add embedding api
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -35,7 +35,7 @@ build/
|
||||
nprobe_logs/
|
||||
micro/results
|
||||
micro/contriever-INT8
|
||||
examples/data/
|
||||
examples/data/*
|
||||
!examples/data/2501.14312v1 (1).pdf
|
||||
!examples/data/2506.08276v1.pdf
|
||||
!examples/data/PrideandPrejudice.txt
|
||||
|
||||
@@ -24,7 +24,7 @@ def get_mail_path():
|
||||
# Default mail path for macOS
|
||||
# DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
||||
|
||||
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False):
|
||||
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
|
||||
"""
|
||||
Create LEANN index from multiple mail data sources.
|
||||
|
||||
@@ -101,7 +101,7 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_model=embedding_model,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
@@ -120,7 +120,7 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
|
||||
|
||||
return index_path
|
||||
|
||||
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False):
|
||||
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False, embedding_model: str = "facebook/contriever"):
|
||||
"""
|
||||
Create LEANN index from mail data.
|
||||
|
||||
@@ -180,7 +180,7 @@ def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_model=embedding_model,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
@@ -239,6 +239,8 @@ async def main():
|
||||
help='Single query to run (default: runs example queries)')
|
||||
parser.add_argument('--include-html', action='store_true', default=False,
|
||||
help='Include HTML content in email processing (default: False)')
|
||||
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
|
||||
help='Embedding model to use (default: facebook/contriever)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -263,7 +265,7 @@ async def main():
|
||||
print(f"Found {len(messages_dirs)} Messages directories.")
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html)
|
||||
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
|
||||
@@ -76,7 +76,7 @@ def compute_embeddings_sentence_transformers(chunks: List[str], model_name: str)
|
||||
# Generate embeddings
|
||||
# give use an warning if OOM here means we need to turn down the batch size
|
||||
embeddings = model.encode(
|
||||
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=256
|
||||
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=8
|
||||
)
|
||||
|
||||
return embeddings
|
||||
|
||||
314
test/simple_mac_tpt_test.py
Normal file
314
test/simple_mac_tpt_test.py
Normal file
@@ -0,0 +1,314 @@
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import AutoModel, BitsAndBytesConfig
|
||||
from tqdm import tqdm
|
||||
|
||||
# Add MLX imports
|
||||
try:
|
||||
import mlx.core as mx
|
||||
from mlx_lm.utils import load
|
||||
MLX_AVAILABLE = True
|
||||
except ImportError as e:
|
||||
print("MLX not available. Install with: uv pip install mlx mlx-lm")
|
||||
MLX_AVAILABLE = False
|
||||
|
||||
@dataclass
|
||||
class BenchmarkConfig:
|
||||
model_path: str = "facebook/contriever"
|
||||
batch_sizes: List[int] = None
|
||||
seq_length: int = 256
|
||||
num_runs: int = 5
|
||||
use_fp16: bool = True
|
||||
use_int4: bool = False
|
||||
use_int8: bool = False
|
||||
use_cuda_graphs: bool = False
|
||||
use_flash_attention: bool = False
|
||||
use_linear8bitlt: bool = False
|
||||
use_mlx: bool = False # New flag for MLX testing
|
||||
|
||||
def __post_init__(self):
|
||||
if self.batch_sizes is None:
|
||||
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
|
||||
|
||||
class MLXBenchmark:
|
||||
"""MLX-specific benchmark for embedding models"""
|
||||
|
||||
def __init__(self, config: BenchmarkConfig):
|
||||
self.config = config
|
||||
self.model, self.tokenizer = self._load_model()
|
||||
|
||||
def _load_model(self):
|
||||
"""Load MLX model and tokenizer following the API pattern"""
|
||||
print(f"Loading MLX model from {self.config.model_path}...")
|
||||
try:
|
||||
model, tokenizer = load(self.config.model_path)
|
||||
print("MLX model loaded successfully")
|
||||
return model, tokenizer
|
||||
except Exception as e:
|
||||
print(f"Error loading MLX model: {e}")
|
||||
raise
|
||||
|
||||
def _create_random_batch(self, batch_size: int):
|
||||
"""Create random input batches for MLX testing - same as PyTorch"""
|
||||
return torch.randint(
|
||||
0, 1000,
|
||||
(batch_size, self.config.seq_length),
|
||||
dtype=torch.long
|
||||
)
|
||||
|
||||
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||
"""Run MLX inference with same input as PyTorch"""
|
||||
start_time = time.time()
|
||||
try:
|
||||
# Convert PyTorch tensor to MLX array
|
||||
input_ids_mlx = mx.array(input_ids.numpy())
|
||||
|
||||
# Get embeddings
|
||||
embeddings = self.model(input_ids_mlx)
|
||||
|
||||
# Mean pooling (following the API pattern)
|
||||
pooled = embeddings.mean(axis=1)
|
||||
|
||||
# Convert to numpy (following the API pattern)
|
||||
pooled_numpy = np.array(pooled.tolist(), dtype=np.float32)
|
||||
|
||||
# Force computation
|
||||
_ = pooled_numpy.shape
|
||||
|
||||
except Exception as e:
|
||||
print(f"MLX inference error: {e}")
|
||||
return float('inf')
|
||||
end_time = time.time()
|
||||
|
||||
return end_time - start_time
|
||||
|
||||
def run(self) -> Dict[int, Dict[str, float]]:
|
||||
"""Run the MLX benchmark across all batch sizes"""
|
||||
results = {}
|
||||
|
||||
print(f"Starting MLX benchmark with model: {self.config.model_path}")
|
||||
print(f"Testing batch sizes: {self.config.batch_sizes}")
|
||||
|
||||
for batch_size in self.config.batch_sizes:
|
||||
print(f"\n=== Testing MLX batch size: {batch_size} ===")
|
||||
times = []
|
||||
|
||||
# Create input batch (same as PyTorch)
|
||||
input_ids = self._create_random_batch(batch_size)
|
||||
|
||||
# Warm up
|
||||
print("Warming up...")
|
||||
for _ in range(3):
|
||||
try:
|
||||
self._run_inference(input_ids[:2]) # Warm up with smaller batch
|
||||
except Exception as e:
|
||||
print(f"Warmup error: {e}")
|
||||
break
|
||||
|
||||
# Run benchmark
|
||||
for i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
|
||||
try:
|
||||
elapsed_time = self._run_inference(input_ids)
|
||||
if elapsed_time != float('inf'):
|
||||
times.append(elapsed_time)
|
||||
except Exception as e:
|
||||
print(f"Error during MLX inference: {e}")
|
||||
break
|
||||
|
||||
if not times:
|
||||
print(f"Skipping batch size {batch_size} due to errors")
|
||||
continue
|
||||
|
||||
# Calculate statistics
|
||||
avg_time = np.mean(times)
|
||||
std_time = np.std(times)
|
||||
throughput = batch_size / avg_time
|
||||
|
||||
results[batch_size] = {
|
||||
"avg_time": avg_time,
|
||||
"std_time": std_time,
|
||||
"throughput": throughput,
|
||||
"min_time": np.min(times),
|
||||
"max_time": np.max(times),
|
||||
}
|
||||
|
||||
print(f"MLX Results for batch size {batch_size}:")
|
||||
print(f" Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
|
||||
print(f" Min Time: {np.min(times):.4f}s")
|
||||
print(f" Max Time: {np.max(times):.4f}s")
|
||||
print(f" Throughput: {throughput:.2f} sequences/second")
|
||||
|
||||
return results
|
||||
|
||||
class Benchmark:
|
||||
def __init__(self, config: BenchmarkConfig):
|
||||
self.config = config
|
||||
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
self.model = self._load_model()
|
||||
|
||||
def _load_model(self) -> nn.Module:
|
||||
print(f"Loading model from {self.config.model_path}...")
|
||||
|
||||
|
||||
model = AutoModel.from_pretrained(self.config.model_path)
|
||||
if self.config.use_fp16:
|
||||
model = model.half()
|
||||
model = torch.compile(model)
|
||||
model = model.to(self.device)
|
||||
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
||||
return torch.randint(
|
||||
0, 1000,
|
||||
(batch_size, self.config.seq_length),
|
||||
device=self.device,
|
||||
dtype=torch.long
|
||||
)
|
||||
|
||||
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||
end_time = time.time()
|
||||
|
||||
return end_time - start_time
|
||||
|
||||
def run(self) -> Dict[int, Dict[str, float]]:
|
||||
results = {}
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
for batch_size in self.config.batch_sizes:
|
||||
print(f"\nTesting batch size: {batch_size}")
|
||||
times = []
|
||||
|
||||
input_ids = self._create_random_batch(batch_size)
|
||||
|
||||
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
|
||||
try:
|
||||
elapsed_time = self._run_inference(input_ids)
|
||||
times.append(elapsed_time)
|
||||
except Exception as e:
|
||||
print(f"Error during inference: {e}")
|
||||
break
|
||||
|
||||
if not times:
|
||||
continue
|
||||
|
||||
avg_time = np.mean(times)
|
||||
std_time = np.std(times)
|
||||
throughput = batch_size / avg_time
|
||||
|
||||
results[batch_size] = {
|
||||
"avg_time": avg_time,
|
||||
"std_time": std_time,
|
||||
"throughput": throughput,
|
||||
}
|
||||
|
||||
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
|
||||
print(f"Throughput: {throughput:.2f} sequences/second")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
|
||||
else:
|
||||
peak_memory_gb = 0.0
|
||||
|
||||
for batch_size in results:
|
||||
results[batch_size]["peak_memory_gb"] = peak_memory_gb
|
||||
|
||||
return results
|
||||
|
||||
def run_benchmark():
|
||||
"""Main function to run the benchmark with optimized parameters."""
|
||||
config = BenchmarkConfig()
|
||||
|
||||
try:
|
||||
benchmark = Benchmark(config)
|
||||
results = benchmark.run()
|
||||
|
||||
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
|
||||
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
|
||||
|
||||
return {
|
||||
"max_throughput": max_throughput,
|
||||
"avg_throughput": avg_throughput,
|
||||
"results": results
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
print(f"Benchmark failed: {e}")
|
||||
return {
|
||||
"max_throughput": 0.0,
|
||||
"avg_throughput": 0.0,
|
||||
"error": str(e)
|
||||
}
|
||||
|
||||
def run_mlx_benchmark():
|
||||
"""Run MLX-specific benchmark"""
|
||||
if not MLX_AVAILABLE:
|
||||
print("MLX not available, skipping MLX benchmark")
|
||||
return {
|
||||
"max_throughput": 0.0,
|
||||
"avg_throughput": 0.0,
|
||||
"error": "MLX not available"
|
||||
}
|
||||
|
||||
config = BenchmarkConfig(
|
||||
model_path="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
|
||||
use_mlx=True
|
||||
)
|
||||
|
||||
try:
|
||||
benchmark = MLXBenchmark(config)
|
||||
results = benchmark.run()
|
||||
|
||||
if not results:
|
||||
return {
|
||||
"max_throughput": 0.0,
|
||||
"avg_throughput": 0.0,
|
||||
"error": "No valid results"
|
||||
}
|
||||
|
||||
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
|
||||
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
|
||||
|
||||
return {
|
||||
"max_throughput": max_throughput,
|
||||
"avg_throughput": avg_throughput,
|
||||
"results": results
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
print(f"MLX benchmark failed: {e}")
|
||||
return {
|
||||
"max_throughput": 0.0,
|
||||
"avg_throughput": 0.0,
|
||||
"error": str(e)
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("=== PyTorch Benchmark ===")
|
||||
pytorch_result = run_benchmark()
|
||||
print(f"PyTorch Max throughput: {pytorch_result['max_throughput']:.2f} sequences/second")
|
||||
print(f"PyTorch Average throughput: {pytorch_result['avg_throughput']:.2f} sequences/second")
|
||||
|
||||
print("\n=== MLX Benchmark ===")
|
||||
mlx_result = run_mlx_benchmark()
|
||||
print(f"MLX Max throughput: {mlx_result['max_throughput']:.2f} sequences/second")
|
||||
print(f"MLX Average throughput: {mlx_result['avg_throughput']:.2f} sequences/second")
|
||||
|
||||
# Compare results
|
||||
if pytorch_result['max_throughput'] > 0 and mlx_result['max_throughput'] > 0:
|
||||
speedup = mlx_result['max_throughput'] / pytorch_result['max_throughput']
|
||||
print(f"\n=== Comparison ===")
|
||||
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")
|
||||
Reference in New Issue
Block a user