feat: openai embeddings

This commit is contained in:
Andy Lee
2025-07-17 17:02:47 -07:00
parent 90d9f27383
commit a13c527e39
6 changed files with 311 additions and 49 deletions

View File

@@ -162,7 +162,7 @@ def create_embedding_server_thread(
model_name="sentence-transformers/all-mpnet-base-v2",
max_batch_size=128,
passages_file: Optional[str] = None,
use_mlx: bool = False,
embedding_mode: str = "sentence-transformers",
enable_warmup: bool = False,
):
"""
@@ -182,10 +182,27 @@ def create_embedding_server_thread(
print(f"{RED}Port {zmq_port} is already in use{RESET}")
return
if use_mlx:
# Auto-detect mode based on model name if not explicitly set
if embedding_mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
embedding_mode = "openai"
if embedding_mode == "mlx":
from leann.api import compute_embeddings_mlx
import torch
print("INFO: Using MLX for embeddings")
else:
# Set device to CPU for compatibility with DeviceTimer class
device = torch.device("cpu")
cuda_available = False
mps_available = False
elif embedding_mode == "openai":
from leann.api import compute_embeddings_openai
import torch
print("INFO: Using OpenAI API for embeddings")
# Set device to CPU for compatibility with DeviceTimer class
device = torch.device("cpu")
cuda_available = False
mps_available = False
elif embedding_mode == "sentence-transformers":
# 初始化模型
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
@@ -216,6 +233,8 @@ def create_embedding_server_thread(
print(f"INFO: Using FP16 precision with model: {model_name}")
except Exception as e:
print(f"WARNING: Model optimization failed: {e}")
else:
raise ValueError(f"Unsupported embedding mode: {embedding_mode}. Supported modes: sentence-transformers, mlx, openai")
# Load passages from file if provided
if passages_file and os.path.exists(passages_file):
@@ -303,7 +322,7 @@ def create_embedding_server_thread(
self.start_time = 0
self.end_time = 0
if not use_mlx and torch.cuda.is_available():
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
else:
@@ -317,25 +336,25 @@ def create_embedding_server_thread(
self.end()
def start(self):
if not use_mlx and torch.cuda.is_available():
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
torch.cuda.synchronize()
self.start_event.record()
else:
if not use_mlx and self.device.type == "mps":
if embedding_mode == "sentence-transformers" and self.device.type == "mps":
torch.mps.synchronize()
self.start_time = time.time()
def end(self):
if not use_mlx and torch.cuda.is_available():
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
self.end_event.record()
torch.cuda.synchronize()
else:
if not use_mlx and self.device.type == "mps":
if embedding_mode == "sentence-transformers" and self.device.type == "mps":
torch.mps.synchronize()
self.end_time = time.time()
def elapsed_time(self):
if not use_mlx and torch.cuda.is_available():
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
return self.start_event.elapsed_time(self.end_event) / 1000.0
else:
return self.end_time - self.start_time
@@ -571,13 +590,15 @@ def create_embedding_server_thread(
chunk_texts = texts[i:end_idx]
chunk_ids = node_ids[i:end_idx]
if use_mlx:
if embedding_mode == "mlx":
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
else:
elif embedding_mode == "openai":
embeddings_chunk = compute_embeddings_openai(chunk_texts, model_name)
else: # sentence-transformers
embeddings_chunk = process_batch_pytorch(chunk_texts, chunk_ids, missing_ids)
all_embeddings.append(embeddings_chunk)
if not use_mlx:
if embedding_mode == "sentence-transformers":
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
@@ -586,9 +607,11 @@ def create_embedding_server_thread(
hidden = np.vstack(all_embeddings)
print(f"INFO: Combined embeddings shape: {hidden.shape}")
else:
if use_mlx:
if embedding_mode == "mlx":
hidden = compute_embeddings_mlx(texts, model_name)
else:
elif embedding_mode == "openai":
hidden = compute_embeddings_openai(texts, model_name)
else: # sentence-transformers
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
# 序列化响应
@@ -610,7 +633,7 @@ def create_embedding_server_thread(
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
if not use_mlx:
if embedding_mode == "sentence-transformers":
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
@@ -653,14 +676,14 @@ def create_embedding_server(
lazy_load_passages=False,
model_name="sentence-transformers/all-mpnet-base-v2",
passages_file: Optional[str] = None,
use_mlx: bool = False,
embedding_mode: str = "sentence-transformers",
enable_warmup: bool = False,
):
"""
原有的 create_embedding_server 函数保持不变
这个是阻塞版本,用于直接运行
"""
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, use_mlx, enable_warmup)
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, embedding_mode, enable_warmup)
if __name__ == "__main__":
@@ -677,9 +700,17 @@ if __name__ == "__main__":
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name")
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings")
parser.add_argument("--embedding-mode", type=str, default="sentence-transformers",
choices=["sentence-transformers", "mlx", "openai"],
help="Embedding backend mode")
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings (deprecated: use --embedding-mode mlx)")
parser.add_argument("--disable-warmup", action="store_true", default=False, help="Disable warmup requests on server start")
args = parser.parse_args()
# Handle backward compatibility with use_mlx
embedding_mode = args.embedding_mode
if args.use_mlx:
embedding_mode = "mlx"
create_embedding_server(
domain=args.domain,
@@ -693,6 +724,6 @@ if __name__ == "__main__":
lazy_load_passages=args.lazy_load_passages,
model_name=args.model_name,
passages_file=args.passages_file,
use_mlx=args.use_mlx,
embedding_mode=embedding_mode,
enable_warmup=not args.disable_warmup,
)

View File

@@ -150,7 +150,7 @@ def create_hnsw_embedding_server(
model_name: str = "sentence-transformers/all-mpnet-base-v2",
custom_max_length_param: Optional[int] = None,
distance_metric: str = "mips",
use_mlx: bool = False,
embedding_mode: str = "sentence-transformers",
enable_warmup: bool = False,
):
"""
@@ -170,13 +170,22 @@ def create_hnsw_embedding_server(
distance_metric: The distance metric to use
enable_warmup: Whether to perform warmup requests on server start
"""
if not use_mlx:
# Handle different embedding modes directly in HNSW server
# Auto-detect mode based on model name if not explicitly set
if embedding_mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
embedding_mode = "openai"
if embedding_mode == "openai":
print(f"Using OpenAI API mode for {model_name}")
tokenizer = None # No local tokenizer needed for OpenAI API
elif embedding_mode == "mlx":
print(f"Using MLX mode for {model_name}")
tokenizer = None # MLX handles tokenization separately
else: # sentence-transformers
print(f"Loading tokenizer for {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
print(f"Tokenizer loaded successfully!")
else:
print("Using MLX mode - tokenizer will be loaded separately")
tokenizer = None
# Device setup
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
@@ -199,15 +208,17 @@ def create_hnsw_embedding_server(
print(f"Starting HNSW server on port {zmq_port} with model {model_name}")
print(f"Loading model {model_name}... (this may take a while if downloading)")
if use_mlx:
if embedding_mode == "mlx":
# For MLX models, we need to use the MLX embedding computation
print("MLX model detected - using MLX backend for embeddings")
model = None # We'll handle MLX separately
tokenizer = None
elif embedding_mode == "openai":
# For OpenAI API, no local model needed
print("OpenAI API mode - no local model loading required")
model = None
else:
# Use standard transformers for non-MLX models
# Use standard transformers for sentence-transformers models
model = AutoModel.from_pretrained(model_name).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Model {model_name} loaded successfully!")
# Check port availability
@@ -355,9 +366,12 @@ def create_hnsw_embedding_server(
def process_batch(texts_batch, ids_batch, missing_ids):
"""Process a batch of texts and return embeddings"""
# Handle MLX models separately
if use_mlx:
# Handle different embedding modes
if embedding_mode == "mlx":
return _process_batch_mlx(texts_batch, ids_batch, missing_ids)
elif embedding_mode == "openai":
from leann.api import compute_embeddings_openai
return compute_embeddings_openai(texts_batch, model_name)
_is_e5_model = "e5" in model_name.lower()
_is_bge_model = "bge" in model_name.lower()
@@ -795,14 +809,33 @@ def create_hnsw_embedding_server(
)
continue
# Standard embedding request
# Handle direct text embedding request (for OpenAI mode)
if embedding_mode == "openai" and isinstance(request_payload, list) and len(request_payload) > 0:
# Check if this is a direct text request (list of strings)
if all(isinstance(item, str) for item in request_payload):
print(f"Processing direct text embedding request for {len(request_payload)} texts")
try:
from leann.api import compute_embeddings_openai
embeddings = compute_embeddings_openai(request_payload, model_name)
response = embeddings.tolist()
socket.send(msgpack.packb(response))
e2e_end = time.time()
print(f"Text embedding E2E time: {e2e_end - e2e_start:.6f} seconds")
continue
except Exception as e:
print(f"ERROR: Failed to compute OpenAI embeddings: {e}")
socket.send(msgpack.packb([]))
continue
# Standard embedding request (passage ID lookup)
if (
not isinstance(request_payload, list)
or len(request_payload) != 1
or not isinstance(request_payload[0], list)
):
print(
f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}"
f"Error: Invalid MessagePack request format. Expected [[ids...]] or [texts...], got: {type(request_payload)}"
)
socket.send(msgpack.packb([[], []]))
continue
@@ -986,11 +1019,18 @@ if __name__ == "__main__":
parser.add_argument(
"--distance-metric", type=str, default="mips", help="Distance metric to use"
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "mlx", "openai"],
help="Embedding backend mode"
)
parser.add_argument(
"--use-mlx",
action="store_true",
default=False,
help="Use MLX for model inference",
help="Use MLX for model inference (deprecated: use --embedding-mode mlx)",
)
parser.add_argument(
"--disable-warmup",
@@ -1000,6 +1040,11 @@ if __name__ == "__main__":
)
args = parser.parse_args()
# Handle backward compatibility with use_mlx
embedding_mode = args.embedding_mode
if args.use_mlx:
embedding_mode = "mlx"
# Create and start the HNSW embedding server
create_hnsw_embedding_server(
@@ -1013,6 +1058,6 @@ if __name__ == "__main__":
model_name=args.model_name,
custom_max_length_param=args.custom_max_length,
distance_metric=args.distance_metric,
use_mlx=args.use_mlx,
embedding_mode=embedding_mode,
enable_warmup=not args.disable_warmup,
)

View File

@@ -18,11 +18,40 @@ from .chat import get_llm
def compute_embeddings(
chunks: List[str], model_name: str, use_mlx: bool = False
chunks: List[str],
model_name: str,
mode: str = "sentence-transformers"
) -> np.ndarray:
"""Computes embeddings using sentence-transformers or MLX for consistent results."""
if use_mlx:
"""
Computes embeddings using different backends.
Args:
chunks: List of text chunks to embed
model_name: Name of the embedding model
mode: Embedding backend mode. Options:
- "sentence-transformers": Use sentence-transformers library (default)
- "mlx": Use MLX backend for Apple Silicon
- "openai": Use OpenAI embedding API
Returns:
numpy array of embeddings
"""
# Auto-detect mode based on model name if not explicitly set
if mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
mode = "openai"
if mode == "mlx":
return compute_embeddings_mlx(chunks, model_name)
elif mode == "openai":
return compute_embeddings_openai(chunks, model_name)
elif mode == "sentence-transformers":
return compute_embeddings_sentence_transformers(chunks, model_name)
else:
raise ValueError(f"Unsupported embedding mode: {mode}. Supported modes: sentence-transformers, mlx, openai")
def compute_embeddings_sentence_transformers(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using sentence-transformers library."""
try:
from sentence_transformers import SentenceTransformer
except ImportError as e:
@@ -53,6 +82,49 @@ def compute_embeddings(
return embeddings
def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using OpenAI API."""
try:
import openai
import os
except ImportError as e:
raise RuntimeError(
"openai not available. Install with: uv pip install openai"
) from e
# Get API key from environment
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
client = openai.OpenAI(api_key=api_key)
print(f"INFO: Computing embeddings for {len(chunks)} chunks using OpenAI model '{model_name}'...")
# OpenAI has a limit on batch size and input length
max_batch_size = 100 # Conservative batch size
all_embeddings = []
for i in range(0, len(chunks), max_batch_size):
batch_chunks = chunks[i:i + max_batch_size]
print(f"INFO: Processing batch {i//max_batch_size + 1}/{(len(chunks) + max_batch_size - 1)//max_batch_size}")
try:
response = client.embeddings.create(
model=model_name,
input=batch_chunks
)
batch_embeddings = [embedding.embedding for embedding in response.data]
all_embeddings.extend(batch_embeddings)
except Exception as e:
print(f"ERROR: Failed to get embeddings for batch starting at {i}: {e}")
raise
embeddings = np.array(all_embeddings, dtype=np.float32)
print(f"INFO: Generated {len(embeddings)} embeddings with dimension {embeddings.shape[1]}")
return embeddings
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using an MLX model."""
try:
@@ -140,7 +212,7 @@ class LeannBuilder:
backend_name: str,
embedding_model: str = "facebook/contriever-msmarco",
dimensions: Optional[int] = None,
use_mlx: bool = False,
embedding_mode: str = "sentence-transformers",
**backend_kwargs,
):
self.backend_name = backend_name
@@ -152,7 +224,7 @@ class LeannBuilder:
self.backend_factory = backend_factory
self.embedding_model = embedding_model
self.dimensions = dimensions
self.use_mlx = use_mlx
self.embedding_mode = embedding_mode
self.backend_kwargs = backend_kwargs
self.chunks: List[Dict[str, Any]] = []
@@ -168,7 +240,7 @@ class LeannBuilder:
raise ValueError("No chunks added.")
if self.dimensions is None:
self.dimensions = len(
compute_embeddings(["dummy"], self.embedding_model, self.use_mlx)[0]
compute_embeddings(["dummy"], self.embedding_model, self.embedding_mode)[0]
)
path = Path(index_path)
index_dir = path.parent
@@ -195,7 +267,7 @@ class LeannBuilder:
pickle.dump(offset_map, f)
texts_to_embed = [c["text"] for c in self.chunks]
embeddings = compute_embeddings(
texts_to_embed, self.embedding_model, self.use_mlx
texts_to_embed, self.embedding_model, self.embedding_mode
)
string_ids = [chunk["id"] for chunk in self.chunks]
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
@@ -210,7 +282,7 @@ class LeannBuilder:
"embedding_model": self.embedding_model,
"dimensions": self.dimensions,
"backend_kwargs": self.backend_kwargs,
"use_mlx": self.use_mlx,
"embedding_mode": self.embedding_mode,
"passage_sources": [
{
"type": "jsonl",
@@ -241,7 +313,11 @@ class LeannSearcher:
self.meta_data = json.load(f)
backend_name = self.meta_data["backend_name"]
self.embedding_model = self.meta_data["embedding_model"]
self.use_mlx = self.meta_data.get("use_mlx", False)
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
# Backward compatibility with use_mlx
if self.meta_data.get("use_mlx", False):
self.embedding_mode = "mlx"
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:

View File

@@ -177,7 +177,7 @@ class EmbeddingServerManager:
self.server_port: Optional[int] = None
# atexit.register(self.stop_server)
def start_server(self, port: int, model_name: str, **kwargs) -> bool:
def start_server(self, port: int, model_name: str, embedding_mode: str = "sentence-transformers", **kwargs) -> bool:
"""
Starts the embedding server process.
@@ -310,8 +310,8 @@ class EmbeddingServerManager:
command.extend(["--passages-file", str(kwargs["passages_file"])])
# if "distance_metric" in kwargs and kwargs["distance_metric"]:
# command.extend(["--distance-metric", kwargs["distance_metric"]])
if "use_mlx" in kwargs and kwargs["use_mlx"]:
command.extend(["--use-mlx"])
if embedding_mode != "sentence-transformers":
command.extend(["--embedding-mode", embedding_mode])
if "enable_warmup" in kwargs and not kwargs["enable_warmup"]:
command.extend(["--disable-warmup"])

View File

@@ -78,12 +78,14 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
"Cannot use recompute mode without 'embedding_model' in meta.json."
)
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
server_started = self.embedding_server_manager.start_server(
port=port,
model_name=self.embedding_model,
passages_file=passages_source_file,
distance_metric=kwargs.get("distance_metric"),
use_mlx=kwargs.get("use_mlx", False),
embedding_mode=embedding_mode,
enable_warmup=kwargs.get("enable_warmup", False),
)
if not server_started:
@@ -120,8 +122,8 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
# Fallback to direct computation
from .api import compute_embeddings
use_mlx = self.meta.get("use_mlx", False)
return compute_embeddings([query], self.embedding_model, use_mlx)
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
return compute_embeddings([query], self.embedding_model, embedding_mode)
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
"""Compute embeddings using the ZMQ embedding server."""