Format code with ruff
This commit is contained in:
@@ -314,7 +314,9 @@ class WeChatHistoryReader(BaseReader):
|
||||
|
||||
return concatenated_groups
|
||||
|
||||
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> tuple[str, str]:
|
||||
def _create_concatenated_content(
|
||||
self, message_group: dict, contact_name: str
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Create concatenated content from a group of messages.
|
||||
|
||||
|
||||
@@ -113,7 +113,8 @@ def load_vidore_v2_data(
|
||||
# Try to get a sample to see actual language values
|
||||
try:
|
||||
sample_ds = cast(
|
||||
Dataset, load_dataset(dataset_path, "queries", split=split, revision=revision)
|
||||
Dataset,
|
||||
load_dataset(dataset_path, "queries", split=split, revision=revision),
|
||||
)
|
||||
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
|
||||
sample_langs = set(sample_ds["language"])
|
||||
|
||||
@@ -581,7 +581,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
|
||||
# Create a concrete implementation for testing
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query, top_k, complexity=64, beam_width=1, prune_ratio=0.0, recompute_embeddings=False, pruning_strategy="global", zmq_port=None, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -625,7 +636,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
|
||||
# Create a concrete implementation for testing
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query, top_k, complexity=64, beam_width=1, prune_ratio=0.0, recompute_embeddings=False, pruning_strategy="global", zmq_port=None, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -671,7 +693,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query, top_k, complexity=64, beam_width=1, prune_ratio=0.0, recompute_embeddings=False, pruning_strategy="global", zmq_port=None, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -710,7 +743,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query, top_k, complexity=64, beam_width=1, prune_ratio=0.0, recompute_embeddings=False, pruning_strategy="global", zmq_port=None, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -774,7 +818,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query, top_k, complexity=64, beam_width=1, prune_ratio=0.0, recompute_embeddings=False, pruning_strategy="global", zmq_port=None, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
|
||||
@@ -98,7 +98,9 @@ def test_backend_options():
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Use smaller model in CI to avoid memory issues
|
||||
is_ci = os.environ.get("CI") == "true"
|
||||
embedding_model = "sentence-transformers/all-MiniLM-L6-v2" if is_ci else "facebook/contriever"
|
||||
embedding_model = (
|
||||
"sentence-transformers/all-MiniLM-L6-v2" if is_ci else "facebook/contriever"
|
||||
)
|
||||
dimensions = 384 if is_ci else None
|
||||
|
||||
# Test HNSW backend (as shown in README)
|
||||
|
||||
Reference in New Issue
Block a user