add embedding api

This commit is contained in:
yichuan520030910320
2025-07-17 22:29:31 -07:00
parent 335ae003ac
commit aec2291f04
4 changed files with 323 additions and 7 deletions

2
.gitignore vendored
View File

@@ -35,7 +35,7 @@ build/
nprobe_logs/
micro/results
micro/contriever-INT8
examples/data/
examples/data/*
!examples/data/2501.14312v1 (1).pdf
!examples/data/2506.08276v1.pdf
!examples/data/PrideandPrejudice.txt

View File

@@ -24,7 +24,7 @@ def get_mail_path():
# Default mail path for macOS
# DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False):
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
"""
Create LEANN index from multiple mail data sources.
@@ -101,7 +101,7 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
@@ -120,7 +120,7 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
return index_path
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False):
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False, embedding_model: str = "facebook/contriever"):
"""
Create LEANN index from mail data.
@@ -180,7 +180,7 @@ def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
@@ -239,6 +239,8 @@ async def main():
help='Single query to run (default: runs example queries)')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
help='Embedding model to use (default: facebook/contriever)')
args = parser.parse_args()
@@ -263,7 +265,7 @@ async def main():
print(f"Found {len(messages_dirs)} Messages directories.")
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html)
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
if index_path:
if args.query:

View File

@@ -76,7 +76,7 @@ def compute_embeddings_sentence_transformers(chunks: List[str], model_name: str)
# Generate embeddings
# give use an warning if OOM here means we need to turn down the batch size
embeddings = model.encode(
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=256
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=8
)
return embeddings

314
test/simple_mac_tpt_test.py Normal file
View File

@@ -0,0 +1,314 @@
import time
from dataclasses import dataclass
from typing import Dict, List
import numpy as np
import torch
from torch import nn
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
# Add MLX imports
try:
import mlx.core as mx
from mlx_lm.utils import load
MLX_AVAILABLE = True
except ImportError as e:
print("MLX not available. Install with: uv pip install mlx mlx-lm")
MLX_AVAILABLE = False
@dataclass
class BenchmarkConfig:
model_path: str = "facebook/contriever"
batch_sizes: List[int] = None
seq_length: int = 256
num_runs: int = 5
use_fp16: bool = True
use_int4: bool = False
use_int8: bool = False
use_cuda_graphs: bool = False
use_flash_attention: bool = False
use_linear8bitlt: bool = False
use_mlx: bool = False # New flag for MLX testing
def __post_init__(self):
if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
class MLXBenchmark:
"""MLX-specific benchmark for embedding models"""
def __init__(self, config: BenchmarkConfig):
self.config = config
self.model, self.tokenizer = self._load_model()
def _load_model(self):
"""Load MLX model and tokenizer following the API pattern"""
print(f"Loading MLX model from {self.config.model_path}...")
try:
model, tokenizer = load(self.config.model_path)
print("MLX model loaded successfully")
return model, tokenizer
except Exception as e:
print(f"Error loading MLX model: {e}")
raise
def _create_random_batch(self, batch_size: int):
"""Create random input batches for MLX testing - same as PyTorch"""
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
dtype=torch.long
)
def _run_inference(self, input_ids: torch.Tensor) -> float:
"""Run MLX inference with same input as PyTorch"""
start_time = time.time()
try:
# Convert PyTorch tensor to MLX array
input_ids_mlx = mx.array(input_ids.numpy())
# Get embeddings
embeddings = self.model(input_ids_mlx)
# Mean pooling (following the API pattern)
pooled = embeddings.mean(axis=1)
# Convert to numpy (following the API pattern)
pooled_numpy = np.array(pooled.tolist(), dtype=np.float32)
# Force computation
_ = pooled_numpy.shape
except Exception as e:
print(f"MLX inference error: {e}")
return float('inf')
end_time = time.time()
return end_time - start_time
def run(self) -> Dict[int, Dict[str, float]]:
"""Run the MLX benchmark across all batch sizes"""
results = {}
print(f"Starting MLX benchmark with model: {self.config.model_path}")
print(f"Testing batch sizes: {self.config.batch_sizes}")
for batch_size in self.config.batch_sizes:
print(f"\n=== Testing MLX batch size: {batch_size} ===")
times = []
# Create input batch (same as PyTorch)
input_ids = self._create_random_batch(batch_size)
# Warm up
print("Warming up...")
for _ in range(3):
try:
self._run_inference(input_ids[:2]) # Warm up with smaller batch
except Exception as e:
print(f"Warmup error: {e}")
break
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
if elapsed_time != float('inf'):
times.append(elapsed_time)
except Exception as e:
print(f"Error during MLX inference: {e}")
break
if not times:
print(f"Skipping batch size {batch_size} due to errors")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
"min_time": np.min(times),
"max_time": np.max(times),
}
print(f"MLX Results for batch size {batch_size}:")
print(f" Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f" Min Time: {np.min(times):.4f}s")
print(f" Max Time: {np.max(times):.4f}s")
print(f" Throughput: {throughput:.2f} sequences/second")
return results
class Benchmark:
def __init__(self, config: BenchmarkConfig):
self.config = config
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
self.model = self._load_model()
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
model = AutoModel.from_pretrained(self.config.model_path)
if self.config.use_fp16:
model = model.half()
model = torch.compile(model)
model = model.to(self.device)
model.eval()
return model
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
device=self.device,
dtype=torch.long
)
def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids)
start_time = time.time()
with torch.no_grad():
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
end_time = time.time()
return end_time - start_time
def run(self) -> Dict[int, Dict[str, float]]:
results = {}
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
input_ids = self._create_random_batch(batch_size)
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
times.append(elapsed_time)
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
continue
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
else:
peak_memory_gb = 0.0
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
def run_benchmark():
"""Main function to run the benchmark with optimized parameters."""
config = BenchmarkConfig()
try:
benchmark = Benchmark(config)
results = benchmark.run()
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results
}
except Exception as e:
print(f"Benchmark failed: {e}")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": str(e)
}
def run_mlx_benchmark():
"""Run MLX-specific benchmark"""
if not MLX_AVAILABLE:
print("MLX not available, skipping MLX benchmark")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "MLX not available"
}
config = BenchmarkConfig(
model_path="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
use_mlx=True
)
try:
benchmark = MLXBenchmark(config)
results = benchmark.run()
if not results:
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "No valid results"
}
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results
}
except Exception as e:
print(f"MLX benchmark failed: {e}")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": str(e)
}
if __name__ == "__main__":
print("=== PyTorch Benchmark ===")
pytorch_result = run_benchmark()
print(f"PyTorch Max throughput: {pytorch_result['max_throughput']:.2f} sequences/second")
print(f"PyTorch Average throughput: {pytorch_result['avg_throughput']:.2f} sequences/second")
print("\n=== MLX Benchmark ===")
mlx_result = run_mlx_benchmark()
print(f"MLX Max throughput: {mlx_result['max_throughput']:.2f} sequences/second")
print(f"MLX Average throughput: {mlx_result['avg_throughput']:.2f} sequences/second")
# Compare results
if pytorch_result['max_throughput'] > 0 and mlx_result['max_throughput'] > 0:
speedup = mlx_result['max_throughput'] / pytorch_result['max_throughput']
print(f"\n=== Comparison ===")
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")