feat: openai embeddings
This commit is contained in:
108
examples/openai_hnsw_example.py
Normal file
108
examples/openai_hnsw_example.py
Normal file
@@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
OpenAI Embedding Example
|
||||
|
||||
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
|
||||
"""
|
||||
|
||||
import os
|
||||
import dotenv
|
||||
from pathlib import Path
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
# Load environment variables
|
||||
dotenv.load_dotenv()
|
||||
|
||||
def main():
|
||||
# Check if OpenAI API key is available
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
print("ERROR: OPENAI_API_KEY environment variable not set")
|
||||
return False
|
||||
|
||||
print(f"✅ OpenAI API key found: {api_key[:10]}...")
|
||||
|
||||
# Sample texts
|
||||
sample_texts = [
|
||||
"Machine learning is a powerful technology that enables computers to learn from data.",
|
||||
"Natural language processing helps computers understand and generate human language.",
|
||||
"Deep learning uses neural networks with multiple layers to solve complex problems.",
|
||||
"Computer vision allows machines to interpret and understand visual information.",
|
||||
"Reinforcement learning trains agents to make decisions through trial and error.",
|
||||
"Data science combines statistics, math, and programming to extract insights from data.",
|
||||
"Artificial intelligence aims to create machines that can perform human-like tasks.",
|
||||
"Python is a popular programming language used extensively in data science and AI.",
|
||||
"Neural networks are inspired by the structure and function of the human brain.",
|
||||
"Big data refers to extremely large datasets that require special tools to process."
|
||||
]
|
||||
|
||||
INDEX_DIR = Path("./simple_openai_test_index")
|
||||
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
|
||||
|
||||
print(f"\n=== Building Index with OpenAI Embeddings ===")
|
||||
print(f"Index path: {INDEX_PATH}")
|
||||
|
||||
try:
|
||||
# Use proper configuration for OpenAI embeddings
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
# HNSW settings for OpenAI embeddings
|
||||
M=16, # Smaller graph degree
|
||||
efConstruction=64, # Smaller construction complexity
|
||||
is_compact=True, # Enable compact storage for recompute
|
||||
is_recompute=True, # MUST enable for OpenAI embeddings
|
||||
num_threads=1,
|
||||
)
|
||||
|
||||
print(f"Adding {len(sample_texts)} texts to the index...")
|
||||
for i, text in enumerate(sample_texts):
|
||||
metadata = {"id": f"doc_{i}", "topic": "AI"}
|
||||
builder.add_text(text, metadata)
|
||||
|
||||
print("Building index...")
|
||||
builder.build_index(INDEX_PATH)
|
||||
print(f"✅ Index built successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error building index: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
print(f"\n=== Testing Search ===")
|
||||
|
||||
try:
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
|
||||
test_queries = [
|
||||
"What is machine learning?",
|
||||
"How do neural networks work?",
|
||||
"Programming languages for data science"
|
||||
]
|
||||
|
||||
for query in test_queries:
|
||||
print(f"\n🔍 Query: '{query}'")
|
||||
results = searcher.search(query, top_k=3)
|
||||
|
||||
print(f" Found {len(results)} results:")
|
||||
for i, result in enumerate(results):
|
||||
print(f" {i+1}. Score: {result.score:.4f}")
|
||||
print(f" Text: {result.text[:80]}...")
|
||||
|
||||
print(f"\n✅ Search test completed successfully!")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error during search: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
if __name__ == "__main__":
|
||||
success = main()
|
||||
if success:
|
||||
print(f"\n🎉 Simple OpenAI index test completed successfully!")
|
||||
else:
|
||||
print(f"\n💥 Simple OpenAI index test failed!")
|
||||
@@ -162,7 +162,7 @@ def create_embedding_server_thread(
|
||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
||||
max_batch_size=128,
|
||||
passages_file: Optional[str] = None,
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
enable_warmup: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -182,10 +182,27 @@ def create_embedding_server_thread(
|
||||
print(f"{RED}Port {zmq_port} is already in use{RESET}")
|
||||
return
|
||||
|
||||
if use_mlx:
|
||||
# Auto-detect mode based on model name if not explicitly set
|
||||
if embedding_mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
|
||||
embedding_mode = "openai"
|
||||
|
||||
if embedding_mode == "mlx":
|
||||
from leann.api import compute_embeddings_mlx
|
||||
import torch
|
||||
print("INFO: Using MLX for embeddings")
|
||||
else:
|
||||
# Set device to CPU for compatibility with DeviceTimer class
|
||||
device = torch.device("cpu")
|
||||
cuda_available = False
|
||||
mps_available = False
|
||||
elif embedding_mode == "openai":
|
||||
from leann.api import compute_embeddings_openai
|
||||
import torch
|
||||
print("INFO: Using OpenAI API for embeddings")
|
||||
# Set device to CPU for compatibility with DeviceTimer class
|
||||
device = torch.device("cpu")
|
||||
cuda_available = False
|
||||
mps_available = False
|
||||
elif embedding_mode == "sentence-transformers":
|
||||
# 初始化模型
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
import torch
|
||||
@@ -216,6 +233,8 @@ def create_embedding_server_thread(
|
||||
print(f"INFO: Using FP16 precision with model: {model_name}")
|
||||
except Exception as e:
|
||||
print(f"WARNING: Model optimization failed: {e}")
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding mode: {embedding_mode}. Supported modes: sentence-transformers, mlx, openai")
|
||||
|
||||
# Load passages from file if provided
|
||||
if passages_file and os.path.exists(passages_file):
|
||||
@@ -303,7 +322,7 @@ def create_embedding_server_thread(
|
||||
self.start_time = 0
|
||||
self.end_time = 0
|
||||
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||
else:
|
||||
@@ -317,25 +336,25 @@ def create_embedding_server_thread(
|
||||
self.end()
|
||||
|
||||
def start(self):
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
self.start_event.record()
|
||||
else:
|
||||
if not use_mlx and self.device.type == "mps":
|
||||
if embedding_mode == "sentence-transformers" and self.device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
self.start_time = time.time()
|
||||
|
||||
def end(self):
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
self.end_event.record()
|
||||
torch.cuda.synchronize()
|
||||
else:
|
||||
if not use_mlx and self.device.type == "mps":
|
||||
if embedding_mode == "sentence-transformers" and self.device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
self.end_time = time.time()
|
||||
|
||||
def elapsed_time(self):
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
return self.start_event.elapsed_time(self.end_event) / 1000.0
|
||||
else:
|
||||
return self.end_time - self.start_time
|
||||
@@ -571,13 +590,15 @@ def create_embedding_server_thread(
|
||||
chunk_texts = texts[i:end_idx]
|
||||
chunk_ids = node_ids[i:end_idx]
|
||||
|
||||
if use_mlx:
|
||||
if embedding_mode == "mlx":
|
||||
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
|
||||
else:
|
||||
elif embedding_mode == "openai":
|
||||
embeddings_chunk = compute_embeddings_openai(chunk_texts, model_name)
|
||||
else: # sentence-transformers
|
||||
embeddings_chunk = process_batch_pytorch(chunk_texts, chunk_ids, missing_ids)
|
||||
all_embeddings.append(embeddings_chunk)
|
||||
|
||||
if not use_mlx:
|
||||
if embedding_mode == "sentence-transformers":
|
||||
if cuda_available:
|
||||
torch.cuda.empty_cache()
|
||||
elif device.type == "mps":
|
||||
@@ -586,9 +607,11 @@ def create_embedding_server_thread(
|
||||
hidden = np.vstack(all_embeddings)
|
||||
print(f"INFO: Combined embeddings shape: {hidden.shape}")
|
||||
else:
|
||||
if use_mlx:
|
||||
if embedding_mode == "mlx":
|
||||
hidden = compute_embeddings_mlx(texts, model_name)
|
||||
else:
|
||||
elif embedding_mode == "openai":
|
||||
hidden = compute_embeddings_openai(texts, model_name)
|
||||
else: # sentence-transformers
|
||||
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
|
||||
|
||||
# 序列化响应
|
||||
@@ -610,7 +633,7 @@ def create_embedding_server_thread(
|
||||
|
||||
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
|
||||
|
||||
if not use_mlx:
|
||||
if embedding_mode == "sentence-transformers":
|
||||
if device.type == "cuda":
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == "mps":
|
||||
@@ -653,14 +676,14 @@ def create_embedding_server(
|
||||
lazy_load_passages=False,
|
||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
||||
passages_file: Optional[str] = None,
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
enable_warmup: bool = False,
|
||||
):
|
||||
"""
|
||||
原有的 create_embedding_server 函数保持不变
|
||||
这个是阻塞版本,用于直接运行
|
||||
"""
|
||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, use_mlx, enable_warmup)
|
||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, embedding_mode, enable_warmup)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -677,9 +700,17 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
|
||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="Embedding model name")
|
||||
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings")
|
||||
parser.add_argument("--embedding-mode", type=str, default="sentence-transformers",
|
||||
choices=["sentence-transformers", "mlx", "openai"],
|
||||
help="Embedding backend mode")
|
||||
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings (deprecated: use --embedding-mode mlx)")
|
||||
parser.add_argument("--disable-warmup", action="store_true", default=False, help="Disable warmup requests on server start")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Handle backward compatibility with use_mlx
|
||||
embedding_mode = args.embedding_mode
|
||||
if args.use_mlx:
|
||||
embedding_mode = "mlx"
|
||||
|
||||
create_embedding_server(
|
||||
domain=args.domain,
|
||||
@@ -693,6 +724,6 @@ if __name__ == "__main__":
|
||||
lazy_load_passages=args.lazy_load_passages,
|
||||
model_name=args.model_name,
|
||||
passages_file=args.passages_file,
|
||||
use_mlx=args.use_mlx,
|
||||
embedding_mode=embedding_mode,
|
||||
enable_warmup=not args.disable_warmup,
|
||||
)
|
||||
|
||||
@@ -150,7 +150,7 @@ def create_hnsw_embedding_server(
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
custom_max_length_param: Optional[int] = None,
|
||||
distance_metric: str = "mips",
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
enable_warmup: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -170,13 +170,22 @@ def create_hnsw_embedding_server(
|
||||
distance_metric: The distance metric to use
|
||||
enable_warmup: Whether to perform warmup requests on server start
|
||||
"""
|
||||
if not use_mlx:
|
||||
# Handle different embedding modes directly in HNSW server
|
||||
|
||||
# Auto-detect mode based on model name if not explicitly set
|
||||
if embedding_mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
|
||||
embedding_mode = "openai"
|
||||
|
||||
if embedding_mode == "openai":
|
||||
print(f"Using OpenAI API mode for {model_name}")
|
||||
tokenizer = None # No local tokenizer needed for OpenAI API
|
||||
elif embedding_mode == "mlx":
|
||||
print(f"Using MLX mode for {model_name}")
|
||||
tokenizer = None # MLX handles tokenization separately
|
||||
else: # sentence-transformers
|
||||
print(f"Loading tokenizer for {model_name}...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
print(f"Tokenizer loaded successfully!")
|
||||
else:
|
||||
print("Using MLX mode - tokenizer will be loaded separately")
|
||||
tokenizer = None
|
||||
|
||||
# Device setup
|
||||
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
||||
@@ -199,15 +208,17 @@ def create_hnsw_embedding_server(
|
||||
print(f"Starting HNSW server on port {zmq_port} with model {model_name}")
|
||||
print(f"Loading model {model_name}... (this may take a while if downloading)")
|
||||
|
||||
if use_mlx:
|
||||
if embedding_mode == "mlx":
|
||||
# For MLX models, we need to use the MLX embedding computation
|
||||
print("MLX model detected - using MLX backend for embeddings")
|
||||
model = None # We'll handle MLX separately
|
||||
tokenizer = None
|
||||
elif embedding_mode == "openai":
|
||||
# For OpenAI API, no local model needed
|
||||
print("OpenAI API mode - no local model loading required")
|
||||
model = None
|
||||
else:
|
||||
# Use standard transformers for non-MLX models
|
||||
# Use standard transformers for sentence-transformers models
|
||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
print(f"Model {model_name} loaded successfully!")
|
||||
|
||||
# Check port availability
|
||||
@@ -355,9 +366,12 @@ def create_hnsw_embedding_server(
|
||||
def process_batch(texts_batch, ids_batch, missing_ids):
|
||||
"""Process a batch of texts and return embeddings"""
|
||||
|
||||
# Handle MLX models separately
|
||||
if use_mlx:
|
||||
# Handle different embedding modes
|
||||
if embedding_mode == "mlx":
|
||||
return _process_batch_mlx(texts_batch, ids_batch, missing_ids)
|
||||
elif embedding_mode == "openai":
|
||||
from leann.api import compute_embeddings_openai
|
||||
return compute_embeddings_openai(texts_batch, model_name)
|
||||
|
||||
_is_e5_model = "e5" in model_name.lower()
|
||||
_is_bge_model = "bge" in model_name.lower()
|
||||
@@ -795,14 +809,33 @@ def create_hnsw_embedding_server(
|
||||
)
|
||||
continue
|
||||
|
||||
# Standard embedding request
|
||||
# Handle direct text embedding request (for OpenAI mode)
|
||||
if embedding_mode == "openai" and isinstance(request_payload, list) and len(request_payload) > 0:
|
||||
# Check if this is a direct text request (list of strings)
|
||||
if all(isinstance(item, str) for item in request_payload):
|
||||
print(f"Processing direct text embedding request for {len(request_payload)} texts")
|
||||
|
||||
try:
|
||||
from leann.api import compute_embeddings_openai
|
||||
embeddings = compute_embeddings_openai(request_payload, model_name)
|
||||
response = embeddings.tolist()
|
||||
socket.send(msgpack.packb(response))
|
||||
e2e_end = time.time()
|
||||
print(f"Text embedding E2E time: {e2e_end - e2e_start:.6f} seconds")
|
||||
continue
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to compute OpenAI embeddings: {e}")
|
||||
socket.send(msgpack.packb([]))
|
||||
continue
|
||||
|
||||
# Standard embedding request (passage ID lookup)
|
||||
if (
|
||||
not isinstance(request_payload, list)
|
||||
or len(request_payload) != 1
|
||||
or not isinstance(request_payload[0], list)
|
||||
):
|
||||
print(
|
||||
f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}"
|
||||
f"Error: Invalid MessagePack request format. Expected [[ids...]] or [texts...], got: {type(request_payload)}"
|
||||
)
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
continue
|
||||
@@ -986,11 +1019,18 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--distance-metric", type=str, default="mips", help="Distance metric to use"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "mlx", "openai"],
|
||||
help="Embedding backend mode"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-mlx",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use MLX for model inference",
|
||||
help="Use MLX for model inference (deprecated: use --embedding-mode mlx)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-warmup",
|
||||
@@ -1000,6 +1040,11 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Handle backward compatibility with use_mlx
|
||||
embedding_mode = args.embedding_mode
|
||||
if args.use_mlx:
|
||||
embedding_mode = "mlx"
|
||||
|
||||
# Create and start the HNSW embedding server
|
||||
create_hnsw_embedding_server(
|
||||
@@ -1013,6 +1058,6 @@ if __name__ == "__main__":
|
||||
model_name=args.model_name,
|
||||
custom_max_length_param=args.custom_max_length,
|
||||
distance_metric=args.distance_metric,
|
||||
use_mlx=args.use_mlx,
|
||||
embedding_mode=embedding_mode,
|
||||
enable_warmup=not args.disable_warmup,
|
||||
)
|
||||
|
||||
@@ -18,11 +18,40 @@ from .chat import get_llm
|
||||
|
||||
|
||||
def compute_embeddings(
|
||||
chunks: List[str], model_name: str, use_mlx: bool = False
|
||||
chunks: List[str],
|
||||
model_name: str,
|
||||
mode: str = "sentence-transformers"
|
||||
) -> np.ndarray:
|
||||
"""Computes embeddings using sentence-transformers or MLX for consistent results."""
|
||||
if use_mlx:
|
||||
"""
|
||||
Computes embeddings using different backends.
|
||||
|
||||
Args:
|
||||
chunks: List of text chunks to embed
|
||||
model_name: Name of the embedding model
|
||||
mode: Embedding backend mode. Options:
|
||||
- "sentence-transformers": Use sentence-transformers library (default)
|
||||
- "mlx": Use MLX backend for Apple Silicon
|
||||
- "openai": Use OpenAI embedding API
|
||||
|
||||
Returns:
|
||||
numpy array of embeddings
|
||||
"""
|
||||
# Auto-detect mode based on model name if not explicitly set
|
||||
if mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
|
||||
mode = "openai"
|
||||
|
||||
if mode == "mlx":
|
||||
return compute_embeddings_mlx(chunks, model_name)
|
||||
elif mode == "openai":
|
||||
return compute_embeddings_openai(chunks, model_name)
|
||||
elif mode == "sentence-transformers":
|
||||
return compute_embeddings_sentence_transformers(chunks, model_name)
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding mode: {mode}. Supported modes: sentence-transformers, mlx, openai")
|
||||
|
||||
|
||||
def compute_embeddings_sentence_transformers(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
"""Computes embeddings using sentence-transformers library."""
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
except ImportError as e:
|
||||
@@ -53,6 +82,49 @@ def compute_embeddings(
|
||||
return embeddings
|
||||
|
||||
|
||||
def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
"""Computes embeddings using OpenAI API."""
|
||||
try:
|
||||
import openai
|
||||
import os
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
"openai not available. Install with: uv pip install openai"
|
||||
) from e
|
||||
|
||||
# Get API key from environment
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
||||
|
||||
client = openai.OpenAI(api_key=api_key)
|
||||
|
||||
print(f"INFO: Computing embeddings for {len(chunks)} chunks using OpenAI model '{model_name}'...")
|
||||
|
||||
# OpenAI has a limit on batch size and input length
|
||||
max_batch_size = 100 # Conservative batch size
|
||||
all_embeddings = []
|
||||
|
||||
for i in range(0, len(chunks), max_batch_size):
|
||||
batch_chunks = chunks[i:i + max_batch_size]
|
||||
print(f"INFO: Processing batch {i//max_batch_size + 1}/{(len(chunks) + max_batch_size - 1)//max_batch_size}")
|
||||
|
||||
try:
|
||||
response = client.embeddings.create(
|
||||
model=model_name,
|
||||
input=batch_chunks
|
||||
)
|
||||
batch_embeddings = [embedding.embedding for embedding in response.data]
|
||||
all_embeddings.extend(batch_embeddings)
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to get embeddings for batch starting at {i}: {e}")
|
||||
raise
|
||||
|
||||
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||
print(f"INFO: Generated {len(embeddings)} embeddings with dimension {embeddings.shape[1]}")
|
||||
return embeddings
|
||||
|
||||
|
||||
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
"""Computes embeddings using an MLX model."""
|
||||
try:
|
||||
@@ -140,7 +212,7 @@ class LeannBuilder:
|
||||
backend_name: str,
|
||||
embedding_model: str = "facebook/contriever-msmarco",
|
||||
dimensions: Optional[int] = None,
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
**backend_kwargs,
|
||||
):
|
||||
self.backend_name = backend_name
|
||||
@@ -152,7 +224,7 @@ class LeannBuilder:
|
||||
self.backend_factory = backend_factory
|
||||
self.embedding_model = embedding_model
|
||||
self.dimensions = dimensions
|
||||
self.use_mlx = use_mlx
|
||||
self.embedding_mode = embedding_mode
|
||||
self.backend_kwargs = backend_kwargs
|
||||
self.chunks: List[Dict[str, Any]] = []
|
||||
|
||||
@@ -168,7 +240,7 @@ class LeannBuilder:
|
||||
raise ValueError("No chunks added.")
|
||||
if self.dimensions is None:
|
||||
self.dimensions = len(
|
||||
compute_embeddings(["dummy"], self.embedding_model, self.use_mlx)[0]
|
||||
compute_embeddings(["dummy"], self.embedding_model, self.embedding_mode)[0]
|
||||
)
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
@@ -195,7 +267,7 @@ class LeannBuilder:
|
||||
pickle.dump(offset_map, f)
|
||||
texts_to_embed = [c["text"] for c in self.chunks]
|
||||
embeddings = compute_embeddings(
|
||||
texts_to_embed, self.embedding_model, self.use_mlx
|
||||
texts_to_embed, self.embedding_model, self.embedding_mode
|
||||
)
|
||||
string_ids = [chunk["id"] for chunk in self.chunks]
|
||||
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
||||
@@ -210,7 +282,7 @@ class LeannBuilder:
|
||||
"embedding_model": self.embedding_model,
|
||||
"dimensions": self.dimensions,
|
||||
"backend_kwargs": self.backend_kwargs,
|
||||
"use_mlx": self.use_mlx,
|
||||
"embedding_mode": self.embedding_mode,
|
||||
"passage_sources": [
|
||||
{
|
||||
"type": "jsonl",
|
||||
@@ -241,7 +313,11 @@ class LeannSearcher:
|
||||
self.meta_data = json.load(f)
|
||||
backend_name = self.meta_data["backend_name"]
|
||||
self.embedding_model = self.meta_data["embedding_model"]
|
||||
self.use_mlx = self.meta_data.get("use_mlx", False)
|
||||
# Support both old and new format
|
||||
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
||||
# Backward compatibility with use_mlx
|
||||
if self.meta_data.get("use_mlx", False):
|
||||
self.embedding_mode = "mlx"
|
||||
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
|
||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
|
||||
@@ -177,7 +177,7 @@ class EmbeddingServerManager:
|
||||
self.server_port: Optional[int] = None
|
||||
# atexit.register(self.stop_server)
|
||||
|
||||
def start_server(self, port: int, model_name: str, **kwargs) -> bool:
|
||||
def start_server(self, port: int, model_name: str, embedding_mode: str = "sentence-transformers", **kwargs) -> bool:
|
||||
"""
|
||||
Starts the embedding server process.
|
||||
|
||||
@@ -310,8 +310,8 @@ class EmbeddingServerManager:
|
||||
command.extend(["--passages-file", str(kwargs["passages_file"])])
|
||||
# if "distance_metric" in kwargs and kwargs["distance_metric"]:
|
||||
# command.extend(["--distance-metric", kwargs["distance_metric"]])
|
||||
if "use_mlx" in kwargs and kwargs["use_mlx"]:
|
||||
command.extend(["--use-mlx"])
|
||||
if embedding_mode != "sentence-transformers":
|
||||
command.extend(["--embedding-mode", embedding_mode])
|
||||
if "enable_warmup" in kwargs and not kwargs["enable_warmup"]:
|
||||
command.extend(["--disable-warmup"])
|
||||
|
||||
|
||||
@@ -78,12 +78,14 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
"Cannot use recompute mode without 'embedding_model' in meta.json."
|
||||
)
|
||||
|
||||
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||
|
||||
server_started = self.embedding_server_manager.start_server(
|
||||
port=port,
|
||||
model_name=self.embedding_model,
|
||||
passages_file=passages_source_file,
|
||||
distance_metric=kwargs.get("distance_metric"),
|
||||
use_mlx=kwargs.get("use_mlx", False),
|
||||
embedding_mode=embedding_mode,
|
||||
enable_warmup=kwargs.get("enable_warmup", False),
|
||||
)
|
||||
if not server_started:
|
||||
@@ -120,8 +122,8 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
# Fallback to direct computation
|
||||
from .api import compute_embeddings
|
||||
|
||||
use_mlx = self.meta.get("use_mlx", False)
|
||||
return compute_embeddings([query], self.embedding_model, use_mlx)
|
||||
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||
return compute_embeddings([query], self.embedding_model, embedding_mode)
|
||||
|
||||
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
|
||||
"""Compute embeddings using the ZMQ embedding server."""
|
||||
|
||||
Reference in New Issue
Block a user