feat: openai embeddings
This commit is contained in:
@@ -78,12 +78,14 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
"Cannot use recompute mode without 'embedding_model' in meta.json."
|
||||
)
|
||||
|
||||
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||
|
||||
server_started = self.embedding_server_manager.start_server(
|
||||
port=port,
|
||||
model_name=self.embedding_model,
|
||||
passages_file=passages_source_file,
|
||||
distance_metric=kwargs.get("distance_metric"),
|
||||
use_mlx=kwargs.get("use_mlx", False),
|
||||
embedding_mode=embedding_mode,
|
||||
enable_warmup=kwargs.get("enable_warmup", False),
|
||||
)
|
||||
if not server_started:
|
||||
@@ -120,8 +122,8 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
# Fallback to direct computation
|
||||
from .api import compute_embeddings
|
||||
|
||||
use_mlx = self.meta.get("use_mlx", False)
|
||||
return compute_embeddings([query], self.embedding_model, use_mlx)
|
||||
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||
return compute_embeddings([query], self.embedding_model, embedding_mode)
|
||||
|
||||
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
|
||||
"""Compute embeddings using the ZMQ embedding server."""
|
||||
|
||||
Reference in New Issue
Block a user