docs: Simplify README by removing excessive documentation

- Remove overly complex CLI reference and getting started sections (lines 61-334)
- Remove emojis from section headers for cleaner appearance
- Keep README simple and focused as requested
- Maintain essential MCP integration documentation

This addresses feedback to keep documentation minimal and avoid auto-generated content.
This commit is contained in:
aakash
2025-10-06 16:00:22 -07:00
parent a43fafe44e
commit dfae37d0ee

293
README.md
View File

@@ -48,7 +48,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
## Installation
### 📦 Prerequisites: Install uv
### Prerequisites: Install uv
[Install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) first if you don't have it. Typically, you can install it with:
@@ -56,280 +56,23 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
curl -LsSf https://astral.sh/uv/install.sh | sh
```
### 🚀 Quick Install (Recommended for Most Users)
### Quick Install
Clone the repository to access all examples and try amazing applications,
**Step 1: Clone and Setup**
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
```
and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
```bash
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
**Step 2: Install LEANN**
```bash
source .venv/bin/activate
uv pip install leann
```
**Step 3: Verify Installation**
```bash
leann --help
```
You should see the LEANN CLI help message. If you get an error, see [Troubleshooting](#-troubleshooting) below.
### 🌐 Global Installation (For MCP Integration)
To use LEANN with MCP servers (like Claude Code integration), install globally:
```bash
# Install globally using uv tool
uv tool install leann-core --with leann
# Verify global installation
leann --help
```
> **When to use global installation:** Required for MCP integration, Claude Code, and when you want to use `leann` commands from any directory.
## 📖 CLI Reference
LEANN provides a simple but powerful command-line interface. Here are the essential commands:
### 🔨 Building Indexes
**Basic Usage:**
```bash
leann build <index-name> --docs <files-or-directories>
```
**Examples:**
```bash
# Index a single directory
leann build my-docs --docs ./documents
# Index multiple directories
leann build my-project --docs ./src ./tests ./docs
# Index specific files and directories
leann build my-files --docs ./README.md ./src/ ./config.json
# Index only specific file types
leann build my-pdfs --docs ./documents --file-types .pdf,.docx
# Use different embedding models
leann build my-docs --docs ./documents --embedding-model sentence-transformers/all-MiniLM-L6-v2
```
### 🔍 Searching and Querying
**Search (returns ranked results):**
```bash
leann search <index-name> "your search query"
```
**Ask (conversational Q&A):**
```bash
leann ask <index-name> "your question"
```
**Examples:**
```bash
# Search for documents
leann search my-docs "machine learning algorithms"
# Ask questions about your data
leann ask my-code "How does the authentication system work?"
# Interactive mode (keeps asking questions)
leann ask my-docs --interactive
```
### 📋 Index Management
```bash
# List all indexes
leann list
# Remove an index
leann remove my-docs
# Get index information
leann info my-docs
```
### ⚙️ Configuration Options
**Embedding Models:**
```bash
# Use different embedding backends
--embedding-mode sentence-transformers # Default, runs locally
--embedding-mode openai # Requires OPENAI_API_KEY
--embedding-mode ollama # Requires Ollama server
--embedding-mode mlx # Apple Silicon only
# Specify embedding model
--embedding-model sentence-transformers/all-MiniLM-L6-v2 # Fast, 384-dim
--embedding-model sentence-transformers/all-mpnet-base-v2 # Better quality, 768-dim
--embedding-model text-embedding-ada-002 # OpenAI (requires API key)
```
**Vector Database Backends:**
```bash
--backend hnsw # Default, good for most use cases
--backend diskann # Better for large datasets (>1M documents)
```
**File Processing:**
```bash
--file-types .pdf,.docx,.txt # Only process specific file types
--chunk-size 512 # Adjust text chunk size (default: 256)
--chunk-overlap 128 # Adjust chunk overlap (default: 128)
```
### 🌐 Environment Variables
Configure LEANN behavior with environment variables:
```bash
# OpenAI Configuration
export OPENAI_API_KEY="your-api-key"
export OPENAI_BASE_URL="https://api.openai.com/v1" # Custom endpoint
# Ollama Configuration
export OLLAMA_HOST="http://localhost:11434" # Default Ollama URL
export OLLAMA_HOST="http://your-server:11434" # Custom Ollama server
# LEANN Configuration
export LEANN_LOG_LEVEL="INFO" # DEBUG, INFO, WARNING, ERROR
```
### 🔧 Troubleshooting
**Common Issues:**
1. **"leann: command not found"**
```bash
# Make sure you're in the right environment
source .venv/bin/activate
# Or install globally
uv tool install leann-core --with leann
```
2. **Ollama connection issues**
```bash
# Check if Ollama is running
curl http://localhost:11434/api/tags
# Set custom Ollama URL
export OLLAMA_HOST="http://your-ollama-server:11434"
leann build my-docs --docs ./documents --embedding-mode ollama
```
3. **OpenAI API errors**
```bash
# Set your API key
export OPENAI_API_KEY="your-api-key"
# Use custom endpoint (e.g., Azure OpenAI)
export OPENAI_BASE_URL="https://your-endpoint.openai.azure.com/v1"
```
4. **Memory issues with large datasets**
```bash
# Use smaller batch sizes
leann build my-docs --docs ./documents --batch-size 16
# Use DiskANN for large datasets
leann build my-docs --docs ./documents --backend diskann
```
## 🚀 Getting Started Guide
**New to LEANN?** Follow this step-by-step guide to get up and running quickly.
### Step 1: Choose Your Installation Method
**For most users (recommended):**
```bash
# Quick setup - works for 90% of use cases
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
uv venv && source .venv/bin/activate
uv pip install leann
```
**For MCP integration (Claude Code, live data sources):**
```bash
# Global installation required for MCP servers
uv tool install leann-core --with leann
```
### Step 2: Verify Installation
```bash
leann --help
```
If you see the help message, you're ready to go! If not, see [Troubleshooting](#-troubleshooting) above.
### Step 3: Create Your First Index
**Simple example:**
```bash
# Create a test directory with some documents
mkdir test-docs
echo "LEANN is a vector database for personal AI" > test-docs/about.txt
echo "It uses 97% less storage than traditional solutions" > test-docs/features.txt
# Build your first index
leann build my-first-index --docs test-docs
# Search it
leann search my-first-index "vector database"
```
### Step 4: Try Real Data
**Index your documents:**
```bash
leann build my-docs --docs ~/Documents
leann search my-docs "your search query"
```
**Index your code:**
```bash
leann build my-code --docs ./src ./tests
leann ask my-code "How does authentication work?"
```
### Step 5: Explore Advanced Features
Once you're comfortable with the basics:
- **Try different embedding models**: Add `--embedding-model sentence-transformers/all-MiniLM-L6-v2`
- **Use Ollama for local LLMs**: Set up Ollama and use `--embedding-mode ollama`
- **Connect live data**: Try MCP integration for Slack, Twitter, etc.
- **Explore specialized apps**: Use `python -m apps.email_rag`, `python -m apps.browser_rag`, etc.
### Understanding LEANN vs Apps
**LEANN has two interfaces:**
1. **CLI Commands** (`leann build`, `leann search`, `leann ask`)
- General-purpose document indexing and search
- Works with any files and directories
- Best for: Personal documents, code, general use
2. **Specialized Apps** (`python -m apps.email_rag`, `python -m apps.chatgpt_rag`, etc.)
- Pre-built applications for specific data sources
- Handle data extraction and formatting automatically
- Best for: Email, browser history, chat exports, live data
**When to use which:**
- Use **CLI** for general documents and code
- Use **Apps** for specialized data sources (email, chats, etc.)
<!--
> Low-resource? See "Low-resource setups" in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
@@ -1032,18 +775,18 @@ Once your iMessage conversations are indexed, you can search with queries like:
</details>
### 🔌 MCP Integration: RAG on Live Data from Any Platform!
### MCP Integration: RAG on Live Data from Any Platform
**NEW!** Connect to live data sources through the Model Context Protocol (MCP). LEANN now supports real-time RAG on platforms like Slack, Twitter, and more through standardized MCP servers.
**Key Benefits:**
- 🔄 **Live Data Access**: Fetch real-time data without manual exports
- 🔌 **Standardized Protocol**: Use any MCP-compatible server
- 🚀 **Easy Extension**: Add new platforms with minimal code
- 🔒 **Secure Access**: MCP servers handle authentication
- **Live Data Access**: Fetch real-time data without manual exports
- **Standardized Protocol**: Use any MCP-compatible server
- **Easy Extension**: Add new platforms with minimal code
- **Secure Access**: MCP servers handle authentication
<details>
<summary><strong>💬 Slack Messages: Search Your Team Conversations</strong></summary>
<summary><strong>Slack Messages: Search Your Team Conversations</strong></summary>
Transform your Slack workspace into a searchable knowledge base! Find discussions, decisions, and shared knowledge across all your channels.
@@ -1078,7 +821,7 @@ python -m apps.slack_rag \
</details>
<details>
<summary><strong>🐦 Twitter Bookmarks: Your Personal Tweet Library</strong></summary>
<summary><strong>Twitter Bookmarks: Your Personal Tweet Library</strong></summary>
Search through your Twitter bookmarks! Find that perfect article, thread, or insight you saved for later.
@@ -1204,7 +947,7 @@ Try our fully agentic pipeline with auto query rewriting, semantic search planni
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
## Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.