fix: resolve all ruff linting errors and add lint CI check

- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments
- Replace Chinese comments with English equivalents
- Fix unused imports with proper noqa annotations for intentional imports
- Fix bare except clauses with specific exception types
- Fix redefined variables and undefined names
- Add ruff noqa annotations for generated protobuf files
- Add lint and format check to GitHub Actions CI pipeline
This commit is contained in:
Andy Lee
2025-07-26 22:35:12 -07:00
parent 8537a6b17e
commit b3e9ee96fa
53 changed files with 5655 additions and 5220 deletions

View File

@@ -5,12 +5,14 @@ from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from .api import LeannBuilder, LeannSearcher, LeannChat
from .api import LeannBuilder, LeannChat, LeannSearcher
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
"""Extract text from PDF using PyMuPDF for better quality."""
try:
import fitz # PyMuPDF
doc = fitz.open(file_path)
text = ""
for page in doc:
@@ -21,10 +23,12 @@ def extract_pdf_text_with_pymupdf(file_path: str) -> str:
# Fallback to default reader
return None
def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
"""Extract text from PDF using pdfplumber for better quality."""
try:
import pdfplumber
text = ""
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
@@ -72,18 +76,12 @@ Examples:
# Build command
build_parser = subparsers.add_parser("build", help="Build document index")
build_parser.add_argument("index_name", help="Index name")
build_parser.add_argument(
"--docs", type=str, required=True, help="Documents directory"
)
build_parser.add_argument("--docs", type=str, required=True, help="Documents directory")
build_parser.add_argument(
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
)
build_parser.add_argument(
"--embedding-model", type=str, default="facebook/contriever"
)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild"
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument("--num-threads", type=int, default=1)
@@ -129,7 +127,7 @@ Examples:
)
# List command
list_parser = subparsers.add_parser("list", help="List all indexes")
subparsers.add_parser("list", help="List all indexes")
return parser
@@ -137,17 +135,13 @@ Examples:
print("Stored LEANN indexes:")
if not self.indexes_dir.exists():
print(
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
)
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
if not index_dirs:
print(
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
)
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
print(f"Found {len(index_dirs)} indexes:")
@@ -157,15 +151,15 @@ Examples:
print(f" {i}. {index_name} [{status}]")
if self.index_exists(index_name):
meta_file = index_dir / "documents.leann.meta.json"
size_mb = sum(
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
) / (1024 * 1024)
index_dir / "documents.leann.meta.json"
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
1024 * 1024
)
print(f" Size: {size_mb:.1f} MB")
if index_dirs:
example_name = index_dirs[0].name
print(f"\nUsage:")
print("\nUsage:")
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
@@ -175,19 +169,20 @@ Examples:
# Try to use better PDF parsers first
documents = []
docs_path = Path(docs_dir)
for file_path in docs_path.rglob("*.pdf"):
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else: