This commit is contained in:
Andy Lee
2025-10-30 22:00:26 +00:00
parent 9ba0ecac15
commit abc12d5069
3 changed files with 142 additions and 14 deletions

View File

@@ -591,9 +591,24 @@ class HFChat(LLMInterface):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Loading model {model_name}...")
# Choose a numerically stable dtype per device
if self.device == "cuda":
# Prefer bfloat16 when available; otherwise fall back to float16
try:
bf16_ok = torch.cuda.is_bf16_supported()
except Exception:
bf16_ok = False
load_dtype = torch.bfloat16 if bf16_ok else torch.float16
elif self.device == "mps":
# On Apple MPS, float16 often causes NaNs/INFs during sampling.
# Use float32 for stability, even if it increases memory.
load_dtype = torch.float32
else:
load_dtype = torch.float32
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
torch_dtype=load_dtype,
device_map="auto" if self.device != "cpu" else None,
trust_remote_code=True,
)
@@ -650,7 +665,8 @@ class HFChat(LLMInterface):
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048,
# Respect model context length when available
max_length=getattr(getattr(self.model, "config", None), "max_position_embeddings", 2048),
)
# Move inputs to device
@@ -665,6 +681,8 @@ class HFChat(LLMInterface):
"do_sample": kwargs.get("temperature", 0.7) > 0,
"pad_token_id": self.tokenizer.eos_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
# Helps avoid numerical issues in sampling when logits processors are used
"renormalize_logits": True,
}
# Handle temperature=0 for greedy decoding

View File

@@ -44,6 +44,8 @@ def measure_generation_times(
generation_kwargs: dict[str, object],
allow_truncation: bool,
enable_qwen_thinking: bool,
verbose: bool,
per_call_timeout: int | None,
):
timings: list[float] = []
tokenizer = getattr(llm, "tokenizer", None)
@@ -65,7 +67,18 @@ def measure_generation_times(
context_max_length = max(max_positions - requested_new_tokens, 1)
suppress_buffer = io.StringIO()
for prompt in prompts:
# Log base config
if verbose:
device = getattr(llm, "device", None)
try:
dtype = getattr(getattr(llm, "model", None), "dtype", None)
except Exception:
dtype = None
print(
f"[dbg] device={device} dtype={dtype} max_positions={max_positions} requested_new_tokens={requested_new_tokens} context_max_length={context_max_length}"
)
total = len(prompts)
for idx, prompt in enumerate(prompts, start=1):
prompt_for_llm = prompt
if (
enable_qwen_thinking
@@ -86,11 +99,58 @@ def measure_generation_times(
per_call_kwargs = dict(generation_kwargs)
if requested_new_tokens is not None:
per_call_kwargs["max_new_tokens"] = requested_new_tokens
# Enable streaming if requested (HF backend will print tokens)
if verbose:
# When verbose (or --stream propagated), enable streaming in HF backend
per_call_kwargs["stream"] = True
# Extra debug info about token lengths
if verbose and tokenizer is not None:
try:
toks = tokenizer(prompt_for_llm, return_tensors=None, truncation=False)
in_len = (
len(toks["input_ids"])
if isinstance(toks["input_ids"], list)
else len(toks["input_ids"][0])
)
except Exception:
in_len = None
print(f"[dbg] prompt {idx}/{total} tokens={in_len}")
print(
f"[dbg] gen_cfg={{max_new_tokens:{per_call_kwargs.get('max_new_tokens')}, temp:{per_call_kwargs.get('temperature')}, top_p:{per_call_kwargs.get('top_p')}}}"
)
start = time.perf_counter()
with contextlib.redirect_stdout(suppress_buffer):
llm.ask(prompt_for_llm, **per_call_kwargs)
end = time.perf_counter()
# Optional per-call timeout using signal alarm
timeout_handler_installed = False
if per_call_timeout is not None:
import signal
def _timeout_handler(signum, frame):
raise TimeoutError("generation timed out")
old_handler = signal.signal(signal.SIGALRM, _timeout_handler)
signal.alarm(int(per_call_timeout))
timeout_handler_installed = True
try:
if verbose:
print("[dbg] generation_start")
llm.ask(prompt_for_llm, **per_call_kwargs)
print("[dbg] generation_done")
else:
with contextlib.redirect_stdout(suppress_buffer):
llm.ask(prompt_for_llm, **per_call_kwargs)
except TimeoutError:
if verbose:
print("[dbg] generation_timeout")
finally:
if timeout_handler_installed:
import signal
signal.alarm(0)
signal.signal(signal.SIGALRM, old_handler)
end = time.perf_counter()
timings.append(end - start)
suppress_buffer.seek(0)
suppress_buffer.truncate(0)
@@ -154,23 +214,69 @@ def parse_args():
action="store_true",
help="Append /think to prompts for Qwen models",
)
parser.add_argument(
"--no-max-new-tokens",
action="store_true",
help="Do not set max_new_tokens in generation kwargs",
)
parser.add_argument(
"--per-call-timeout",
type=int,
default=None,
help="Optional timeout (seconds) per generation call; if hit, moves to next prompt",
)
parser.add_argument(
"--stream",
action="store_true",
help="Stream generated text to stdout during generation",
)
parser.add_argument(
"--datasets",
type=str,
default=None,
help=(
"Comma-separated subset of datasets to run. Options: gpqa_bm25,gpqa_diskann,gpqa_hnsw. "
"Default: all"
),
)
parser.add_argument(
"--verbose",
action="store_true",
help="Enable debug logging and show generation progress",
)
return parser.parse_args()
def main():
args = parse_args()
dataset_files = [
Path("prompt_all_nq_bm25.txt"),
Path("prompt_all_nq_diskann_full.txt"),
Path("prompt_all_nq_diskann_pq5.txt"),
Path("prompt_all_nq_hnsw.txt"),
]
dataset_map = {
# "gpqa_bm25": Path("prompt_dump_gpqa_bm25.txt"),
# "gpqa_diskann": Path("prompt_dump_gpqa_diskann.txt"),
# "gpqa_hnsw": Path("prompt_dump_gpqa_hnsw.txt"),
# "nq_bm25": Path("prompt_dump_nq_bm25.txt"),
# # "nq_diskann": Path("prompt_dump_nq_diskann.txt"),
# "nq_hnsw": Path("prompt_dump_nq_hnsw.txt"),
"gpqa_bm25": Path("prompt_dump_hotpot_bm25.txt"),
"gpqa_diskann": Path("prompt_dump_hotpot_diskann.txt"),
# "gpqa_hnsw": Path("prompt_dump_hotpot_hnsw.txt"),
# "gpqa_bm25": Path("prompt_dump_trivia_bm25.txt"),
# "gpqa_diskann": Path("prompt_dump_trivia_diskann.txt"),
}
if args.datasets:
selected = [k.strip() for k in args.datasets.split(",") if k.strip()]
invalid = [k for k in selected if k not in dataset_map]
if invalid:
raise SystemExit(f"Invalid dataset names: {invalid}. Valid: {list(dataset_map)}")
dataset_files = [dataset_map[k] for k in selected]
else:
dataset_files = list(dataset_map.values())
generation_kwargs = {
"max_new_tokens": args.max_new_tokens,
"temperature": args.temperature,
"top_p": args.top_p,
}
if not args.no_max_new_tokens:
generation_kwargs["max_new_tokens"] = args.max_new_tokens
results: dict[str, dict[str, float | int]] = {}
@@ -191,12 +297,16 @@ def main():
prompts = load_prompts(dataset_path)
if args.max_prompts is not None:
prompts = prompts[: args.max_prompts]
if args.verbose:
print(f"[dbg] loaded_prompts={len(prompts)} (showing up to --max-prompts)")
timings = measure_generation_times(
prompts,
llm,
generation_kwargs,
args.allow_truncation,
args.qwen_thinking,
args.verbose or args.stream,
args.per_call_timeout,
)
total_time = sum(timings)
count = len(timings)