feat: openai embeddings

This commit is contained in:
Andy Lee
2025-07-17 17:02:47 -07:00
parent 90d9f27383
commit a13c527e39
6 changed files with 311 additions and 49 deletions

View File

@@ -18,11 +18,40 @@ from .chat import get_llm
def compute_embeddings(
chunks: List[str], model_name: str, use_mlx: bool = False
chunks: List[str],
model_name: str,
mode: str = "sentence-transformers"
) -> np.ndarray:
"""Computes embeddings using sentence-transformers or MLX for consistent results."""
if use_mlx:
"""
Computes embeddings using different backends.
Args:
chunks: List of text chunks to embed
model_name: Name of the embedding model
mode: Embedding backend mode. Options:
- "sentence-transformers": Use sentence-transformers library (default)
- "mlx": Use MLX backend for Apple Silicon
- "openai": Use OpenAI embedding API
Returns:
numpy array of embeddings
"""
# Auto-detect mode based on model name if not explicitly set
if mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
mode = "openai"
if mode == "mlx":
return compute_embeddings_mlx(chunks, model_name)
elif mode == "openai":
return compute_embeddings_openai(chunks, model_name)
elif mode == "sentence-transformers":
return compute_embeddings_sentence_transformers(chunks, model_name)
else:
raise ValueError(f"Unsupported embedding mode: {mode}. Supported modes: sentence-transformers, mlx, openai")
def compute_embeddings_sentence_transformers(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using sentence-transformers library."""
try:
from sentence_transformers import SentenceTransformer
except ImportError as e:
@@ -53,6 +82,49 @@ def compute_embeddings(
return embeddings
def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using OpenAI API."""
try:
import openai
import os
except ImportError as e:
raise RuntimeError(
"openai not available. Install with: uv pip install openai"
) from e
# Get API key from environment
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
client = openai.OpenAI(api_key=api_key)
print(f"INFO: Computing embeddings for {len(chunks)} chunks using OpenAI model '{model_name}'...")
# OpenAI has a limit on batch size and input length
max_batch_size = 100 # Conservative batch size
all_embeddings = []
for i in range(0, len(chunks), max_batch_size):
batch_chunks = chunks[i:i + max_batch_size]
print(f"INFO: Processing batch {i//max_batch_size + 1}/{(len(chunks) + max_batch_size - 1)//max_batch_size}")
try:
response = client.embeddings.create(
model=model_name,
input=batch_chunks
)
batch_embeddings = [embedding.embedding for embedding in response.data]
all_embeddings.extend(batch_embeddings)
except Exception as e:
print(f"ERROR: Failed to get embeddings for batch starting at {i}: {e}")
raise
embeddings = np.array(all_embeddings, dtype=np.float32)
print(f"INFO: Generated {len(embeddings)} embeddings with dimension {embeddings.shape[1]}")
return embeddings
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
"""Computes embeddings using an MLX model."""
try:
@@ -140,7 +212,7 @@ class LeannBuilder:
backend_name: str,
embedding_model: str = "facebook/contriever-msmarco",
dimensions: Optional[int] = None,
use_mlx: bool = False,
embedding_mode: str = "sentence-transformers",
**backend_kwargs,
):
self.backend_name = backend_name
@@ -152,7 +224,7 @@ class LeannBuilder:
self.backend_factory = backend_factory
self.embedding_model = embedding_model
self.dimensions = dimensions
self.use_mlx = use_mlx
self.embedding_mode = embedding_mode
self.backend_kwargs = backend_kwargs
self.chunks: List[Dict[str, Any]] = []
@@ -168,7 +240,7 @@ class LeannBuilder:
raise ValueError("No chunks added.")
if self.dimensions is None:
self.dimensions = len(
compute_embeddings(["dummy"], self.embedding_model, self.use_mlx)[0]
compute_embeddings(["dummy"], self.embedding_model, self.embedding_mode)[0]
)
path = Path(index_path)
index_dir = path.parent
@@ -195,7 +267,7 @@ class LeannBuilder:
pickle.dump(offset_map, f)
texts_to_embed = [c["text"] for c in self.chunks]
embeddings = compute_embeddings(
texts_to_embed, self.embedding_model, self.use_mlx
texts_to_embed, self.embedding_model, self.embedding_mode
)
string_ids = [chunk["id"] for chunk in self.chunks]
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
@@ -210,7 +282,7 @@ class LeannBuilder:
"embedding_model": self.embedding_model,
"dimensions": self.dimensions,
"backend_kwargs": self.backend_kwargs,
"use_mlx": self.use_mlx,
"embedding_mode": self.embedding_mode,
"passage_sources": [
{
"type": "jsonl",
@@ -241,7 +313,11 @@ class LeannSearcher:
self.meta_data = json.load(f)
backend_name = self.meta_data["backend_name"]
self.embedding_model = self.meta_data["embedding_model"]
self.use_mlx = self.meta_data.get("use_mlx", False)
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
# Backward compatibility with use_mlx
if self.meta_data.get("use_mlx", False):
self.embedding_mode = "mlx"
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:

View File

@@ -177,7 +177,7 @@ class EmbeddingServerManager:
self.server_port: Optional[int] = None
# atexit.register(self.stop_server)
def start_server(self, port: int, model_name: str, **kwargs) -> bool:
def start_server(self, port: int, model_name: str, embedding_mode: str = "sentence-transformers", **kwargs) -> bool:
"""
Starts the embedding server process.
@@ -310,8 +310,8 @@ class EmbeddingServerManager:
command.extend(["--passages-file", str(kwargs["passages_file"])])
# if "distance_metric" in kwargs and kwargs["distance_metric"]:
# command.extend(["--distance-metric", kwargs["distance_metric"]])
if "use_mlx" in kwargs and kwargs["use_mlx"]:
command.extend(["--use-mlx"])
if embedding_mode != "sentence-transformers":
command.extend(["--embedding-mode", embedding_mode])
if "enable_warmup" in kwargs and not kwargs["enable_warmup"]:
command.extend(["--disable-warmup"])

View File

@@ -78,12 +78,14 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
"Cannot use recompute mode without 'embedding_model' in meta.json."
)
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
server_started = self.embedding_server_manager.start_server(
port=port,
model_name=self.embedding_model,
passages_file=passages_source_file,
distance_metric=kwargs.get("distance_metric"),
use_mlx=kwargs.get("use_mlx", False),
embedding_mode=embedding_mode,
enable_warmup=kwargs.get("enable_warmup", False),
)
if not server_started:
@@ -120,8 +122,8 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
# Fallback to direct computation
from .api import compute_embeddings
use_mlx = self.meta.get("use_mlx", False)
return compute_embeddings([query], self.embedding_model, use_mlx)
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
return compute_embeddings([query], self.embedding_model, embedding_mode)
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
"""Compute embeddings using the ZMQ embedding server."""