self.embedding_model)
|
||||
|
||||
builder_instance = self.backend_factory.builder(**self.backend_kwargs)
|
||||
# Pass chunks data for passages file generation
|
||||
build_kwargs = self.backend_kwargs.copy()
|
||||
current_backend_kwargs = self.backend_kwargs.copy()
|
||||
current_backend_kwargs['dimensions'] = self.dimensions
|
||||
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
||||
|
||||
build_kwargs = current_backend_kwargs.copy()
|
||||
build_kwargs['chunks'] = self.chunks
|
||||
builder_instance.build(embeddings, index_path, **build_kwargs)
|
||||
|
||||
@@ -56,6 +110,7 @@ class LeannBuilder:
|
||||
"version": "0.1.0",
|
||||
"backend_name": self.backend_name,
|
||||
"embedding_model": self.embedding_model,
|
||||
"dimensions": self.dimensions,
|
||||
"backend_kwargs": self.backend_kwargs,
|
||||
"num_chunks": len(self.chunks),
|
||||
"chunks": self.chunks,
|
||||
@@ -87,6 +142,8 @@ class LeannSearcher:
|
||||
|
||||
final_kwargs = self.meta_data.get("backend_kwargs", {})
|
||||
final_kwargs.update(backend_kwargs)
|
||||
if 'dimensions' not in final_kwargs:
|
||||
final_kwargs['dimensions'] = self.meta_data.get('dimensions')
|
||||
|
||||
self.backend_impl = backend_factory.searcher(index_path, **final_kwargs)
|
||||
print(f"INFO: LeannSearcher initialized with '{backend_name}' backend using index '{index_path}'.")
|
||||
@@ -94,18 +151,19 @@ class LeannSearcher:
|
||||
def search(self, query: str, top_k: int = 5, **search_kwargs):
|
||||
query_embedding = _compute_embeddings([query], self.embedding_model)
|
||||
|
||||
search_kwargs['embedding_model'] = self.embedding_model
|
||||
results = self.backend_impl.search(query_embedding, top_k, **search_kwargs)
|
||||
|
||||
enriched_results = []
|
||||
for label, dist in zip(results['labels'][0], results['distances'][0]):
|
||||
if label < len(self.meta_data['chunks']):
|
||||
chunk_info = self.meta_data['chunks'][label]
|
||||
enriched_results.append({
|
||||
"id": label,
|
||||
"score": dist,
|
||||
"text": chunk_info['text'],
|
||||
"metadata": chunk_info['metadata']
|
||||
})
|
||||
enriched_results.append(SearchResult(
|
||||
id=label,
|
||||
score=dist,
|
||||
text=chunk_info['text'],
|
||||
metadata=chunk_info.get('metadata', {})
|
||||
))
|
||||
return enriched_results
|
||||
|
||||
|
||||
@@ -125,15 +183,6 @@ class LeannChat:
|
||||
|
||||
self.searcher = LeannSearcher(index_path, **kwargs)
|
||||
self.llm_model = llm_model
|
||||
self.openai_client = None # Lazy load
|
||||
|
||||
def _get_openai_client(self):
|
||||
if self.openai_client is None:
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
||||
self.openai_client = openai.OpenAI(api_key=api_key)
|
||||
return self.openai_client
|
||||
|
||||
def ask(self, question: str, top_k=5, **kwargs):
|
||||
"""
|
||||
@@ -165,13 +214,13 @@ class LeannChat:
|
||||
"""
|
||||
|
||||
results = self.searcher.search(question, top_k=top_k, **kwargs)
|
||||
context = "\n\n".join([r['text'] for r in results])
|
||||
context = "\n\n".join([r.text for r in results])
|
||||
|
||||
prompt = f"Context:\n{context}\n\nQuestion: {question}\n\nAnswer:"
|
||||
|
||||
print(f"DEBUG: Calling LLM with prompt: {prompt}...")
|
||||
try:
|
||||
client = self._get_openai_client()
|
||||
client = _get_openai_client()
|
||||
response = client.chat.completions.create(
|
||||
model=self.llm_model,
|
||||
messages=[
|
||||
|
||||
Reference in New Issue
Block a user