docs: ollama
This commit is contained in:
34
README.md
34
README.md
@@ -64,8 +64,40 @@ sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev l
|
||||
uv sync
|
||||
```
|
||||
|
||||
### 🚀 30-Second Example
|
||||
**Ollama Setup (Optional for Local LLM):**
|
||||
|
||||
*macOS:*
|
||||
```bash
|
||||
# Install Ollama
|
||||
brew install ollama
|
||||
|
||||
# Pull a lightweight model (recommended for consumer hardware)
|
||||
ollama pull llama3.2:1b
|
||||
|
||||
# For better performance but higher memory usage
|
||||
ollama pull llama3.2:3b
|
||||
```
|
||||
|
||||
*Linux:*
|
||||
```bash
|
||||
# Install Ollama
|
||||
curl -fsSL https://ollama.ai/install.sh | sh
|
||||
|
||||
# Start Ollama service manually
|
||||
ollama serve &
|
||||
|
||||
# Pull a lightweight model (recommended for consumer hardware)
|
||||
ollama pull llama3.2:1b
|
||||
|
||||
# For better performance but higher memory usage
|
||||
ollama pull llama3.2:3b
|
||||
```
|
||||
|
||||
**Note:** For Hugging Face models >1B parameters, you may encounter OOM errors on consumer hardware. Consider using smaller models like Qwen3-0.6B or switch to Ollama for better memory management.
|
||||
|
||||
### 30-Second Example
|
||||
Try it out in [**demo.ipynb**](demo.ipynb)
|
||||
|
||||
```python
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
# 1. Build index (no embeddings stored!)
|
||||
|
||||
Reference in New Issue
Block a user