upd readme mail application
This commit is contained in:
79
README.md
79
README.md
@@ -123,26 +123,81 @@ This ensures the generated files are compatible with your system's protobuf libr
|
||||
|
||||
### 🔥 Core Features
|
||||
|
||||
- **📊 Multiple Distance Functions**: L2, Cosine, MIPS (Maximum Inner Product Search)
|
||||
- **🏗️ Pluggable Backends**: DiskANN, HNSW/FAISS with unified API
|
||||
- **🔄 Real-time Embeddings**: Dynamic computation using optimized ZMQ servers
|
||||
- **📈 Scalable Architecture**: Handles millions of documents on consumer hardware
|
||||
- **🎯 Graph Pruning**: Advanced techniques for memory-efficient search
|
||||
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
|
||||
|
||||
### 🛠️ Technical Highlights
|
||||
|
||||
- **Zero-copy operations** for maximum performance
|
||||
- **SIMD-optimized** distance computations (AVX2/AVX512)
|
||||
- **Async embedding pipeline** with batched processing
|
||||
- **Memory-mapped indices** for fast startup
|
||||
- **Recompute mode** for highest accuracy scenarios
|
||||
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
|
||||
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
|
||||
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
|
||||
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
|
||||
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
|
||||
- **🚀 MLX Support** - Ultra-fast recompute with quantized embedding models, accelerating building and search by 10-100x
|
||||
|
||||
### 🎨 Developer Experience
|
||||
|
||||
- **Simple Python API** - Get started in minutes
|
||||
- **Extensible backend system** - Easy to add new algorithms
|
||||
- **Comprehensive examples** - From basic usage to production deployment
|
||||
- **Rich debugging tools** - Built-in performance profiling
|
||||
|
||||
## Applications on your MacBook
|
||||
|
||||
### light weight RAG on your apple email
|
||||
|
||||
LEANN can create a searchable index of your Apple Mail emails, allowing you to query your email history using natural language.
|
||||
|
||||
#### Quick Start
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use default mail path (works for most macOS setups)
|
||||
python examples/mail_reader_leann.py
|
||||
|
||||
# Specify your own mail path
|
||||
python examples/mail_reader_leann.py --mail-path "/Users/yourname/Library/Mail/V10/..."
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/mail_reader_leann.py --index-dir "./my_mail_index"
|
||||
|
||||
# Limit number of emails processed (useful for testing)
|
||||
python examples/mail_reader_leann.py --max-emails 1000
|
||||
|
||||
# Run a single query
|
||||
python examples/mail_reader_leann.py --query "Find emails about project deadlines"
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### Finding Your Mail Path
|
||||
|
||||
<details>
|
||||
<summary><strong>🔍 Click to expand: How to find your mail path</strong></summary>
|
||||
|
||||
The default mail path is configured for a typical macOS setup. If you need to find your specific mail path:
|
||||
|
||||
1. Open Terminal
|
||||
2. Run: `find ~/Library/Mail -name "Messages" -type d | head -5`
|
||||
3. Use the parent directory(ended with Data) of the Messages folder as your `--mail-path`
|
||||
|
||||
</details>
|
||||
|
||||
#### Example Queries
|
||||
|
||||
<details>
|
||||
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
|
||||
|
||||
Once the index is built, you can ask questions like:
|
||||
- "Show me emails about meeting schedules"
|
||||
- "Find emails from my boss about deadlines"
|
||||
- "What did John say about the project timeline?"
|
||||
- "Show me emails about travel expenses"
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## 📊 Benchmarks
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
import dotenv
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
@@ -8,6 +9,9 @@ from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Default mail path for macOS
|
||||
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
||||
|
||||
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1):
|
||||
"""
|
||||
Create LEANN index from multiple mail data sources.
|
||||
@@ -203,12 +207,30 @@ async def query_leann_index(index_path: str, query: str):
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
# Base path to the mail data directory
|
||||
base_mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
|
||||
parser.add_argument('--mail-path', type=str, default=DEFAULT_MAIL_PATH,
|
||||
help=f'Path to mail data directory (default: {DEFAULT_MAIL_PATH})')
|
||||
parser.add_argument('--index-dir', type=str, default="./mail_index_leann_raw_text_all_dicts",
|
||||
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
|
||||
parser.add_argument('--max-emails', type=int, default=1000,
|
||||
help='Maximum number of emails to process (-1 means all)')
|
||||
parser.add_argument('--query', type=str, default="Give me some funny advertisement about apple or other companies",
|
||||
help='Single query to run (default: runs example queries)')
|
||||
|
||||
INDEX_DIR = Path("./mail_index_leann_raw_text_all_dicts")
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"args: {args}")
|
||||
|
||||
# Base path to the mail data directory
|
||||
base_mail_path = args.mail_path
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
|
||||
|
||||
print(f"Using mail path: {base_mail_path}")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
|
||||
# Find all Messages directories
|
||||
from LEANN_email_reader import EmlxReader
|
||||
messages_dirs = EmlxReader.find_all_messages_directories(base_mail_path)
|
||||
@@ -218,20 +240,23 @@ async def main():
|
||||
return
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH)
|
||||
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails)
|
||||
|
||||
if index_path:
|
||||
# Example queries
|
||||
queries = [
|
||||
"Hows Berkeley Graduate Student Instructor",
|
||||
"how's the icloud related advertisement saying",
|
||||
"Whats the number of class recommend to take per semester for incoming EECS students"
|
||||
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "="*60)
|
||||
await query_leann_index(index_path, query)
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"Hows Berkeley Graduate Student Instructor",
|
||||
"how's the icloud related advertisement saying",
|
||||
"Whats the number of class recommend to take per semester for incoming EECS students"
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "="*60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
Reference in New Issue
Block a user