feat: openai embeddings
This commit is contained in:
@@ -162,7 +162,7 @@ def create_embedding_server_thread(
|
||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
||||
max_batch_size=128,
|
||||
passages_file: Optional[str] = None,
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
enable_warmup: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -182,10 +182,27 @@ def create_embedding_server_thread(
|
||||
print(f"{RED}Port {zmq_port} is already in use{RESET}")
|
||||
return
|
||||
|
||||
if use_mlx:
|
||||
# Auto-detect mode based on model name if not explicitly set
|
||||
if embedding_mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
|
||||
embedding_mode = "openai"
|
||||
|
||||
if embedding_mode == "mlx":
|
||||
from leann.api import compute_embeddings_mlx
|
||||
import torch
|
||||
print("INFO: Using MLX for embeddings")
|
||||
else:
|
||||
# Set device to CPU for compatibility with DeviceTimer class
|
||||
device = torch.device("cpu")
|
||||
cuda_available = False
|
||||
mps_available = False
|
||||
elif embedding_mode == "openai":
|
||||
from leann.api import compute_embeddings_openai
|
||||
import torch
|
||||
print("INFO: Using OpenAI API for embeddings")
|
||||
# Set device to CPU for compatibility with DeviceTimer class
|
||||
device = torch.device("cpu")
|
||||
cuda_available = False
|
||||
mps_available = False
|
||||
elif embedding_mode == "sentence-transformers":
|
||||
# 初始化模型
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
import torch
|
||||
@@ -216,6 +233,8 @@ def create_embedding_server_thread(
|
||||
print(f"INFO: Using FP16 precision with model: {model_name}")
|
||||
except Exception as e:
|
||||
print(f"WARNING: Model optimization failed: {e}")
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding mode: {embedding_mode}. Supported modes: sentence-transformers, mlx, openai")
|
||||
|
||||
# Load passages from file if provided
|
||||
if passages_file and os.path.exists(passages_file):
|
||||
@@ -303,7 +322,7 @@ def create_embedding_server_thread(
|
||||
self.start_time = 0
|
||||
self.end_time = 0
|
||||
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||
else:
|
||||
@@ -317,25 +336,25 @@ def create_embedding_server_thread(
|
||||
self.end()
|
||||
|
||||
def start(self):
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
self.start_event.record()
|
||||
else:
|
||||
if not use_mlx and self.device.type == "mps":
|
||||
if embedding_mode == "sentence-transformers" and self.device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
self.start_time = time.time()
|
||||
|
||||
def end(self):
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
self.end_event.record()
|
||||
torch.cuda.synchronize()
|
||||
else:
|
||||
if not use_mlx and self.device.type == "mps":
|
||||
if embedding_mode == "sentence-transformers" and self.device.type == "mps":
|
||||
torch.mps.synchronize()
|
||||
self.end_time = time.time()
|
||||
|
||||
def elapsed_time(self):
|
||||
if not use_mlx and torch.cuda.is_available():
|
||||
if embedding_mode == "sentence-transformers" and torch.cuda.is_available():
|
||||
return self.start_event.elapsed_time(self.end_event) / 1000.0
|
||||
else:
|
||||
return self.end_time - self.start_time
|
||||
@@ -571,13 +590,15 @@ def create_embedding_server_thread(
|
||||
chunk_texts = texts[i:end_idx]
|
||||
chunk_ids = node_ids[i:end_idx]
|
||||
|
||||
if use_mlx:
|
||||
if embedding_mode == "mlx":
|
||||
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
|
||||
else:
|
||||
elif embedding_mode == "openai":
|
||||
embeddings_chunk = compute_embeddings_openai(chunk_texts, model_name)
|
||||
else: # sentence-transformers
|
||||
embeddings_chunk = process_batch_pytorch(chunk_texts, chunk_ids, missing_ids)
|
||||
all_embeddings.append(embeddings_chunk)
|
||||
|
||||
if not use_mlx:
|
||||
if embedding_mode == "sentence-transformers":
|
||||
if cuda_available:
|
||||
torch.cuda.empty_cache()
|
||||
elif device.type == "mps":
|
||||
@@ -586,9 +607,11 @@ def create_embedding_server_thread(
|
||||
hidden = np.vstack(all_embeddings)
|
||||
print(f"INFO: Combined embeddings shape: {hidden.shape}")
|
||||
else:
|
||||
if use_mlx:
|
||||
if embedding_mode == "mlx":
|
||||
hidden = compute_embeddings_mlx(texts, model_name)
|
||||
else:
|
||||
elif embedding_mode == "openai":
|
||||
hidden = compute_embeddings_openai(texts, model_name)
|
||||
else: # sentence-transformers
|
||||
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
|
||||
|
||||
# 序列化响应
|
||||
@@ -610,7 +633,7 @@ def create_embedding_server_thread(
|
||||
|
||||
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
|
||||
|
||||
if not use_mlx:
|
||||
if embedding_mode == "sentence-transformers":
|
||||
if device.type == "cuda":
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == "mps":
|
||||
@@ -653,14 +676,14 @@ def create_embedding_server(
|
||||
lazy_load_passages=False,
|
||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
||||
passages_file: Optional[str] = None,
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
enable_warmup: bool = False,
|
||||
):
|
||||
"""
|
||||
原有的 create_embedding_server 函数保持不变
|
||||
这个是阻塞版本,用于直接运行
|
||||
"""
|
||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, use_mlx, enable_warmup)
|
||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size, passages_file, embedding_mode, enable_warmup)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -677,9 +700,17 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
|
||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="Embedding model name")
|
||||
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings")
|
||||
parser.add_argument("--embedding-mode", type=str, default="sentence-transformers",
|
||||
choices=["sentence-transformers", "mlx", "openai"],
|
||||
help="Embedding backend mode")
|
||||
parser.add_argument("--use-mlx", action="store_true", default=False, help="Use MLX backend for embeddings (deprecated: use --embedding-mode mlx)")
|
||||
parser.add_argument("--disable-warmup", action="store_true", default=False, help="Disable warmup requests on server start")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Handle backward compatibility with use_mlx
|
||||
embedding_mode = args.embedding_mode
|
||||
if args.use_mlx:
|
||||
embedding_mode = "mlx"
|
||||
|
||||
create_embedding_server(
|
||||
domain=args.domain,
|
||||
@@ -693,6 +724,6 @@ if __name__ == "__main__":
|
||||
lazy_load_passages=args.lazy_load_passages,
|
||||
model_name=args.model_name,
|
||||
passages_file=args.passages_file,
|
||||
use_mlx=args.use_mlx,
|
||||
embedding_mode=embedding_mode,
|
||||
enable_warmup=not args.disable_warmup,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user