Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import faulthandler
|
||||
|
||||
faulthandler.enable()
|
||||
|
||||
import argparse
|
||||
@@ -13,17 +14,14 @@ from pathlib import Path
|
||||
dotenv.load_dotenv()
|
||||
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=256,
|
||||
chunk_overlap=64,
|
||||
separator=" ",
|
||||
paragraph_separator="\n\n"
|
||||
chunk_size=256, chunk_overlap=64, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
print("Loading documents...")
|
||||
documents = SimpleDirectoryReader(
|
||||
"examples/data",
|
||||
"examples/data",
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"]
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
).load_data(show_progress=True)
|
||||
print("Documents loaded.")
|
||||
all_texts = []
|
||||
@@ -32,58 +30,86 @@ for doc in documents:
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
|
||||
async def main(args):
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
|
||||
|
||||
print(f"\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
graph_degree=32,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1 # Force single-threaded mode
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Loaded {len(all_texts)} text chunks from documents.")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
|
||||
builder.build_index(INDEX_PATH)
|
||||
print(f"\nLeann index built at {INDEX_PATH}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
|
||||
|
||||
llm_config = {
|
||||
"type": "ollama", "model": "qwen3:8b"
|
||||
}
|
||||
llm_config = {"type": "hf", "model": "Qwen/Qwen3-8B"}
|
||||
|
||||
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
|
||||
|
||||
|
||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
|
||||
query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
query = (
|
||||
"What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
|
||||
)
|
||||
query = (
|
||||
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
)
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True, complexity=32)
|
||||
chat_response = chat.ask(
|
||||
query, top_k=20, recompute_beighbor_embeddings=True, complexity=32
|
||||
)
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.")
|
||||
parser.add_argument("--llm", type=str, default="hf", choices=["simulated", "ollama", "hf", "openai"], help="The LLM backend to use.")
|
||||
parser.add_argument("--model", type=str, default='Qwen/Qwen3-0.6B', help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).")
|
||||
parser.add_argument("--host", type=str, default="http://localhost:11434", help="The host for the Ollama API.")
|
||||
parser.add_argument("--index-dir", type=str, default="./test_pdf_index_pangu_test", help="Directory where the Leann index will be stored.")
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run Leann Chat with various LLM backends."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm",
|
||||
type=str,
|
||||
default="hf",
|
||||
choices=["simulated", "ollama", "hf", "openai"],
|
||||
help="The LLM backend to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="Qwen/Qwen3-0.6B",
|
||||
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default="http://localhost:11434",
|
||||
help="The host for the Ollama API.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./test_pdf_index_pangu_test",
|
||||
help="Directory where the Leann index will be stored.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
asyncio.run(main(args))
|
||||
asyncio.run(main(args))
|
||||
|
||||
@@ -5,16 +5,291 @@ supporting different backends like Ollama, Hugging Face Transformers, and a simu
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Any, Optional
|
||||
from typing import Dict, Any, Optional, List
|
||||
import logging
|
||||
import os
|
||||
import difflib
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_ollama_models() -> List[str]:
|
||||
"""Check available Ollama models and return a list"""
|
||||
try:
|
||||
import requests
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
return [model["name"] for model in data.get("models", [])]
|
||||
return []
|
||||
except Exception:
|
||||
return []
|
||||
|
||||
|
||||
def search_ollama_models_fuzzy(query: str, available_models: List[str]) -> List[str]:
|
||||
"""Use intelligent fuzzy search for Ollama models"""
|
||||
if not available_models:
|
||||
return []
|
||||
|
||||
query_lower = query.lower()
|
||||
suggestions = []
|
||||
|
||||
# 1. Exact matches first
|
||||
exact_matches = [m for m in available_models if query_lower == m.lower()]
|
||||
suggestions.extend(exact_matches)
|
||||
|
||||
# 2. Starts with query
|
||||
starts_with = [m for m in available_models if m.lower().startswith(query_lower) and m not in suggestions]
|
||||
suggestions.extend(starts_with)
|
||||
|
||||
# 3. Contains query
|
||||
contains = [m for m in available_models if query_lower in m.lower() and m not in suggestions]
|
||||
suggestions.extend(contains)
|
||||
|
||||
# 4. Base model name matching (remove version numbers)
|
||||
def get_base_name(model_name: str) -> str:
|
||||
"""Extract base name without version (e.g., 'llama3:8b' -> 'llama3')"""
|
||||
return model_name.split(':')[0].split('-')[0]
|
||||
|
||||
query_base = get_base_name(query_lower)
|
||||
base_matches = [
|
||||
m for m in available_models
|
||||
if get_base_name(m.lower()) == query_base and m not in suggestions
|
||||
]
|
||||
suggestions.extend(base_matches)
|
||||
|
||||
# 5. Family/variant matching
|
||||
model_families = {
|
||||
'llama': ['llama2', 'llama3', 'alpaca', 'vicuna', 'codellama'],
|
||||
'qwen': ['qwen', 'qwen2', 'qwen3'],
|
||||
'gemma': ['gemma', 'gemma2'],
|
||||
'phi': ['phi', 'phi2', 'phi3'],
|
||||
'mistral': ['mistral', 'mixtral', 'openhermes'],
|
||||
'dolphin': ['dolphin', 'openchat'],
|
||||
'deepseek': ['deepseek', 'deepseek-coder']
|
||||
}
|
||||
|
||||
query_family = None
|
||||
for family, variants in model_families.items():
|
||||
if any(variant in query_lower for variant in variants):
|
||||
query_family = family
|
||||
break
|
||||
|
||||
if query_family:
|
||||
family_variants = model_families[query_family]
|
||||
family_matches = [
|
||||
m for m in available_models
|
||||
if any(variant in m.lower() for variant in family_variants) and m not in suggestions
|
||||
]
|
||||
suggestions.extend(family_matches)
|
||||
|
||||
# 6. Use difflib for remaining fuzzy matches
|
||||
remaining_models = [m for m in available_models if m not in suggestions]
|
||||
difflib_matches = difflib.get_close_matches(query_lower, remaining_models, n=3, cutoff=0.4)
|
||||
suggestions.extend(difflib_matches)
|
||||
|
||||
return suggestions[:8] # Return top 8 suggestions
|
||||
|
||||
|
||||
# Remove this function entirely - we don't need external API calls for Ollama
|
||||
|
||||
|
||||
# Remove this too - no need for fallback
|
||||
|
||||
|
||||
def suggest_similar_models(invalid_model: str, available_models: List[str]) -> List[str]:
|
||||
"""Use difflib to find similar model names"""
|
||||
if not available_models:
|
||||
return []
|
||||
|
||||
# Get close matches using fuzzy matching
|
||||
suggestions = difflib.get_close_matches(
|
||||
invalid_model, available_models, n=3, cutoff=0.3
|
||||
)
|
||||
return suggestions
|
||||
|
||||
|
||||
def check_hf_model_exists(model_name: str) -> bool:
|
||||
"""Quick check if HuggingFace model exists without downloading"""
|
||||
try:
|
||||
from huggingface_hub import model_info
|
||||
model_info(model_name)
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def get_popular_hf_models() -> List[str]:
|
||||
"""Return a list of popular HuggingFace models for suggestions"""
|
||||
try:
|
||||
from huggingface_hub import list_models
|
||||
|
||||
# Get popular text-generation models, sorted by downloads
|
||||
models = list_models(
|
||||
filter="text-generation",
|
||||
sort="downloads",
|
||||
direction=-1,
|
||||
limit=20 # Get top 20 most downloaded
|
||||
)
|
||||
|
||||
# Extract model names and filter for chat/conversation models
|
||||
model_names = []
|
||||
chat_keywords = ['chat', 'instruct', 'dialog', 'conversation', 'assistant']
|
||||
|
||||
for model in models:
|
||||
model_name = model.id if hasattr(model, 'id') else str(model)
|
||||
# Prioritize models with chat-related keywords
|
||||
if any(keyword in model_name.lower() for keyword in chat_keywords):
|
||||
model_names.append(model_name)
|
||||
elif len(model_names) < 10: # Fill up with other popular models
|
||||
model_names.append(model_name)
|
||||
|
||||
return model_names[:10] if model_names else _get_fallback_hf_models()
|
||||
|
||||
except Exception:
|
||||
# Fallback to static list if API call fails
|
||||
return _get_fallback_hf_models()
|
||||
|
||||
|
||||
def _get_fallback_hf_models() -> List[str]:
|
||||
"""Fallback list of popular HuggingFace models"""
|
||||
return [
|
||||
"microsoft/DialoGPT-medium",
|
||||
"microsoft/DialoGPT-large",
|
||||
"facebook/blenderbot-400M-distill",
|
||||
"microsoft/phi-2",
|
||||
"deepseek-ai/deepseek-llm-7b-chat",
|
||||
"microsoft/DialoGPT-small",
|
||||
"facebook/blenderbot_small-90M",
|
||||
"microsoft/phi-1_5",
|
||||
"facebook/opt-350m",
|
||||
"EleutherAI/gpt-neo-1.3B"
|
||||
]
|
||||
|
||||
|
||||
def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
|
||||
"""Use HuggingFace Hub's native fuzzy search for model suggestions"""
|
||||
try:
|
||||
from huggingface_hub import list_models
|
||||
|
||||
# HF Hub's search is already fuzzy! It handles typos and partial matches
|
||||
models = list_models(
|
||||
search=query,
|
||||
filter="text-generation",
|
||||
sort="downloads",
|
||||
direction=-1,
|
||||
limit=limit
|
||||
)
|
||||
|
||||
model_names = [model.id if hasattr(model, 'id') else str(model) for model in models]
|
||||
|
||||
# If direct search doesn't return enough results, try some variations
|
||||
if len(model_names) < 3:
|
||||
# Try searching for partial matches or common variations
|
||||
variations = []
|
||||
|
||||
# Extract base name (e.g., "gpt3" from "gpt-3.5")
|
||||
base_query = query.lower().replace('-', '').replace('.', '').replace('_', '')
|
||||
if base_query != query.lower():
|
||||
variations.append(base_query)
|
||||
|
||||
# Try common model name patterns
|
||||
if 'gpt' in query.lower():
|
||||
variations.extend(['gpt2', 'gpt-neo', 'gpt-j', 'dialoGPT'])
|
||||
elif 'llama' in query.lower():
|
||||
variations.extend(['llama2', 'alpaca', 'vicuna'])
|
||||
elif 'bert' in query.lower():
|
||||
variations.extend(['roberta', 'distilbert', 'albert'])
|
||||
|
||||
# Search with variations
|
||||
for var in variations[:2]: # Limit to 2 variations to avoid too many API calls
|
||||
try:
|
||||
var_models = list_models(
|
||||
search=var,
|
||||
filter="text-generation",
|
||||
sort="downloads",
|
||||
direction=-1,
|
||||
limit=3
|
||||
)
|
||||
var_names = [model.id if hasattr(model, 'id') else str(model) for model in var_models]
|
||||
model_names.extend(var_names)
|
||||
except:
|
||||
continue
|
||||
|
||||
# Remove duplicates while preserving order
|
||||
seen = set()
|
||||
unique_models = []
|
||||
for model in model_names:
|
||||
if model not in seen:
|
||||
seen.add(model)
|
||||
unique_models.append(model)
|
||||
|
||||
return unique_models[:limit]
|
||||
|
||||
except Exception:
|
||||
# If search fails, return empty list
|
||||
return []
|
||||
|
||||
|
||||
def search_hf_models(query: str, limit: int = 10) -> List[str]:
|
||||
"""Simple search for HuggingFace models based on query (kept for backward compatibility)"""
|
||||
return search_hf_models_fuzzy(query, limit)
|
||||
|
||||
|
||||
def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
|
||||
"""Validate model name and provide suggestions if invalid"""
|
||||
if llm_type == "ollama":
|
||||
available_models = check_ollama_models()
|
||||
if available_models and model_name not in available_models:
|
||||
# Use intelligent fuzzy search based on locally installed models
|
||||
suggestions = search_ollama_models_fuzzy(model_name, available_models)
|
||||
|
||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||
if suggestions:
|
||||
error_msg += "\n\nDid you mean one of these installed models?\n"
|
||||
for i, suggestion in enumerate(suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
else:
|
||||
error_msg += "\n\nYour installed models:\n"
|
||||
for i, model in enumerate(available_models[:8], 1):
|
||||
error_msg += f" {i}. {model}\n"
|
||||
if len(available_models) > 8:
|
||||
error_msg += f" ... and {len(available_models) - 8} more\n"
|
||||
|
||||
error_msg += "\nTo list all models: ollama list"
|
||||
error_msg += "\nTo download a new model: ollama pull <model_name>"
|
||||
error_msg += "\nBrowse models: https://ollama.com/library"
|
||||
return error_msg
|
||||
|
||||
elif llm_type == "hf":
|
||||
# For HF models, we can do a quick existence check
|
||||
if not check_hf_model_exists(model_name):
|
||||
# Use HF Hub's native fuzzy search directly
|
||||
search_suggestions = search_hf_models_fuzzy(model_name, limit=8)
|
||||
|
||||
error_msg = f"Model '{model_name}' not found on HuggingFace Hub."
|
||||
if search_suggestions:
|
||||
error_msg += "\n\nDid you mean one of these?\n"
|
||||
for i, suggestion in enumerate(search_suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
else:
|
||||
# Fallback to popular models if search returns nothing
|
||||
popular_models = get_popular_hf_models()
|
||||
error_msg += "\n\nPopular chat models:\n"
|
||||
for i, model in enumerate(popular_models[:5], 1):
|
||||
error_msg += f" {i}. {model}\n"
|
||||
|
||||
error_msg += f"\nSearch more: https://huggingface.co/models?search={model_name}&pipeline_tag=text-generation"
|
||||
return error_msg
|
||||
|
||||
return None # Model is valid or we can't check
|
||||
|
||||
|
||||
class LLMInterface(ABC):
|
||||
"""Abstract base class for a generic Language Model (LLM) interface."""
|
||||
|
||||
@abstractmethod
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
"""
|
||||
@@ -32,7 +307,7 @@ class LLMInterface(ABC):
|
||||
batch_recompute=True,
|
||||
global_pruning=True
|
||||
)
|
||||
|
||||
|
||||
Supported kwargs:
|
||||
- complexity (int): Search complexity parameter (default: 32)
|
||||
- beam_width (int): Beam width for search (default: 4)
|
||||
@@ -57,22 +332,37 @@ class LLMInterface(ABC):
|
||||
# """
|
||||
pass
|
||||
|
||||
|
||||
class OllamaChat(LLMInterface):
|
||||
"""LLM interface for Ollama models."""
|
||||
|
||||
def __init__(self, model: str = "llama3:8b", host: str = "http://localhost:11434"):
|
||||
self.model = model
|
||||
self.host = host
|
||||
logger.info(f"Initializing OllamaChat with model='{model}' and host='{host}'")
|
||||
try:
|
||||
import requests
|
||||
|
||||
# Check if the Ollama server is responsive
|
||||
if host:
|
||||
requests.get(host)
|
||||
|
||||
# Pre-check model availability with helpful suggestions
|
||||
model_error = validate_model_and_suggest(model, "ollama")
|
||||
if model_error:
|
||||
raise ValueError(model_error)
|
||||
|
||||
except ImportError:
|
||||
raise ImportError("The 'requests' library is required for Ollama. Please install it with 'pip install requests'.")
|
||||
raise ImportError(
|
||||
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
|
||||
)
|
||||
except requests.exceptions.ConnectionError:
|
||||
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
|
||||
raise ConnectionError(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
|
||||
logger.error(
|
||||
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
|
||||
)
|
||||
raise ConnectionError(
|
||||
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
|
||||
)
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
import requests
|
||||
@@ -83,15 +373,15 @@ class OllamaChat(LLMInterface):
|
||||
"model": self.model,
|
||||
"prompt": prompt,
|
||||
"stream": False, # Keep it simple for now
|
||||
"options": kwargs
|
||||
"options": kwargs,
|
||||
}
|
||||
logger.info(f"Sending request to Ollama: {payload}")
|
||||
try:
|
||||
response = requests.post(full_url, data=json.dumps(payload))
|
||||
response.raise_for_status()
|
||||
|
||||
|
||||
# The response from Ollama can be a stream of JSON objects, handle this
|
||||
response_parts = response.text.strip().split('\n')
|
||||
response_parts = response.text.strip().split("\n")
|
||||
full_response = ""
|
||||
for part in response_parts:
|
||||
if part:
|
||||
@@ -104,15 +394,25 @@ class OllamaChat(LLMInterface):
|
||||
logger.error(f"Error communicating with Ollama: {e}")
|
||||
return f"Error: Could not get a response from Ollama. Details: {e}"
|
||||
|
||||
|
||||
class HFChat(LLMInterface):
|
||||
"""LLM interface for local Hugging Face Transformers models."""
|
||||
|
||||
def __init__(self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat"):
|
||||
logger.info(f"Initializing HFChat with model='{model_name}'")
|
||||
|
||||
# Pre-check model availability with helpful suggestions
|
||||
model_error = validate_model_and_suggest(model_name, "hf")
|
||||
if model_error:
|
||||
raise ValueError(model_error)
|
||||
|
||||
try:
|
||||
from transformers import pipeline
|
||||
from transformers.pipelines import pipeline
|
||||
import torch
|
||||
except ImportError:
|
||||
raise ImportError("The 'transformers' and 'torch' libraries are required for Hugging Face models. Please install them with 'pip install transformers torch'.")
|
||||
raise ImportError(
|
||||
"The 'transformers' and 'torch' libraries are required for Hugging Face models. Please install them with 'pip install transformers torch'."
|
||||
)
|
||||
|
||||
# Auto-detect device
|
||||
if torch.cuda.is_available():
|
||||
@@ -140,47 +440,54 @@ class HFChat(LLMInterface):
|
||||
# Remove unsupported zero temperature and use deterministic generation
|
||||
kwargs.pop("temperature")
|
||||
kwargs.setdefault("do_sample", False)
|
||||
|
||||
|
||||
# Sensible defaults for text generation
|
||||
params = {
|
||||
"max_length": 500,
|
||||
"num_return_sequences": 1,
|
||||
**kwargs
|
||||
}
|
||||
params = {"max_length": 500, "num_return_sequences": 1, **kwargs}
|
||||
logger.info(f"Generating text with Hugging Face model with params: {params}")
|
||||
results = self.pipeline(prompt, **params)
|
||||
|
||||
|
||||
# Handle different response formats from transformers
|
||||
if isinstance(results, list) and len(results) > 0:
|
||||
generated_text = results[0].get('generated_text', '') if isinstance(results[0], dict) else str(results[0])
|
||||
generated_text = (
|
||||
results[0].get("generated_text", "")
|
||||
if isinstance(results[0], dict)
|
||||
else str(results[0])
|
||||
)
|
||||
else:
|
||||
generated_text = str(results)
|
||||
|
||||
|
||||
# Extract only the newly generated portion by removing the original prompt
|
||||
if isinstance(generated_text, str) and generated_text.startswith(prompt):
|
||||
response = generated_text[len(prompt):].strip()
|
||||
response = generated_text[len(prompt) :].strip()
|
||||
else:
|
||||
# Fallback: return the full response if prompt removal fails
|
||||
response = str(generated_text)
|
||||
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class OpenAIChat(LLMInterface):
|
||||
"""LLM interface for OpenAI models."""
|
||||
|
||||
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
|
||||
self.model = model
|
||||
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
||||
|
||||
|
||||
if not self.api_key:
|
||||
raise ValueError("OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter.")
|
||||
|
||||
raise ValueError(
|
||||
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
|
||||
)
|
||||
|
||||
logger.info(f"Initializing OpenAI Chat with model='{model}'")
|
||||
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
self.client = openai.OpenAI(api_key=self.api_key)
|
||||
except ImportError:
|
||||
raise ImportError("The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'.")
|
||||
raise ImportError(
|
||||
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
|
||||
)
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
# Default parameters for OpenAI
|
||||
@@ -189,11 +496,15 @@ class OpenAIChat(LLMInterface):
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"max_tokens": kwargs.get("max_tokens", 1000),
|
||||
"temperature": kwargs.get("temperature", 0.7),
|
||||
**{k: v for k, v in kwargs.items() if k not in ["max_tokens", "temperature"]}
|
||||
**{
|
||||
k: v
|
||||
for k, v in kwargs.items()
|
||||
if k not in ["max_tokens", "temperature"]
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
logger.info(f"Sending request to OpenAI with model {self.model}")
|
||||
|
||||
|
||||
try:
|
||||
response = self.client.chat.completions.create(**params)
|
||||
return response.choices[0].message.content.strip()
|
||||
@@ -201,13 +512,16 @@ class OpenAIChat(LLMInterface):
|
||||
logger.error(f"Error communicating with OpenAI: {e}")
|
||||
return f"Error: Could not get a response from OpenAI. Details: {e}"
|
||||
|
||||
|
||||
class SimulatedChat(LLMInterface):
|
||||
"""A simple simulated chat for testing and development."""
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
logger.info("Simulating LLM call...")
|
||||
print("Prompt sent to LLM (simulation):", prompt[:500] + "...")
|
||||
return "This is a simulated answer from the LLM based on the retrieved context."
|
||||
|
||||
|
||||
def get_llm(llm_config: Optional[Dict[str, Any]] = None) -> LLMInterface:
|
||||
"""
|
||||
Factory function to get an LLM interface based on configuration.
|
||||
@@ -225,16 +539,19 @@ def get_llm(llm_config: Optional[Dict[str, Any]] = None) -> LLMInterface:
|
||||
llm_config = {
|
||||
"type": "openai",
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY")
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
}
|
||||
|
||||
llm_type = llm_config.get("type", "openai")
|
||||
model = llm_config.get("model")
|
||||
|
||||
|
||||
logger.info(f"Attempting to create LLM of type='{llm_type}' with model='{model}'")
|
||||
|
||||
if llm_type == "ollama":
|
||||
return OllamaChat(model=model or "llama3:8b", host=llm_config.get("host", "http://localhost:11434"))
|
||||
return OllamaChat(
|
||||
model=model or "llama3:8b",
|
||||
host=llm_config.get("host", "http://localhost:11434"),
|
||||
)
|
||||
elif llm_type == "hf":
|
||||
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
||||
elif llm_type == "openai":
|
||||
|
||||
Reference in New Issue
Block a user