feat: dataset for evaluation

This commit is contained in:
Andy Lee
2025-07-12 23:43:10 +00:00
parent 88ca09440d
commit ecab43e307
4 changed files with 136 additions and 60 deletions

View File

@@ -146,6 +146,37 @@ This ensures the generated files are compatible with your system's protobuf libr
## 📊 Benchmarks
### How to Reproduce Evaluation Results
Reproducing our benchmarks is straightforward. The evaluation script is designed to be self-contained, automatically downloading all necessary data on its first run.
#### 1. Environment Setup
First, ensure you have followed the installation instructions in the [Quick Start](#-quick-start) section. This will install all core dependencies.
Next, install the optional development dependencies, which include the `huggingface-hub` library required for automatic data download:
```bash
# This command installs all development dependencies
uv pip install -e ".[dev]"
```
#### 2. Run the Evaluation
Simply run the evaluation script. The first time you run it, it will detect that the data is missing, download it from Hugging Face Hub, and then proceed with the evaluation.
**To evaluate the DPR dataset:**
```bash
python examples/run_evaluation.py data/indices/dpr/dpr_diskann
```
**To evaluate the RPJ-Wiki dataset:**
```bash
python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index
```
The script will print the recall and search time for each query, followed by the average results.
### Memory Usage Comparison
| System | 1M Documents | 10M Documents | 100M Documents |

44
data/README.md Normal file
View File

@@ -0,0 +1,44 @@
---
license: mit
---
# LEANN-RAG Evaluation Data
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
## Dataset Components
This dataset is structured into three main parts:
1. **Pre-built LEANN Indices**:
* `dpr/`: A pre-built index for the DPR dataset.
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
2. **Ground Truth Data**:
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
3. **Queries**:
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
## Usage
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
```bash
pip install huggingface-hub
```
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir="data"
)
```
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.

View File

@@ -12,8 +12,6 @@ from pathlib import Path
import sys
import numpy as np
from typing import List, Dict, Any
import glob
import pickle
# Add project root to path to allow importing from leann
project_root = Path(__file__).resolve().parent.parent
@@ -21,50 +19,45 @@ sys.path.insert(0, str(project_root))
from leann.api import LeannSearcher
# --- Configuration ---
NQ_QUERIES_FILE = Path("/opt/dlami/nvme/scaling_out/examples/nq_open.jsonl")
def download_data_if_needed(data_root: Path):
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
if not data_root.exists():
print(f"Data directory '{data_root}' not found.")
print("Downloading evaluation data from Hugging Face Hub... (this may take a moment)")
try:
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False # Recommended for Windows compatibility and simpler structure
)
print("Data download complete!")
except ImportError:
print("Error: huggingface_hub is not installed. Please install it to download the data:")
print("pip install -e ".[dev]"")
sys.exit(1)
except Exception as e:
print(f"An error occurred during data download: {e}")
sys.exit(1)
from leann.api import LeannSearcher
# Ground truth files for different datasets
GROUND_TRUTH_FILES = {
"rpj_wiki": "/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/flat_results_nq_k3.json",
"dpr": "/opt/dlami/nvme/scaling_out/indices/dpr/facebook/contriever-msmarco/flat_results_nq_k3.json"
}
# Old passages for different datasets
OLD_PASSAGES_GLOBS = {
"rpj_wiki": "/opt/dlami/nvme/scaling_out/passages/rpj_wiki/8-shards/raw_passages-*-of-8.pkl.jsonl",
"dpr": "/opt/dlami/nvme/scaling_out/passages/dpr/1-shards/raw_passages-*-of-1.pkl.jsonl"
}
# --- Helper Class to Load Original Passages ---
class OldPassageLoader:
"""A simplified version of the old LazyPassages class to fetch golden results by ID."""
def __init__(self, passages_glob: str):
self.jsonl_paths = sorted(glob.glob(passages_glob))
self.offsets = {}
self.fps = [open(p, "r", encoding="utf-8") for p in self.jsonl_paths]
print("Building offset map for original passages...")
for i, shard_path_str in enumerate(self.jsonl_paths):
old_idx_path = Path(shard_path_str.replace(".jsonl", ".idx"))
if not old_idx_path.exists(): continue
with open(old_idx_path, 'rb') as f:
shard_offsets = pickle.load(f)
for pid, offset in shard_offsets.items():
self.offsets[str(pid)] = (i, offset)
print("Offset map for original passages is ready.")
def get_passage_by_id(self, pid: str) -> Dict[str, Any]:
pid = str(pid)
if pid not in self.offsets:
raise ValueError(f"Passage ID {pid} not found in offsets")
file_idx, offset = self.offsets[pid]
fp = self.fps[file_idx]
fp.seek(offset)
return json.loads(fp.readline())
def __del__(self):
for fp in self.fps:
fp.close()
# --- Helper Function to get Golden Passages ---
def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
"""
Retrieves the text for golden passage IDs directly from the LeannSearcher's
passage manager.
"""
golden_texts = set()
for gid in golden_ids:
try:
# PassageManager uses string IDs
passage_data = searcher.passage_manager.get_passage(str(gid))
golden_texts.add(passage_data['text'])
except KeyError:
print(f"Warning: Golden passage ID '{gid}' not found in the index's passage data.")
return golden_texts
def load_queries(file_path: Path) -> List[str]:
queries = []
@@ -82,35 +75,40 @@ def main():
parser.add_argument("--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW.")
args = parser.parse_args()
print(f"--- Final, Correct Recall Evaluation (efSearch={args.ef_search}) ---")
# Detect dataset type from index path
# --- Path Configuration ---
# Assumes a project structure where the script is in 'examples/'
# and data is in 'data/' at the project root.
project_root = Path(__file__).resolve().parent.parent
data_root = project_root / "data"
# Automatically download data if it doesn't exist
download_data_if_needed(data_root)
# Detect dataset type from index path to select the correct ground truth
index_path_str = str(args.index_path)
if "rpj_wiki" in index_path_str:
dataset_type = "rpj_wiki"
elif "dpr" in index_path_str:
dataset_type = "dpr"
else:
print("WARNING: Unknown dataset type, defaulting to rpj_wiki")
dataset_type = "rpj_wiki"
# Fallback: try to infer from the index directory name
dataset_type = Path(args.index_path).name
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
queries_file = data_root / "queries" / "nq_open.jsonl"
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
print(f"INFO: Detected dataset type: {dataset_type}")
print(f"INFO: Using queries file: {queries_file}")
print(f"INFO: Using ground truth file: {golden_results_file}")
try:
searcher = LeannSearcher(args.index_path)
queries = load_queries(NQ_QUERIES_FILE)
golden_results_file = GROUND_TRUTH_FILES[dataset_type]
old_passages_glob = OLD_PASSAGES_GLOBS[dataset_type]
print(f"INFO: Using ground truth file: {golden_results_file}")
print(f"INFO: Using old passages glob: {old_passages_glob}")
queries = load_queries(queries_file)
with open(golden_results_file, 'r') as f:
golden_results_data = json.load(f)
old_passage_loader = OldPassageLoader(old_passages_glob)
num_eval_queries = min(args.num_queries, len(queries))
queries = queries[:num_eval_queries]
@@ -125,8 +123,10 @@ def main():
# Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results}
# Get golden texts directly from the searcher's passage manager
golden_ids = golden_results_data["indices"][i][:args.top_k]
golden_texts = {old_passage_loader.get_passage_by_id(str(gid))['text'] for gid in golden_ids}
golden_texts = get_golden_texts(searcher, golden_ids)
overlap = len(new_texts & golden_texts)
recall = overlap / len(golden_texts) if golden_texts else 0

View File

@@ -41,6 +41,7 @@ dev = [
"black>=23.0",
"ruff>=0.1.0",
"matplotlib",
"huggingface-hub>=0.20.0",
]
[tool.setuptools]