feat: finance bench

This commit is contained in:
Andy Lee
2025-08-16 16:22:50 -07:00
parent 46905e0687
commit baf2d76e0e
4 changed files with 867 additions and 82 deletions

View File

@@ -1,82 +0,0 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.lz4 filter=lfs diff=lfs merge=lfs -text
*.mds filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
# Audio files - uncompressed
*.pcm filter=lfs diff=lfs merge=lfs -text
*.sam filter=lfs diff=lfs merge=lfs -text
*.raw filter=lfs diff=lfs merge=lfs -text
# Audio files - compressed
*.aac filter=lfs diff=lfs merge=lfs -text
*.flac filter=lfs diff=lfs merge=lfs -text
*.mp3 filter=lfs diff=lfs merge=lfs -text
*.ogg filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
# Image files - uncompressed
*.bmp filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.tiff filter=lfs diff=lfs merge=lfs -text
# Image files - compressed
*.jpg filter=lfs diff=lfs merge=lfs -text
*.jpeg filter=lfs diff=lfs merge=lfs -text
*.webp filter=lfs diff=lfs merge=lfs -text
# Video files - compressed
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.webm filter=lfs diff=lfs merge=lfs -text
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text

View File

@@ -0,0 +1,84 @@
# FinanceBench Benchmark for LEANN-RAG
FinanceBench is a benchmark for evaluating retrieval-augmented generation (RAG) systems on financial document question-answering tasks.
## Dataset
- **Source**: [PatronusAI/financebench](https://huggingface.co/datasets/PatronusAI/financebench)
- **Questions**: 150 financial Q&A examples
- **Documents**: 368 PDF files (10-K, 10-Q, 8-K, earnings reports)
- **Companies**: Major public companies (3M, Apple, Microsoft, Amazon, etc.)
- **Paper**: [FinanceBench: A New Benchmark for Financial Question Answering](https://arxiv.org/abs/2311.11944)
## Structure
```
benchmarks/financebench/
├── setup_financebench.py # Downloads PDFs and builds index
├── evaluate_financebench.py # Intelligent evaluation script
├── data/
│ ├── financebench_merged.jsonl # Q&A dataset
│ ├── pdfs/ # Downloaded financial documents
│ └── index/ # LEANN indexes
│ └── financebench_full_hnsw.leann
└── README.md
```
## Usage
### 1. Setup (Download & Build Index)
```bash
cd benchmarks/financebench
python setup_financebench.py
```
This will:
- Download the 150 Q&A examples
- Download all 368 PDF documents (parallel processing)
- Build a LEANN index from 53K+ text chunks
- Verify setup with test query
### 2. Evaluation
```bash
# Basic retrieval evaluation
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann
# Include QA evaluation with OpenAI
export OPENAI_API_KEY="your-key"
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann --qa-samples 20
```
## Evaluation Methods
### Retrieval Evaluation
Uses intelligent matching with three strategies:
1. **Exact text overlap** - Direct substring matches
2. **Number matching** - Key financial figures ($1,577, 1.2B, etc.)
3. **Semantic similarity** - Word overlap with 20% threshold
### QA Evaluation
LLM-based answer evaluation using GPT-4o:
- Handles numerical rounding and equivalent representations
- Considers fractions, percentages, and decimal equivalents
- Evaluates semantic meaning rather than exact text match
## Expected Results
Previous runs show:
- **Question Coverage**: ~65-75% (questions with relevant docs retrieved)
- **Index Size**: 53,985 chunks from 368 PDFs
- **Search Time**: ~0.1-0.2s per query
- **Build Time**: ~5-10 minutes with sentence-transformers/all-mpnet-base-v2
## Options
```bash
# Use different backends
python setup_financebench.py --backend diskann
python evaluate_financebench.py --index data/index/financebench_full_diskann.leann
# Use different embedding models
python setup_financebench.py --embedding-model facebook/contriever
```

View File

@@ -0,0 +1,432 @@
#!/usr/bin/env python3
"""
FinanceBench Evaluation Script
Uses intelligent evaluation similar to VectifyAI/Mafin approach
"""
import argparse
import json
import os
import re
import time
from typing import Optional
import openai
from leann import LeannChat, LeannSearcher
class FinanceBenchEvaluator:
def __init__(self, index_path: str, openai_api_key: Optional[str] = None):
self.index_path = index_path
self.openai_client = None
if openai_api_key:
self.openai_client = openai.OpenAI(api_key=openai_api_key)
# Load LEANN
self.searcher = LeannSearcher(index_path)
self.chat = LeannChat(index_path) if openai_api_key else None
def load_dataset(self, dataset_path: str = "data/financebench_merged.jsonl"):
"""Load FinanceBench dataset"""
data = []
with open(dataset_path, encoding="utf-8") as f:
for line in f:
if line.strip():
data.append(json.loads(line))
print(f"📊 Loaded {len(data)} FinanceBench examples")
return data
def evaluate_retrieval_intelligent(self, data: list[dict], top_k: int = 10) -> dict:
"""
Intelligent retrieval evaluation
Uses semantic similarity instead of strict word overlap
"""
print(f"🔍 Evaluating retrieval performance (top_k={top_k})...")
metrics = {
"total_questions": 0,
"questions_with_relevant_retrieved": 0,
"exact_matches": 0,
"semantic_matches": 0,
"number_matches": 0,
"search_times": [],
"detailed_results": [],
}
for item in data:
question = item["question"]
evidence_texts = [ev["evidence_text"] for ev in item.get("evidence", [])]
expected_answer = item["answer"]
if not evidence_texts:
continue
metrics["total_questions"] += 1
# Search for relevant documents
start_time = time.time()
results = self.searcher.search(question, top_k=top_k, complexity=64)
search_time = time.time() - start_time
metrics["search_times"].append(search_time)
# Evaluate retrieved results
found_relevant = False
match_types = []
for evidence_text in evidence_texts:
for i, result in enumerate(results):
retrieved_text = result.text
# Method 1: Exact substring match
if self._has_exact_overlap(evidence_text, retrieved_text):
found_relevant = True
match_types.append(f"exact_match_rank_{i + 1}")
metrics["exact_matches"] += 1
break
# Method 2: Key numbers match
elif self._has_number_match(evidence_text, retrieved_text, expected_answer):
found_relevant = True
match_types.append(f"number_match_rank_{i + 1}")
metrics["number_matches"] += 1
break
# Method 3: Semantic similarity (word overlap with lower threshold)
elif self._has_semantic_similarity(
evidence_text, retrieved_text, threshold=0.2
):
found_relevant = True
match_types.append(f"semantic_match_rank_{i + 1}")
metrics["semantic_matches"] += 1
break
if found_relevant:
metrics["questions_with_relevant_retrieved"] += 1
# Store detailed result
metrics["detailed_results"].append(
{
"question": question,
"expected_answer": expected_answer,
"found_relevant": found_relevant,
"match_types": match_types,
"search_time": search_time,
"top_results": [
{"text": r.text[:200] + "...", "score": r.score, "metadata": r.metadata}
for r in results[:3]
],
}
)
# Calculate metrics
if metrics["total_questions"] > 0:
metrics["question_coverage"] = (
metrics["questions_with_relevant_retrieved"] / metrics["total_questions"]
)
metrics["avg_search_time"] = sum(metrics["search_times"]) / len(metrics["search_times"])
# Match type breakdown
metrics["exact_match_rate"] = metrics["exact_matches"] / metrics["total_questions"]
metrics["number_match_rate"] = metrics["number_matches"] / metrics["total_questions"]
metrics["semantic_match_rate"] = (
metrics["semantic_matches"] / metrics["total_questions"]
)
return metrics
def evaluate_qa_intelligent(self, data: list[dict], max_samples: Optional[int] = None) -> dict:
"""
Intelligent QA evaluation using LLM-based answer comparison
Similar to VectifyAI/Mafin approach
"""
if not self.chat or not self.openai_client:
print("⚠️ Skipping QA evaluation (no OpenAI API key provided)")
return {"accuracy": 0.0, "total_questions": 0}
print("🤖 Evaluating QA performance...")
if max_samples:
data = data[:max_samples]
print(f"📝 Using first {max_samples} samples for QA evaluation")
results = []
correct_answers = 0
for i, item in enumerate(data):
question = item["question"]
expected_answer = item["answer"]
print(f"Question {i + 1}/{len(data)}: {question[:80]}...")
try:
# Get answer from LEANN
start_time = time.time()
generated_answer = self.chat.ask(question)
qa_time = time.time() - start_time
# Intelligent evaluation using LLM
is_correct = self._evaluate_answer_with_llm(
question, expected_answer, generated_answer
)
if is_correct:
correct_answers += 1
results.append(
{
"question": question,
"expected_answer": expected_answer,
"generated_answer": generated_answer,
"is_correct": is_correct,
"qa_time": qa_time,
}
)
print(f"{'Correct' if is_correct else '❌ Incorrect'}")
except Exception as e:
print(f" ❌ Error: {e}")
results.append(
{
"question": question,
"expected_answer": expected_answer,
"generated_answer": f"ERROR: {e}",
"is_correct": False,
"qa_time": 0.0,
}
)
metrics = {
"total_questions": len(data),
"correct_answers": correct_answers,
"accuracy": correct_answers / len(data) if data else 0.0,
"avg_qa_time": sum(r["qa_time"] for r in results) / len(results) if results else 0.0,
"detailed_results": results,
}
return metrics
def _has_exact_overlap(self, evidence_text: str, retrieved_text: str) -> bool:
"""Check for exact substring overlap"""
# Check if evidence is contained in retrieved text or vice versa
return (
evidence_text.lower() in retrieved_text.lower()
or retrieved_text.lower() in evidence_text.lower()
)
def _has_number_match(
self, evidence_text: str, retrieved_text: str, expected_answer: str
) -> bool:
"""Check if key numbers from evidence/answer appear in retrieved text"""
# Extract numbers from evidence and expected answer
evidence_numbers = set(re.findall(r"\$?[\d,]+\.?\d*", evidence_text))
answer_numbers = set(re.findall(r"\$?[\d,]+\.?\d*", expected_answer))
retrieved_numbers = set(re.findall(r"\$?[\d,]+\.?\d*", retrieved_text))
# Check if any key numbers match
key_numbers = evidence_numbers.union(answer_numbers)
return bool(key_numbers.intersection(retrieved_numbers))
def _has_semantic_similarity(
self, evidence_text: str, retrieved_text: str, threshold: float = 0.2
) -> bool:
"""Check semantic similarity using word overlap"""
words1 = set(evidence_text.lower().split())
words2 = set(retrieved_text.lower().split())
if len(words1) == 0:
return False
overlap = len(words1.intersection(words2))
similarity = overlap / len(words1)
return similarity >= threshold
def _evaluate_answer_with_llm(
self, question: str, expected_answer: str, generated_answer: str
) -> bool:
"""
Use LLM to evaluate answer equivalence
Based on VectifyAI/Mafin approach
"""
prompt = f"""You are an expert evaluator for AI-generated responses to financial questions. Your task is to determine whether the AI-generated answer correctly answers the question based on the golden answer provided by a human expert.
Evaluation Criteria:
- Numerical Accuracy: Rounding differences should be ignored if they don't meaningfully change the conclusion. Numbers like 1.2 and 1.23 are considered similar.
- Fractions, percentages, and numerics could be considered similar. For example: "11 of 14""79%""0.79".
- If the golden answer or any of its equivalence can be inferred from the AI answer, then the AI answer is correct.
- The AI answer is correct if it conveys the same meaning, conclusion, or rationale as the golden answer.
- If the AI answer is a superset of the golden answer, it is also considered correct.
- Subjective judgments are correct as long as they are reasonable and justifiable.
Question: {question}
AI-Generated Answer: {generated_answer}
Golden Answer: {expected_answer}
Your output should be ONLY a boolean value: `True` or `False`, nothing else."""
try:
response = self.openai_client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0,
max_tokens=10,
)
result = response.choices[0].message.content.strip().lower()
return "true" in result
except Exception as e:
print(f"LLM evaluation error: {e}")
# Fallback to simple number matching
return self._simple_answer_check(expected_answer, generated_answer)
def _simple_answer_check(self, expected: str, generated: str) -> bool:
"""Simple fallback evaluation"""
# Extract numbers and check for matches
expected_numbers = re.findall(r"\$?[\d,]+\.?\d*", expected.lower())
generated_numbers = re.findall(r"\$?[\d,]+\.?\d*", generated.lower())
# Check if main numbers match
for exp_num in expected_numbers:
if exp_num in generated_numbers:
return True
# Check for key phrase overlap
key_words = set(expected.lower().split()) - {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"for",
"of",
"in",
"on",
"at",
"to",
"and",
"or",
"but",
}
gen_words = set(generated.lower().split())
if len(key_words) > 0:
overlap = len(key_words.intersection(gen_words))
return overlap / len(key_words) >= 0.3
return False
def run_evaluation(
self,
dataset_path: str = "data/financebench_merged.jsonl",
top_k: int = 10,
qa_samples: Optional[int] = None,
) -> dict:
"""Run complete FinanceBench evaluation"""
print("🏦 FinanceBench Evaluation with LEANN")
print("=" * 50)
print(f"📁 Index: {self.index_path}")
print(f"🔍 Top-k: {top_k}")
if qa_samples:
print(f"🤖 QA samples: {qa_samples}")
print()
# Load dataset
data = self.load_dataset(dataset_path)
# Run retrieval evaluation
retrieval_metrics = self.evaluate_retrieval_intelligent(data, top_k=top_k)
# Run QA evaluation
qa_metrics = self.evaluate_qa_intelligent(data, max_samples=qa_samples)
# Print results
self._print_results(retrieval_metrics, qa_metrics)
return {
"retrieval": retrieval_metrics,
"qa": qa_metrics,
}
def _print_results(self, retrieval_metrics: dict, qa_metrics: dict):
"""Print evaluation results"""
print("\n🎯 EVALUATION RESULTS")
print("=" * 50)
print("\n📊 Retrieval Metrics:")
print(f" Question Coverage: {retrieval_metrics.get('question_coverage', 0):.1%}")
print(f" Exact Match Rate: {retrieval_metrics.get('exact_match_rate', 0):.1%}")
print(f" Number Match Rate: {retrieval_metrics.get('number_match_rate', 0):.1%}")
print(f" Semantic Match Rate: {retrieval_metrics.get('semantic_match_rate', 0):.1%}")
print(f" Avg Search Time: {retrieval_metrics.get('avg_search_time', 0):.3f}s")
if qa_metrics.get("total_questions", 0) > 0:
print("\n🤖 QA Metrics:")
print(f" Accuracy: {qa_metrics.get('accuracy', 0):.1%}")
print(f" Questions Evaluated: {qa_metrics.get('total_questions', 0)}")
print(f" Avg QA Time: {qa_metrics.get('avg_qa_time', 0):.3f}s")
# Show some example results
print("\n📝 Example Results:")
for i, result in enumerate(retrieval_metrics.get("detailed_results", [])[:3]):
print(f"\n Example {i + 1}:")
print(f" Q: {result['question'][:80]}...")
print(f" Found relevant: {'' if result['found_relevant'] else ''}")
if result["match_types"]:
print(f" Match types: {', '.join(result['match_types'])}")
def cleanup(self):
"""Cleanup resources"""
if self.searcher:
self.searcher.cleanup()
def main():
parser = argparse.ArgumentParser(description="Evaluate FinanceBench with LEANN")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument("--dataset", default="data/financebench_merged.jsonl", help="Dataset path")
parser.add_argument("--top-k", type=int, default=10, help="Number of documents to retrieve")
parser.add_argument("--qa-samples", type=int, default=None, help="Limit QA evaluation samples")
parser.add_argument("--openai-api-key", help="OpenAI API key for QA evaluation")
parser.add_argument("--output", help="Save results to JSON file")
args = parser.parse_args()
# Get OpenAI API key
api_key = args.openai_api_key or os.getenv("OPENAI_API_KEY")
if not api_key and args.qa_samples != 0:
print("⚠️ No OpenAI API key provided. QA evaluation will be skipped.")
print(" Set OPENAI_API_KEY environment variable or use --openai-api-key")
try:
# Run evaluation
evaluator = FinanceBenchEvaluator(args.index, api_key)
results = evaluator.run_evaluation(
dataset_path=args.dataset, top_k=args.top_k, qa_samples=args.qa_samples
)
# Save results if requested
if args.output:
with open(args.output, "w") as f:
json.dump(results, f, indent=2, default=str)
print(f"\n💾 Results saved to {args.output}")
evaluator.cleanup()
print("\n✅ Evaluation completed!")
except KeyboardInterrupt:
print("\n⚠️ Evaluation interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Evaluation failed: {e}")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,351 @@
#!/usr/bin/env python3
"""
FinanceBench Complete Setup Script
Downloads all PDFs and builds full LEANN datastore
"""
import argparse
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from threading import Lock
import pymupdf
import requests
from leann import LeannBuilder, LeannSearcher
from tqdm import tqdm
class FinanceBenchSetup:
def __init__(self, data_dir: str = "data"):
self.base_dir = Path(__file__).parent # benchmarks/financebench/
self.data_dir = self.base_dir / data_dir
self.pdf_dir = self.data_dir / "pdfs"
self.dataset_file = self.data_dir / "financebench_merged.jsonl"
self.index_dir = self.data_dir / "index"
self.download_lock = Lock()
def download_dataset(self):
"""Download the main FinanceBench dataset"""
print("📊 Downloading FinanceBench dataset...")
self.data_dir.mkdir(parents=True, exist_ok=True)
if self.dataset_file.exists():
print(f"✅ Dataset already exists: {self.dataset_file}")
return
url = "https://huggingface.co/datasets/PatronusAI/financebench/raw/main/financebench_merged.jsonl"
response = requests.get(url, stream=True)
response.raise_for_status()
with open(self.dataset_file, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"✅ Dataset downloaded: {self.dataset_file}")
def get_pdf_list(self):
"""Get list of all PDF files from GitHub"""
print("📋 Fetching PDF list from GitHub...")
response = requests.get(
"https://api.github.com/repos/patronus-ai/financebench/contents/pdfs"
)
response.raise_for_status()
pdf_files = response.json()
print(f"Found {len(pdf_files)} PDF files")
return pdf_files
def download_single_pdf(self, pdf_info, position):
"""Download a single PDF file"""
pdf_name = pdf_info["name"]
pdf_path = self.pdf_dir / pdf_name
# Skip if already downloaded
if pdf_path.exists() and pdf_path.stat().st_size > 0:
return f"{pdf_name} (cached)"
try:
# Download PDF
response = requests.get(pdf_info["download_url"], timeout=60)
response.raise_for_status()
# Write to file
with self.download_lock:
with open(pdf_path, "wb") as f:
f.write(response.content)
return f"{pdf_name} ({len(response.content) // 1024}KB)"
except Exception as e:
return f"{pdf_name}: {e!s}"
def download_all_pdfs(self, max_workers: int = 5):
"""Download all PDF files with parallel processing"""
self.pdf_dir.mkdir(parents=True, exist_ok=True)
pdf_files = self.get_pdf_list()
print(f"📥 Downloading {len(pdf_files)} PDFs with {max_workers} workers...")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all download tasks
future_to_pdf = {
executor.submit(self.download_single_pdf, pdf_info, i): pdf_info["name"]
for i, pdf_info in enumerate(pdf_files)
}
# Process completed downloads with progress bar
with tqdm(total=len(pdf_files), desc="Downloading PDFs") as pbar:
for future in as_completed(future_to_pdf):
result = future.result()
pbar.set_postfix_str(result.split()[-1] if "" in result else "Error")
pbar.update(1)
# Verify downloads
downloaded_pdfs = list(self.pdf_dir.glob("*.pdf"))
print(f"✅ Successfully downloaded {len(downloaded_pdfs)}/{len(pdf_files)} PDFs")
# Show any failures
missing_pdfs = []
for pdf_info in pdf_files:
pdf_path = self.pdf_dir / pdf_info["name"]
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
missing_pdfs.append(pdf_info["name"])
if missing_pdfs:
print(f"⚠️ Failed to download {len(missing_pdfs)} PDFs:")
for pdf in missing_pdfs[:5]: # Show first 5
print(f" - {pdf}")
if len(missing_pdfs) > 5:
print(f" ... and {len(missing_pdfs) - 5} more")
def build_leann_index(
self,
backend: str = "hnsw",
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
):
"""Build LEANN index from all PDFs"""
print(f"🏗️ Building LEANN index with {backend} backend...")
# Check if we have PDFs
pdf_files = list(self.pdf_dir.glob("*.pdf"))
if not pdf_files:
raise RuntimeError("No PDF files found! Run download first.")
print(f"Found {len(pdf_files)} PDF files to process")
start_time = time.time()
# Initialize builder
builder = LeannBuilder(
backend_name=backend,
embedding_model=embedding_model,
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=False, # Store embeddings for speed
num_threads=4,
)
# Process PDFs and extract text
total_chunks = 0
failed_pdfs = []
for pdf_path in tqdm(pdf_files, desc="Processing PDFs"):
try:
chunks = self.extract_pdf_text(pdf_path)
for chunk in chunks:
builder.add_text(chunk["text"], metadata=chunk["metadata"])
total_chunks += 1
except Exception as e:
print(f"❌ Failed to process {pdf_path.name}: {e}")
failed_pdfs.append(pdf_path.name)
continue
# Build index in index directory
self.index_dir.mkdir(parents=True, exist_ok=True)
index_path = self.index_dir / f"financebench_full_{backend}.leann"
print(f"🔨 Building index: {index_path}")
builder.build_index(str(index_path))
build_time = time.time() - start_time
print("✅ Index built successfully!")
print(f" 📁 Index path: {index_path}")
print(f" 📊 Total chunks: {total_chunks:,}")
print(f" 📄 Processed PDFs: {len(pdf_files) - len(failed_pdfs)}/{len(pdf_files)}")
print(f" ⏱️ Build time: {build_time:.1f}s")
if failed_pdfs:
print(f" ⚠️ Failed PDFs: {failed_pdfs}")
return str(index_path)
def extract_pdf_text(self, pdf_path: Path) -> list[dict]:
"""Extract and chunk text from a PDF file"""
chunks = []
doc = pymupdf.open(pdf_path)
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text() # type: ignore
if not text.strip():
continue
# Create metadata
metadata = {
"source_file": pdf_path.name,
"page_number": page_num + 1,
"document_type": "10K" if "10K" in pdf_path.name else "10Q",
"company": pdf_path.name.split("_")[0],
"doc_period": self.extract_year_from_filename(pdf_path.name),
}
# Use recursive character splitting like LangChain
if len(text.split()) > 500:
# Split by double newlines (paragraphs)
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
current_chunk = ""
for para in paragraphs:
# If adding this paragraph would make chunk too long, save current chunk
if current_chunk and len((current_chunk + " " + para).split()) > 300:
if current_chunk.strip():
chunks.append(
{
"text": current_chunk.strip(),
"metadata": {
**metadata,
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
},
}
)
current_chunk = para
else:
current_chunk = (current_chunk + " " + para).strip()
# Add the last chunk
if current_chunk.strip():
chunks.append(
{
"text": current_chunk.strip(),
"metadata": {
**metadata,
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
},
}
)
else:
# Page is short enough, use as single chunk
chunks.append(
{
"text": text.strip(),
"metadata": {**metadata, "chunk_id": f"page_{page_num + 1}"},
}
)
doc.close()
return chunks
def extract_year_from_filename(self, filename: str) -> str:
"""Extract year from PDF filename"""
# Try to find 4-digit year in filename
match = re.search(r"(\d{4})", filename)
return match.group(1) if match else "unknown"
def verify_setup(self, index_path: str):
"""Verify the setup by testing a simple query"""
print("🧪 Verifying setup with test query...")
try:
searcher = LeannSearcher(index_path)
# Test query
test_query = "What is the capital expenditure for 3M in 2018?"
results = searcher.search(test_query, top_k=3)
print(f"✅ Test query successful! Found {len(results)} results:")
for i, result in enumerate(results, 1):
company = result.metadata.get("company", "Unknown")
year = result.metadata.get("doc_period", "Unknown")
page = result.metadata.get("page_number", "Unknown")
print(f" {i}. {company} {year} (page {page}) - Score: {result.score:.3f}")
print(f" {result.text[:100]}...")
searcher.cleanup()
print("✅ Setup verification completed successfully!")
except Exception as e:
print(f"❌ Setup verification failed: {e}")
raise
def main():
parser = argparse.ArgumentParser(description="Setup FinanceBench with full PDF datastore")
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument(
"--backend", choices=["hnsw", "diskann"], default="hnsw", help="LEANN backend"
)
parser.add_argument(
"--embedding-model",
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model",
)
parser.add_argument("--max-workers", type=int, default=5, help="Parallel download workers")
parser.add_argument("--skip-download", action="store_true", help="Skip PDF download")
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
args = parser.parse_args()
print("🏦 FinanceBench Complete Setup")
print("=" * 50)
setup = FinanceBenchSetup(args.data_dir)
try:
# Step 1: Download dataset
setup.download_dataset()
# Step 2: Download PDFs
if not args.skip_download:
setup.download_all_pdfs(max_workers=args.max_workers)
else:
print("⏭️ Skipping PDF download")
# Step 3: Build LEANN index
if not args.skip_build:
index_path = setup.build_leann_index(
backend=args.backend, embedding_model=args.embedding_model
)
# Step 4: Verify setup
setup.verify_setup(index_path)
else:
print("⏭️ Skipping index building")
print("\n🎉 FinanceBench setup completed!")
print(f"📁 Data directory: {setup.data_dir.absolute()}")
print("\nNext steps:")
print(
"1. Run evaluation: python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann"
)
print(
"2. Or test manually: python -c \"from leann import LeannSearcher; s = LeannSearcher('data/index/financebench_full_hnsw.leann'); print(s.search('3M capital expenditure 2018'))\""
)
except KeyboardInterrupt:
print("\n⚠️ Setup interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Setup failed: {e}")
exit(1)
if __name__ == "__main__":
main()