Merge branch 'main' into readme-polish

This commit is contained in:
Yichuan Wang
2025-07-19 21:47:17 -07:00
committed by GitHub
11 changed files with 225 additions and 9667 deletions

View File

@@ -363,6 +363,28 @@ If you find Leann useful, please cite:
}
```
## ✨ Features
### 🔥 Core Features
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
### 🛠️ Technical Highlights
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
### 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
## 🤝 Contributing

9525
demo.ipynb
View File

File diff suppressed because it is too large Load Diff

View File

@@ -190,16 +190,16 @@ class WeChatHistoryReader(BaseReader):
return False
def _concatenate_messages(self, messages: List[Dict], min_length: int = 128, max_length: int = 1000,
time_window_minutes: int = 30) -> List[Dict]:
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
min_length: Minimum length for concatenated message groups
max_length: Maximum length for concatenated message groups
time_window_minutes: Time window in minutes to group messages together
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
@@ -235,37 +235,46 @@ class WeChatHistoryReader(BaseReader):
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group and current_length >= min_length:
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
current_group = []
current_length = 0
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
else:
current_group = []
current_length = 0
# Check length constraint
message_length = len(readable_text)
if current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
if current_length >= min_length:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
current_group = []
current_length = 0
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it meets minimum length
if current_group and current_length >= min_length:
# Add the last group if it exists
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
@@ -343,6 +352,12 @@ Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group['total_length']} chars):
{concatenated_text}
"""
doc_content = f"""
Contact: {contact_name}
{concatenated_text}
"""
return doc_content
@@ -358,16 +373,15 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
wechat_export_dir (str): Custom path to WeChat export directory.
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
concatenate_messages (bool): Whether to concatenate messages based on length rules.
min_length (int): Minimum length for concatenated message groups (default: 128).
max_length (int): Maximum length for concatenated message groups (default: 1000).
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
include_non_text = load_kwargs.get('include_non_text', False)
concatenate_messages = load_kwargs.get('concatenate_messages', False)
min_length = load_kwargs.get('min_length', 128)
max_length = load_kwargs.get('max_length', 1000)
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
@@ -417,9 +431,9 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
min_length=min_length,
max_length=max_length,
time_window_minutes=time_window_minutes
time_window_minutes=time_window_minutes,
overlap_messages=2 # Keep 2 messages overlap between groups
)
# Create documents from concatenated groups

View File

@@ -52,7 +52,7 @@ def create_leann_index_from_multiple_wechat_exports(
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=False, # Disable concatenation - one message per document
concatenate_messages=True, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
@@ -222,9 +222,9 @@ async def query_leann_index(index_path: str, query: str):
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=5,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
complexity=64,
beam_width=1,
llm_config={
"type": "openai",
@@ -252,7 +252,7 @@ async def main():
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_index_leann_test",
default="./wechat_history_june19_test",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(

View File

@@ -175,13 +175,13 @@ def create_embedding_server_thread(
enable_warmup: bool = False,
):
"""
在当前线程中创建并运行 embedding server
这个函数设计为在单独的线程中调用
Create and run embedding server in the current thread
This function is designed to be called in a separate thread
"""
logger.info(f"Initializing embedding server thread on port {zmq_port}")
try:
# 检查端口是否已被占用
# Check if port is already occupied
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
@@ -212,11 +212,11 @@ def create_embedding_server_thread(
cuda_available = False
mps_available = False
elif embedding_mode == "sentence-transformers":
# 初始化模型
# Initialize model
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
# 选择设备
# Select device
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
@@ -230,11 +230,11 @@ def create_embedding_server_thread(
device = torch.device("cpu")
logger.info("Using CPU device")
# 加载模型
# Load model
logger.info(f"Loading model {model_name}")
model = AutoModel.from_pretrained(model_name).to(device).eval()
# 优化模型
# Optimize model
if cuda_available or mps_available:
try:
model = model.half()
@@ -324,7 +324,7 @@ def create_embedding_server_thread(
print(f"Error during Protobuf ZMQ warmup: {e}")
class DeviceTimer:
"""设备计时器"""
"""Device timer"""
def __init__(self, name="", device=device):
self.name = name
self.device = device
@@ -369,60 +369,63 @@ def create_embedding_server_thread(
return self.end_time - self.start_time
def print_elapsed(self):
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
elapsed = self.elapsed_time()
print(f"[{self.name}] Elapsed time: {elapsed:.3f}s")
def process_batch_pytorch(texts_batch, ids_batch, missing_ids):
"""处理文本批次"""
batch_size = len(texts_batch)
logger.info(f"Processing batch of size {batch_size}")
"""Process text batch"""
if not texts_batch:
return np.array([])
tokenize_timer = DeviceTimer("tokenization (batch)", device)
to_device_timer = DeviceTimer("transfer to device (batch)", device)
embed_timer = DeviceTimer("embedding (batch)", device)
pool_timer = DeviceTimer("mean pooling (batch)", device)
# Filter out empty texts and their corresponding IDs
valid_texts = []
valid_ids = []
for i, text in enumerate(texts_batch):
if text.strip(): # Only include non-empty texts
valid_texts.append(text)
valid_ids.append(ids_batch[i])
with tokenize_timer.timing():
encoded_batch = tokenizer.batch_encode_plus(
texts_batch,
padding="max_length",
if not valid_texts:
print("WARNING: No valid texts in batch")
return np.array([])
# Tokenize
token_timer = DeviceTimer("tokenization")
with token_timer.timing():
inputs = tokenizer(
valid_texts,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt",
return_token_type_ids=False,
)
tokenize_timer.print_elapsed()
max_length=512,
return_tensors="pt"
).to(device)
seq_length = encoded_batch["input_ids"].size(1)
print(f"Batch size: {batch_size}, Sequence length: {seq_length}")
with to_device_timer.timing():
enc = {k: v.to(device) for k, v in encoded_batch.items()}
to_device_timer.print_elapsed()
with torch.no_grad():
with embed_timer.timing():
out = model(enc["input_ids"], enc["attention_mask"])
embed_timer.print_elapsed()
with pool_timer.timing():
hidden_states = out.last_hidden_state if hasattr(out, "last_hidden_state") else out
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
# Compute embeddings
embed_timer = DeviceTimer("embedding computation")
with embed_timer.timing():
with torch.no_grad():
outputs = model(**inputs)
hidden_states = outputs.last_hidden_state
# Mean pooling
attention_mask = inputs['attention_mask']
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_states.size()).float()
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
batch_embeddings = sum_embeddings / sum_mask
pool_timer.print_elapsed()
embed_timer.print_elapsed()
return batch_embeddings.cpu().numpy()
# ZMQ server 主循环 - 修改为REP套接字
# ZMQ server main loop - modified to use REP socket
context = zmq.Context()
socket = context.socket(zmq.ROUTER) # 改为REP套接字
socket = context.socket(zmq.ROUTER) # Changed to REP socket
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
# 设置超时
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5秒接收超时
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300秒发送超时
# Set timeouts
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5 second receive timeout
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300 second send timeout
from . import embedding_pb2
@@ -442,18 +445,18 @@ def create_embedding_server_thread(
try:
parts = socket.recv_multipart()
# --- 恢复稳健的消息格式判断 ---
# 必须检查 parts 的长度,避免 IndexError
# --- Restore robust message format detection ---
# Must check parts length to avoid IndexError
if len(parts) >= 3:
identity = parts[0]
# empty = parts[1] # 中间的空帧我们通常不关心
# empty = parts[1] # We usually don't care about the middle empty frame
message = parts[2]
elif len(parts) == 2:
# 也能处理没有空帧的情况
# Can also handle cases without empty frame
identity = parts[0]
message = parts[1]
else:
# 如果收到格式错误的消息,打印警告并忽略它,而不是崩溃
# If received message format is wrong, print warning and ignore it instead of crashing
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
continue
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
@@ -555,17 +558,17 @@ def create_embedding_server_thread(
e2e_start = time.time()
lookup_timer = DeviceTimer("text lookup")
# 解析请求
# Parse request
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = req_proto.node_ids
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
# 添加调试信息
# Add debug information
if len(node_ids) > 0:
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
# 查找文本
# Look up texts
texts = []
missing_ids = []
with lookup_timer.timing():
@@ -575,8 +578,8 @@ def create_embedding_server_thread(
if txt:
texts.append(txt)
else:
# 如果文本为空,我们仍然需要一个占位符来进行批处理,
# 但将其ID记录为缺失
# If text is empty, we still need a placeholder for batch processing,
# but record its ID as missing
texts.append("")
missing_ids.append(nid)
lookup_timer.print_elapsed()
@@ -584,7 +587,7 @@ def create_embedding_server_thread(
if missing_ids:
print(f"WARNING: Missing passages for IDs: {missing_ids}")
# 处理批次
# Process batch
total_size = len(texts)
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
@@ -600,7 +603,7 @@ def create_embedding_server_thread(
chunk_ids = node_ids[i:end_idx]
if embedding_mode == "mlx":
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name, batch_size=16)
elif embedding_mode == "openai":
embeddings_chunk = compute_embeddings_openai(chunk_texts, model_name)
else: # sentence-transformers
@@ -617,13 +620,13 @@ def create_embedding_server_thread(
print(f"INFO: Combined embeddings shape: {hidden.shape}")
else:
if embedding_mode == "mlx":
hidden = compute_embeddings_mlx(texts, model_name)
hidden = compute_embeddings_mlx(texts, model_name, batch_size=16)
elif embedding_mode == "openai":
hidden = compute_embeddings_openai(texts, model_name)
else: # sentence-transformers
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
# 序列化响应
# Serialize response
ser_start = time.time()
resp_proto = embedding_pb2.NodeEmbeddingResponse()
@@ -635,7 +638,7 @@ def create_embedding_server_thread(
response_data = resp_proto.SerializeToString()
# REP 套接字发送单个响应
# REP socket sends a single response
socket.send_multipart([identity, b'', response_data])
ser_end = time.time()
@@ -656,11 +659,11 @@ def create_embedding_server_thread(
except Exception as e:
print(f"ERROR: Error in ZMQ server: {e}")
try:
# 发送空响应以维持REQ-REP状态
# Send empty response to maintain REQ-REP state
empty_resp = embedding_pb2.NodeEmbeddingResponse()
socket.send(empty_resp.SerializeToString())
except:
# 如果发送失败,重新创建socket
# If sending fails, recreate socket
socket.close()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://127.0.0.1:{zmq_port}")

View File

@@ -423,7 +423,7 @@ def create_hnsw_embedding_server(
from leann.api import compute_embeddings
# Compute embeddings using MLX
embeddings = compute_embeddings(texts_batch, model_name, use_mlx=True)
embeddings = compute_embeddings(texts_batch, model_name, mode="mlx", use_server=False)
print(
f"[leann_backend_hnsw.hnsw_embedding_server LOG]: MLX embeddings computed for {len(texts_batch)} texts"

View File

@@ -11,7 +11,8 @@ requires-python = ">=3.9"
license = { text = "MIT" }
dependencies = [
"numpy>=1.20.0"
"numpy>=1.20.0",
"tqdm>=4.60.0"
]
[tool.setuptools.packages.find]

View File

@@ -22,6 +22,7 @@ def compute_embeddings(
model_name: str,
mode: str = "sentence-transformers",
use_server: bool = True,
use_mlx: bool = False # Backward compatibility: if True, override mode to 'mlx',
) -> np.ndarray:
"""
Computes embeddings using different backends.
@@ -38,12 +39,16 @@ def compute_embeddings(
Returns:
numpy array of embeddings
"""
# Override mode for backward compatibility
if use_mlx:
mode = "mlx"
# Auto-detect mode based on model name if not explicitly set
if mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
mode = "openai"
if mode == "mlx":
return compute_embeddings_mlx(chunks, model_name)
return compute_embeddings_mlx(chunks, model_name, batch_size=16)
elif mode == "openai":
return compute_embeddings_openai(chunks, model_name)
elif mode == "sentence-transformers":
@@ -158,7 +163,7 @@ def _compute_embeddings_sentence_transformers_direct(
# Generate embeddings
# give use an warning if OOM here means we need to turn down the batch size
embeddings = model.encode(
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=8
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=16
)
return embeddings
@@ -188,13 +193,19 @@ def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
# OpenAI has a limit on batch size and input length
max_batch_size = 100 # Conservative batch size
all_embeddings = []
for i in range(0, len(chunks), max_batch_size):
batch_chunks = chunks[i : i + max_batch_size]
print(
f"INFO: Processing batch {i // max_batch_size + 1}/{(len(chunks) + max_batch_size - 1) // max_batch_size}"
)
try:
from tqdm import tqdm
total_batches = (len(chunks) + max_batch_size - 1) // max_batch_size
batch_range = range(0, len(chunks), max_batch_size)
batch_iterator = tqdm(batch_range, desc="Computing embeddings", unit="batch", total=total_batches)
except ImportError:
# Fallback without progress bar
batch_iterator = range(0, len(chunks), max_batch_size)
for i in batch_iterator:
batch_chunks = chunks[i:i + max_batch_size]
try:
response = client.embeddings.create(model=model_name, input=batch_chunks)
batch_embeddings = [embedding.embedding for embedding in response.data]
@@ -210,42 +221,64 @@ def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
return embeddings
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
def compute_embeddings_mlx(chunks: List[str], model_name: str, batch_size: int = 16) -> np.ndarray:
"""Computes embeddings using an MLX model."""
try:
import mlx.core as mx
from mlx_lm.utils import load
from tqdm import tqdm
except ImportError as e:
raise RuntimeError(
"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
) from e
print(
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}'..."
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}' with batch_size={batch_size}..."
)
# Load model and tokenizer
model, tokenizer = load(model_name)
# Process each chunk
# Process chunks in batches with progress bar
all_embeddings = []
for chunk in chunks:
# Tokenize
token_ids = tokenizer.encode(chunk) # type: ignore
try:
from tqdm import tqdm
batch_iterator = tqdm(range(0, len(chunks), batch_size), desc="Computing embeddings", unit="batch")
except ImportError:
batch_iterator = range(0, len(chunks), batch_size)
for i in batch_iterator:
batch_chunks = chunks[i:i + batch_size]
# Tokenize all chunks in the batch
batch_token_ids = []
for chunk in batch_chunks:
token_ids = tokenizer.encode(chunk) # type: ignore
batch_token_ids.append(token_ids)
# Pad sequences to the same length for batch processing
max_length = max(len(ids) for ids in batch_token_ids)
padded_token_ids = []
for token_ids in batch_token_ids:
# Pad with tokenizer.pad_token_id or 0
padded = token_ids + [0] * (max_length - len(token_ids))
padded_token_ids.append(padded)
# Convert to MLX array with batch dimension
input_ids = mx.array(padded_token_ids)
# Convert to MLX array and add batch dimension
input_ids = mx.array([token_ids])
# Get embeddings
# Get embeddings for the batch
embeddings = model(input_ids)
# Mean pooling (since we only have one sequence, just take the mean)
pooled = embeddings.mean(axis=1) # Shape: (1, hidden_size)
# Mean pooling for each sequence in the batch
pooled = embeddings.mean(axis=1) # Shape: (batch_size, hidden_size)
# Convert individual embedding to numpy via list (to handle bfloat16)
pooled_list = pooled[0].tolist() # Remove batch dimension and convert to list
pooled_numpy = np.array(pooled_list, dtype=np.float32)
all_embeddings.append(pooled_numpy)
# Convert batch embeddings to numpy
for j in range(len(batch_chunks)):
pooled_list = pooled[j].tolist() # Convert to list
pooled_numpy = np.array(pooled_list, dtype=np.float32)
all_embeddings.append(pooled_numpy)
# Stack numpy arrays
return np.stack(all_embeddings)
@@ -311,6 +344,8 @@ class LeannBuilder:
self.dimensions = dimensions
self.embedding_mode = embedding_mode
self.backend_kwargs = backend_kwargs
if 'mlx' in self.embedding_model:
self.embedding_mode = "mlx"
self.chunks: List[Dict[str, Any]] = []
def add_text(self, text: str, metadata: Optional[Dict[str, Any]] = None):
@@ -340,7 +375,13 @@ class LeannBuilder:
offset_file = index_dir / f"{index_name}.passages.idx"
offset_map = {}
with open(passages_file, "w", encoding="utf-8") as f:
for chunk in self.chunks:
try:
from tqdm import tqdm
chunk_iterator = tqdm(self.chunks, desc="Writing passages", unit="chunk")
except ImportError:
chunk_iterator = self.chunks
for chunk in chunk_iterator:
offset = f.tell()
json.dump(
{

View File

@@ -175,7 +175,7 @@ class EmbeddingServerManager:
self.backend_module_name = backend_module_name
self.server_process: Optional[subprocess.Popen] = None
self.server_port: Optional[int] = None
# atexit.register(self.stop_server)
atexit.register(self.stop_server)
def start_server(self, port: int, model_name: str, embedding_mode: str = "sentence-transformers", **kwargs) -> bool:
"""

View File

@@ -23,7 +23,7 @@ g++ ./demo_reader.cpp -o ./demo_reader && ./demo_reader --stats \
f.read(reinterpret_cast<char *>(&val), sizeof(uint32_t))
#define SECTOR_SIZE 4096
// 辅助:获取文件大小
// Helper: Get file size
static size_t get_file_size(const std::string &fname) {
std::ifstream ifs(fname, std::ios::binary | std::ios::ate);
if (ifs.fail() || !ifs.is_open()) {
@@ -32,7 +32,7 @@ static size_t get_file_size(const std::string &fname) {
return static_cast<size_t>(ifs.tellg());
}
// 打印 sector 的前若干 hex用于debug
// Print first few hex of sector for debug
static void print_hex(const char *buf, size_t len, size_t max_len = 64) {
size_t show_len = (len < max_len) ? len : max_len;
for (size_t i = 0; i < show_len; i++) {
@@ -46,19 +46,19 @@ static void print_hex(const char *buf, size_t len, size_t max_len = 64) {
}
/*
修正后的 demo_reader:
1) partition.bin:
Corrected demo_reader:
1) Read from partition.bin:
- C, partition_nums, nd
- graph_partitions[i]: 分区 i 的所有 nodeID
- graph_partitions[i]: all nodeIDs in partition i
- id2partition[nodeID]: nodeID => partition i
2) _disk_graph.index:
a) sector0 里先有 2 int: meta_n, meta_dim
b) 再有 meta_n uint64_t
例如: [0]=nd, [1]=dim, [2]=??, [3]=max_node_len, [4]=C, [5]..??,
[8]=file_size... 具体位置要结合 relayout 的写法 c) graph_node_len =
max_node_len - dim_in_meta*sizeof(float) 3) 用户给定 target_node_id =>
2) Read from _disk_graph.index:
a) sector0 first has 2 ints: meta_n, meta_dim
b) then meta_n uint64_t
e.g.: [0]=nd, [1]=dim, [2]=??, [3]=max_node_len, [4]=C, [5]..??,
[8]=file_size... specific positions need to be combined with relayout writing c) graph_node_len =
max_node_len - dim_in_meta*sizeof(float) 3) User given target_node_id =>
partition_id= id2partition[node_id]
graph_partitions[partition_id] 里找 node 的下标 j
find node index j in graph_partitions[partition_id]
offset = (partition_id+1)*4096 => sector
adjacency_offset= j*graph_node_len => neighbor_count => neighbors
*/
@@ -105,7 +105,7 @@ int main(int argc, char **argv) {
<< "\n";
}
// 1) 读取 partition.bin
// 1) Read partition.bin
std::ifstream pf(partition_bin, std::ios::binary);
if (!pf.is_open()) {
std::cerr << "Cannot open partition.bin: " << partition_bin << std::endl;
@@ -119,8 +119,8 @@ int main(int argc, char **argv) {
<< ", partition_nums=" << partition_nums << ", nd=" << nd
<< std::endl;
// 读取分区节点列表
std::vector<std::vector<uint32_t>> graph_partitions(partition_nums);
// Read partition node lists
std::vector<std::vector<uint32_t> > graph_partitions(partition_nums);
for (uint64_t i = 0; i < partition_nums; i++) {
uint32_t psize;
READ_U32(pf, psize);
@@ -128,7 +128,7 @@ int main(int argc, char **argv) {
pf.read(reinterpret_cast<char *>(graph_partitions[i].data()),
psize * sizeof(uint32_t));
}
// 读取 _id2partition[node], 大小= nd
// Read _id2partition[node], size= nd
std::vector<uint32_t> id2partition(nd);
pf.read(reinterpret_cast<char *>(id2partition.data()), nd * sizeof(uint32_t));
pf.close();
@@ -140,23 +140,23 @@ int main(int argc, char **argv) {
return 1;
}
// 2) 解析 _disk_graph.index
// 2) Parse _disk_graph.index
std::ifstream gf(graph_index, std::ios::binary);
if (!gf.is_open()) {
std::cerr << "Cannot open disk_graph.index: " << graph_index << std::endl;
return 1;
}
// (a) sector0 => 先读 2 int
// (a) sector0 => first read 2 ints
int meta_n, meta_dim;
gf.read((char *)&meta_n, sizeof(int));
gf.read((char *)&meta_dim, sizeof(int));
std::cout << "[debug] meta_n=" << meta_n << ", meta_dim=" << meta_dim << "\n";
// (b) meta_n uint64_t
// (b) Read meta_n uint64_t
std::vector<uint64_t> meta_info(meta_n);
gf.read(reinterpret_cast<char *>(meta_info.data()),
meta_n * sizeof(uint64_t));
// 打印
// Print
for (int i = 0; i < meta_n; i++) {
std::cout << " meta_info[" << i << "]= " << meta_info[i] << "\n";
}
@@ -164,11 +164,11 @@ int main(int argc, char **argv) {
size_t file_size = get_file_size(graph_index);
std::cout << "[disk_graph.index size] " << file_size << " bytes\n";
// **根据 relayout log** 你说: meta_info[0]=nd=60450220, meta_info[1]=dim=769,
// **According to relayout log** you said: meta_info[0]=nd=60450220, meta_info[1]=dim=769,
// meta_info[2]=??(16495248?), meta_info[3]=max_node_len=3320,
// meta_info[4]=16 (C),
// meta_info[8]= 15475261440(文件大小)
// 我们这里先手动解析:
// meta_info[8]= 15475261440(file size)
// We manually parse here first:
uint64_t nd_in_meta = meta_info[0];
uint64_t dim_in_meta = meta_info[1];
uint64_t max_node_len = meta_info[3];
@@ -182,7 +182,7 @@ int main(int argc, char **argv) {
<< ", c_in_meta= " << c_in_meta
<< ", entire_file_size= " << entire_file_sz << "\n";
// 计算 graph_node_len
// Calculate graph_node_len
uint64_t dim_size = dim_in_meta * sizeof(float);
uint64_t graph_node_len = max_node_len - dim_size;
std::cout << " => graph_node_len= " << graph_node_len << "\n\n";
@@ -305,7 +305,7 @@ int main(int argc, char **argv) {
// Error check pf_again if needed
}
// 3) target_node_id => partition_id => subIndex
// 3) Find target_node_id => partition_id => subIndex
uint32_t partition_id = id2partition[target_node_id];
if (partition_id >= partition_nums) {
std::cerr << "Partition ID out-of-range for target node.\n";

View File

@@ -264,7 +264,7 @@ def run_mlx_benchmark():
}
config = BenchmarkConfig(
model_path="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
model_path="mlx-community/all-MiniLM-L6-v2-4bit",
use_mlx=True
)