feat: openai embeddings
This commit is contained in:
@@ -150,7 +150,7 @@ def create_hnsw_embedding_server(
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
custom_max_length_param: Optional[int] = None,
|
||||
distance_metric: str = "mips",
|
||||
use_mlx: bool = False,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
enable_warmup: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -170,13 +170,22 @@ def create_hnsw_embedding_server(
|
||||
distance_metric: The distance metric to use
|
||||
enable_warmup: Whether to perform warmup requests on server start
|
||||
"""
|
||||
if not use_mlx:
|
||||
# Handle different embedding modes directly in HNSW server
|
||||
|
||||
# Auto-detect mode based on model name if not explicitly set
|
||||
if embedding_mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
|
||||
embedding_mode = "openai"
|
||||
|
||||
if embedding_mode == "openai":
|
||||
print(f"Using OpenAI API mode for {model_name}")
|
||||
tokenizer = None # No local tokenizer needed for OpenAI API
|
||||
elif embedding_mode == "mlx":
|
||||
print(f"Using MLX mode for {model_name}")
|
||||
tokenizer = None # MLX handles tokenization separately
|
||||
else: # sentence-transformers
|
||||
print(f"Loading tokenizer for {model_name}...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
print(f"Tokenizer loaded successfully!")
|
||||
else:
|
||||
print("Using MLX mode - tokenizer will be loaded separately")
|
||||
tokenizer = None
|
||||
|
||||
# Device setup
|
||||
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
||||
@@ -199,15 +208,17 @@ def create_hnsw_embedding_server(
|
||||
print(f"Starting HNSW server on port {zmq_port} with model {model_name}")
|
||||
print(f"Loading model {model_name}... (this may take a while if downloading)")
|
||||
|
||||
if use_mlx:
|
||||
if embedding_mode == "mlx":
|
||||
# For MLX models, we need to use the MLX embedding computation
|
||||
print("MLX model detected - using MLX backend for embeddings")
|
||||
model = None # We'll handle MLX separately
|
||||
tokenizer = None
|
||||
elif embedding_mode == "openai":
|
||||
# For OpenAI API, no local model needed
|
||||
print("OpenAI API mode - no local model loading required")
|
||||
model = None
|
||||
else:
|
||||
# Use standard transformers for non-MLX models
|
||||
# Use standard transformers for sentence-transformers models
|
||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
print(f"Model {model_name} loaded successfully!")
|
||||
|
||||
# Check port availability
|
||||
@@ -355,9 +366,12 @@ def create_hnsw_embedding_server(
|
||||
def process_batch(texts_batch, ids_batch, missing_ids):
|
||||
"""Process a batch of texts and return embeddings"""
|
||||
|
||||
# Handle MLX models separately
|
||||
if use_mlx:
|
||||
# Handle different embedding modes
|
||||
if embedding_mode == "mlx":
|
||||
return _process_batch_mlx(texts_batch, ids_batch, missing_ids)
|
||||
elif embedding_mode == "openai":
|
||||
from leann.api import compute_embeddings_openai
|
||||
return compute_embeddings_openai(texts_batch, model_name)
|
||||
|
||||
_is_e5_model = "e5" in model_name.lower()
|
||||
_is_bge_model = "bge" in model_name.lower()
|
||||
@@ -795,14 +809,33 @@ def create_hnsw_embedding_server(
|
||||
)
|
||||
continue
|
||||
|
||||
# Standard embedding request
|
||||
# Handle direct text embedding request (for OpenAI mode)
|
||||
if embedding_mode == "openai" and isinstance(request_payload, list) and len(request_payload) > 0:
|
||||
# Check if this is a direct text request (list of strings)
|
||||
if all(isinstance(item, str) for item in request_payload):
|
||||
print(f"Processing direct text embedding request for {len(request_payload)} texts")
|
||||
|
||||
try:
|
||||
from leann.api import compute_embeddings_openai
|
||||
embeddings = compute_embeddings_openai(request_payload, model_name)
|
||||
response = embeddings.tolist()
|
||||
socket.send(msgpack.packb(response))
|
||||
e2e_end = time.time()
|
||||
print(f"Text embedding E2E time: {e2e_end - e2e_start:.6f} seconds")
|
||||
continue
|
||||
except Exception as e:
|
||||
print(f"ERROR: Failed to compute OpenAI embeddings: {e}")
|
||||
socket.send(msgpack.packb([]))
|
||||
continue
|
||||
|
||||
# Standard embedding request (passage ID lookup)
|
||||
if (
|
||||
not isinstance(request_payload, list)
|
||||
or len(request_payload) != 1
|
||||
or not isinstance(request_payload[0], list)
|
||||
):
|
||||
print(
|
||||
f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}"
|
||||
f"Error: Invalid MessagePack request format. Expected [[ids...]] or [texts...], got: {type(request_payload)}"
|
||||
)
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
continue
|
||||
@@ -986,11 +1019,18 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--distance-metric", type=str, default="mips", help="Distance metric to use"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "mlx", "openai"],
|
||||
help="Embedding backend mode"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-mlx",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use MLX for model inference",
|
||||
help="Use MLX for model inference (deprecated: use --embedding-mode mlx)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-warmup",
|
||||
@@ -1000,6 +1040,11 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Handle backward compatibility with use_mlx
|
||||
embedding_mode = args.embedding_mode
|
||||
if args.use_mlx:
|
||||
embedding_mode = "mlx"
|
||||
|
||||
# Create and start the HNSW embedding server
|
||||
create_hnsw_embedding_server(
|
||||
@@ -1013,6 +1058,6 @@ if __name__ == "__main__":
|
||||
model_name=args.model_name,
|
||||
custom_max_length_param=args.custom_max_length,
|
||||
distance_metric=args.distance_metric,
|
||||
use_mlx=args.use_mlx,
|
||||
embedding_mode=embedding_mode,
|
||||
enable_warmup=not args.disable_warmup,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user