chore: macos compatible

This commit is contained in:
Andy Lee
2025-07-08 13:32:00 -07:00
parent 6497e17671
commit f25a1a3840
8 changed files with 103 additions and 37 deletions

10
.gitmodules vendored
View File

@@ -4,3 +4,13 @@
[submodule "packages/leann-backend-hnsw/third_party/faiss"]
path = packages/leann-backend-hnsw/third_party/faiss
url = https://github.com/yichuan520030910320/faiss.git
[submodule "packages/leann-backend-hnsw/third_party/msgpack-c"]
path = packages/leann-backend-hnsw/third_party/msgpack-c
url = https://github.com/msgpack/msgpack-c.git
branch = cpp_master
[submodule "packages/leann-backend-hnsw/third_party/cppzmq"]
path = packages/leann-backend-hnsw/third_party/cppzmq
url = https://github.com/zeromq/cppzmq.git
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git

View File

@@ -28,13 +28,15 @@
### 🎯 Why Leann?
Traditional RAG systems face a fundamental trade-off:
- **💾 Storage**: Storing embeddings for millions of documents requires massive disk space
- **🔄 Freshness**: Pre-computed embeddings become stale when documents change
- **💰 Cost**: Vector databases are expensive to scale
**Leann solves this by:**
-**Zero embedding storage** - Only graph structure is persisted
-**Real-time computation** - Embeddings computed on-demand with ms latency
-**Real-time computation** - Embeddings computed on-demand with ms latency
-**Memory efficient** - Runs on consumer hardware (8GB RAM)
-**Always fresh** - No stale embeddings, ever
@@ -46,6 +48,18 @@ Traditional RAG systems face a fundamental trade-off:
git clone git@github.com:yichuan520030910320/LEANN-RAG.git leann
cd leann
git submodule update --init --recursive
```
**macOS:**
```bash
brew install llvm libomp
export CC=$(brew --prefix llvm)/bin/clang
export CXX=$(brew --prefix llvm)/bin/clang++
uv sync
```
**Linux (Ubuntu/Debian):**
```bash
uv sync
```
@@ -78,28 +92,20 @@ uv run examples/document_search.py
**PDF RAG Demo (using LlamaIndex for document parsing and Leann for indexing/search)**
This demo showcases how to build a RAG system for PDF documents using Leann.
1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory.
2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function.
1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory.
2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function.
```bash
uv run examples/main_cli_example.py
```
## ⚙️ Developer Build Instructions (macOS/Linux)
If you are building or modifying the C++ backends (e.g., DiskANN, HNSW), please ensure the following dependencies are installed:
```bash
brew install boost protobuf zeromq
```
> On Linux, use your package manager (e.g., `apt install libboost-all-dev protobuf-compiler libprotobuf-dev libzmq3-dev`).
### Regenerating Protobuf Files
If you modify any `.proto` files (such as `embedding.proto`), or if you see errors about protobuf version mismatch, **regenerate the C++ protobuf files** to match your installed version:
```bash
# From the leann/packages/leann-backend-diskann directory:
cd packages/leann-backend-diskann
protoc --cpp_out=third_party/DiskANN/include --proto_path=third_party embedding.proto
protoc --cpp_out=third_party/DiskANN/src --proto_path=third_party embedding.proto
```
@@ -109,6 +115,7 @@ This ensures the generated files are compatible with your system's protobuf libr
## ✨ Features
### 🔥 Core Features
- **📊 Multiple Distance Functions**: L2, Cosine, MIPS (Maximum Inner Product Search)
- **🏗️ Pluggable Backends**: DiskANN, HNSW/FAISS with unified API
- **🔄 Real-time Embeddings**: Dynamic computation using optimized ZMQ servers
@@ -116,6 +123,7 @@ This ensures the generated files are compatible with your system's protobuf libr
- **🎯 Graph Pruning**: Advanced techniques for memory-efficient search
### 🛠️ Technical Highlights
- **Zero-copy operations** for maximum performance
- **SIMD-optimized** distance computations (AVX2/AVX512)
- **Async embedding pipeline** with batched processing
@@ -123,6 +131,7 @@ This ensures the generated files are compatible with your system's protobuf libr
- **Recompute mode** for highest accuracy scenarios
### 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
@@ -132,19 +141,19 @@ This ensures the generated files are compatible with your system's protobuf libr
### Memory Usage Comparison
| System | 1M Documents | 10M Documents | 100M Documents |
|--------|-------------|---------------|----------------|
| Traditional Vector DB | 3.1 GB | 31 GB | 310 GB |
| **Leann** | **180 MB** | **1.2 GB** | **8.4 GB** |
| **Reduction** | **94.2%** | **96.1%** | **97.3%** |
| System | 1M Documents | 10M Documents | 100M Documents |
| --------------------- | ---------------- | ---------------- | ---------------- |
| Traditional Vector DB | 3.1 GB | 31 GB | 310 GB |
| **Leann** | **180 MB** | **1.2 GB** | **8.4 GB** |
| **Reduction** | **94.2%** | **96.1%** | **97.3%** |
### Query Performance
| Backend | Index Size | Query Time | Recall@10 |
|---------|------------|------------|-----------|
| DiskANN | 1M docs | 12ms | 0.95 |
| DiskANN + Recompute | 1M docs | 145ms | 0.98 |
| HNSW | 1M docs | 8ms | 0.93 |
| Backend | Index Size | Query Time | Recall@10 |
| ------------------- | ---------- | ---------- | --------- |
| DiskANN | 1M docs | 12ms | 0.95 |
| DiskANN + Recompute | 1M docs | 145ms | 0.98 |
| HNSW | 1M docs | 8ms | 0.93 |
*Benchmarks run on AMD Ryzen 7 with 32GB RAM*
@@ -166,26 +175,29 @@ This ensures the generated files are compatible with your system's protobuf libr
### Key Components
1. **🧠 Embedding Engine**: Real-time transformer inference with caching
2. **📊 Graph Index**: Memory-efficient navigation structures
2. **📊 Graph Index**: Memory-efficient navigation structures
3. **🔄 Search Coordinator**: Orchestrates embedding + graph search
4. **⚡ Backend Adapters**: Pluggable algorithm implementations
## 🎓 Supported Models & Backends
### 🤖 Embedding Models
- **sentence-transformers/all-mpnet-base-v2** (default)
- **sentence-transformers/all-MiniLM-L6-v2** (lightweight)
- Any HuggingFace sentence-transformer model
- Custom model support via API
### 🔧 Search Backends
### 🔧 Search Backends
- **DiskANN**: Microsoft's billion-scale ANN algorithm
- **HNSW**: Hierarchical Navigable Small World graphs
- **Coming soon**: ScaNN, Faiss-IVF, NGT
### 📏 Distance Functions
- **L2**: Euclidean distance for precise similarity
- **Cosine**: Angular similarity for normalized vectors
- **Cosine**: Angular similarity for normalized vectors
- **MIPS**: Maximum Inner Product Search for recommendation systems
## 🔬 Paper
@@ -209,6 +221,7 @@ If you find Leann useful, please cite:
## 🌍 Use Cases
### 💼 Enterprise RAG
```python
# Handle millions of documents with limited resources
builder = LeannBuilder(
@@ -219,7 +232,8 @@ builder = LeannBuilder(
)
```
### 🔬 Research & Experimentation
### 🔬 Research & Experimentation
```python
# Quick prototyping with different algorithms
for backend in ["diskann", "hnsw"]:
@@ -228,6 +242,7 @@ for backend in ["diskann", "hnsw"]:
```
### 🚀 Real-time Applications
```python
# Sub-second response times
chat = LeannChat("knowledge.leann")
@@ -240,6 +255,7 @@ response = chat.ask("What is quantum computing?")
We welcome contributions! Leann is built by the community, for the community.
### Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
@@ -247,14 +263,17 @@ We welcome contributions! Leann is built by the community, for the community.
- 🧪 **Benchmarks**: Share your performance results
### Development Setup
```bash
git clone https://github.com/yourname/leann
git clone git@github.com:yichuan520030910320/LEANN-RAG.git leann
cd leann
git submodule update --init --recursive
uv sync --dev
uv run pytest tests/
```
### Quick Tests
```bash
# Sanity check all distance functions
uv run python tests/sanity_checks/test_distance_functions.py
@@ -262,17 +281,21 @@ uv run python tests/sanity_checks/test_distance_functions.py
# Verify L2 implementation
uv run python tests/sanity_checks/test_l2_verification.py
```
## ❓ FAQ
### Common Issues
#### NCCL Topology Error
**Problem**: You encounter `ncclTopoComputePaths` error during document processing:
```
ncclTopoComputePaths (system=<optimized out>, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688
```
**Solution**: Set these environment variables before running your script:
```bash
export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml
export NCCL_DEBUG=INFO
@@ -285,18 +308,21 @@ export NCCL_SOCKET_IFNAME=ens5
## 📈 Roadmap
### 🎯 Q1 2024
- [x] DiskANN backend with MIPS/L2/Cosine support
- [x] HNSW backend integration
- [x] Real-time embedding pipeline
- [x] Memory-efficient graph pruning
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] HNSW backend integration
- [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning
### 🚀 Q2 2024
- [ ] Distributed search across multiple nodes
- [ ] ScaNN backend support
- [ ] Advanced caching strategies
- [ ] Kubernetes deployment guides
### 🌟 Q3 2024
- [ ] GPU-accelerated embedding computation
- [ ] Approximate distance functions
- [ ] Integration with LangChain/LlamaIndex
@@ -318,7 +344,7 @@ MIT License - see [LICENSE](LICENSE) for details.
## 🙏 Acknowledgments
- **Microsoft Research** for the DiskANN algorithm
- **Meta AI** for FAISS and optimization insights
- **Meta AI** for FAISS and optimization insights
- **HuggingFace** for the transformer ecosystem
- **Our amazing contributors** who make this possible
@@ -330,4 +356,5 @@ MIT License - see [LICENSE](LICENSE) for details.
<p align="center">
Made with ❤️ by the Leann team
</p>
</p>

View File

@@ -2,6 +2,32 @@
cmake_minimum_required(VERSION 3.24)
project(leann_backend_hnsw_wrapper)
# Set OpenMP path for macOS
if(APPLE)
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
set(OpenMP_C_LIB_NAMES "omp")
set(OpenMP_CXX_LIB_NAMES "omp")
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
endif()
# Build ZeroMQ from source
set(ZMQ_BUILD_TESTS OFF CACHE BOOL "" FORCE)
set(ENABLE_DRAFTS OFF CACHE BOOL "" FORCE)
set(ENABLE_PRECOMPILED OFF CACHE BOOL "" FORCE)
set(WITH_PERF_TOOL OFF CACHE BOOL "" FORCE)
set(WITH_DOCS OFF CACHE BOOL "" FORCE)
set(BUILD_SHARED OFF CACHE BOOL "" FORCE)
set(BUILD_STATIC ON CACHE BOOL "" FORCE)
add_subdirectory(third_party/libzmq)
# Add cppzmq headers
include_directories(third_party/cppzmq)
# Configure msgpack-c - disable boost dependency manually
add_compile_definitions(MSGPACK_NO_BOOST)
include_directories(third_party/msgpack-c/include)
set(FAISS_ENABLE_PYTHON ON CACHE BOOL "" FORCE)
set(FAISS_ENABLE_GPU OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_EXTRAS OFF CACHE BOOL "" FORCE)