feat(embeddings): add optional manual tokenization path (HF tokenizer+model) with mean pooling; default remains SentenceTransformer.encode
This commit is contained in:
@@ -10,6 +10,7 @@ from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import time
|
||||
|
||||
# Set up logger with proper level
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -28,6 +29,8 @@ def compute_embeddings(
|
||||
is_build: bool = False,
|
||||
batch_size: int = 32,
|
||||
adaptive_optimization: bool = True,
|
||||
manual_tokenize: bool = False,
|
||||
max_length: int = 512,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Unified embedding computation entry point
|
||||
@@ -50,6 +53,8 @@ def compute_embeddings(
|
||||
is_build=is_build,
|
||||
batch_size=batch_size,
|
||||
adaptive_optimization=adaptive_optimization,
|
||||
manual_tokenize=manual_tokenize,
|
||||
max_length=max_length,
|
||||
)
|
||||
elif mode == "openai":
|
||||
return compute_embeddings_openai(texts, model_name)
|
||||
@@ -71,6 +76,8 @@ def compute_embeddings_sentence_transformers(
|
||||
batch_size: int = 32,
|
||||
is_build: bool = False,
|
||||
adaptive_optimization: bool = True,
|
||||
manual_tokenize: bool = False,
|
||||
max_length: int = 512,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using SentenceTransformer with model caching and adaptive optimization
|
||||
@@ -214,20 +221,117 @@ def compute_embeddings_sentence_transformers(
|
||||
logger.info(f"Model cached: {cache_key}")
|
||||
|
||||
# Compute embeddings with optimized inference mode
|
||||
logger.info(f"Starting embedding computation... (batch_size: {batch_size})")
|
||||
logger.info(
|
||||
f"Starting embedding computation... (batch_size: {batch_size}, manual_tokenize={manual_tokenize})"
|
||||
)
|
||||
|
||||
# Use torch.inference_mode for optimal performance
|
||||
with torch.inference_mode():
|
||||
embeddings = model.encode(
|
||||
texts,
|
||||
batch_size=batch_size,
|
||||
show_progress_bar=is_build, # Don't show progress bar in server environment
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=False,
|
||||
device=device,
|
||||
)
|
||||
start_time = time.time()
|
||||
if not manual_tokenize:
|
||||
# Use SentenceTransformer's optimized encode path (default)
|
||||
with torch.inference_mode():
|
||||
embeddings = model.encode(
|
||||
texts,
|
||||
batch_size=batch_size,
|
||||
show_progress_bar=is_build, # Don't show progress bar in server environment
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=False,
|
||||
device=device,
|
||||
)
|
||||
# Synchronize if CUDA to measure accurate wall time
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
# Manual tokenization + forward pass using HF AutoTokenizer/AutoModel
|
||||
try:
|
||||
from transformers import AutoModel, AutoTokenizer # type: ignore
|
||||
except Exception as e:
|
||||
raise ImportError(
|
||||
f"transformers is required for manual_tokenize=True: {e}"
|
||||
)
|
||||
|
||||
# Cache tokenizer and model
|
||||
tok_cache_key = f"hf_tokenizer_{model_name}"
|
||||
mdl_cache_key = f"hf_model_{model_name}_{device}_{use_fp16}"
|
||||
if tok_cache_key in _model_cache and mdl_cache_key in _model_cache:
|
||||
hf_tokenizer = _model_cache[tok_cache_key]
|
||||
hf_model = _model_cache[mdl_cache_key]
|
||||
logger.info("Using cached HF tokenizer/model for manual path")
|
||||
else:
|
||||
logger.info("Loading HF tokenizer/model for manual tokenization path")
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, use_fast=True
|
||||
)
|
||||
torch_dtype = torch.float16 if (use_fp16 and device == "cuda") else torch.float32
|
||||
hf_model = AutoModel.from_pretrained(
|
||||
model_name, torch_dtype=torch_dtype
|
||||
)
|
||||
hf_model.to(device)
|
||||
hf_model.eval()
|
||||
# Optional compile on supported devices
|
||||
if device in ["cuda", "mps"]:
|
||||
try:
|
||||
hf_model = torch.compile(hf_model, mode="reduce-overhead", dynamic=True) # type: ignore
|
||||
except Exception:
|
||||
pass
|
||||
_model_cache[tok_cache_key] = hf_tokenizer
|
||||
_model_cache[mdl_cache_key] = hf_model
|
||||
|
||||
all_embeddings: list[np.ndarray] = []
|
||||
# Progress bar when building or for large inputs
|
||||
show_progress = is_build or len(texts) > 32
|
||||
try:
|
||||
if show_progress:
|
||||
from tqdm import tqdm # type: ignore
|
||||
batch_iter = tqdm(
|
||||
range(0, len(texts), batch_size),
|
||||
desc="Embedding (manual)",
|
||||
unit="batch",
|
||||
)
|
||||
else:
|
||||
batch_iter = range(0, len(texts), batch_size)
|
||||
except Exception:
|
||||
batch_iter = range(0, len(texts), batch_size)
|
||||
|
||||
with torch.inference_mode():
|
||||
for start_index in batch_iter:
|
||||
end_index = min(start_index + batch_size, len(texts))
|
||||
batch_texts = texts[start_index:end_index]
|
||||
inputs = hf_tokenizer(
|
||||
batch_texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
outputs = hf_model(**inputs)
|
||||
last_hidden_state = outputs.last_hidden_state # (B, L, H)
|
||||
attention_mask = inputs.get("attention_mask")
|
||||
if attention_mask is None:
|
||||
# Fallback: assume all tokens are valid
|
||||
pooled = last_hidden_state.mean(dim=1)
|
||||
else:
|
||||
mask = attention_mask.unsqueeze(-1).to(last_hidden_state.dtype)
|
||||
masked = last_hidden_state * mask
|
||||
lengths = mask.sum(dim=1).clamp(min=1)
|
||||
pooled = masked.sum(dim=1) / lengths
|
||||
# Move to CPU float32
|
||||
batch_embeddings = pooled.detach().to("cpu").float().numpy()
|
||||
all_embeddings.append(batch_embeddings)
|
||||
|
||||
embeddings = np.vstack(all_embeddings).astype(np.float32, copy=False)
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
end_time = time.time()
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
logger.info(f"Time taken: {end_time - start_time} seconds")
|
||||
|
||||
# Validate results
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
|
||||
Reference in New Issue
Block a user