[Readme]update embedding model config according to reddit feedback

This commit is contained in:
yichuan520030910320
2025-08-09 21:33:33 -07:00
parent 5e97916608
commit 9801aa581b
2 changed files with 8 additions and 2 deletions

View File

@@ -189,7 +189,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)

View File

@@ -222,9 +222,15 @@ python apps/document_rag.py --query "What are the main techniques LEANN explores
3. **Use MLX on Apple Silicon** (optional optimization):
```bash
--embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
```
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
4. **Use Ollama**
```bash
--embedding-mode ollama --embedding-model nomic-embed-text
```
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
### If Search Quality is Poor
1. **Increase retrieval count**: