docs: Weaken DiskANN emphasis in README
- Change backend description to emphasize HNSW as default - DiskANN positioned as optional for billion-scale datasets - Simplify evaluation commands to be more generic
This commit is contained in:
@@ -516,7 +516,7 @@ Options:
|
||||
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
|
||||
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
|
||||
|
||||
**Backends:** DiskANN or HNSW - pick what works for your data size.
|
||||
**Backends:** HNSW (default) for most use cases, with optional DiskANN support for billion-scale datasets.
|
||||
|
||||
## Benchmarks
|
||||
|
||||
@@ -536,8 +536,7 @@ Options:
|
||||
|
||||
```bash
|
||||
uv pip install -e ".[dev]" # Install dev dependencies
|
||||
python benchmarks/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
|
||||
python benchmarks/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
|
||||
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
|
||||
```
|
||||
|
||||
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
||||
|
||||
Reference in New Issue
Block a user