Compare commits
1 Commits
add-gh-pat
...
security/e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9a9dc40f8f |
@@ -54,29 +54,51 @@ def extract_thinking_answer(response):
|
||||
return response.strip()
|
||||
|
||||
|
||||
def load_hf_model(model_name="Qwen/Qwen3-8B"):
|
||||
"""Load HuggingFace model"""
|
||||
def load_hf_model(model_name="Qwen/Qwen3-8B", trust_remote_code=False):
|
||||
"""Load HuggingFace model
|
||||
|
||||
Args:
|
||||
model_name (str): Name of the model to load
|
||||
trust_remote_code (bool): Whether to allow execution of code from the model repository.
|
||||
Defaults to False for security. Only enable for trusted models.
|
||||
"""
|
||||
if not HF_AVAILABLE:
|
||||
raise ImportError("transformers not available")
|
||||
|
||||
if trust_remote_code:
|
||||
print(
|
||||
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
|
||||
)
|
||||
|
||||
print(f"Loading HF: {model_name}")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=trust_remote_code)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
||||
device_map="auto",
|
||||
trust_remote_code=True,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
return tokenizer, model
|
||||
|
||||
|
||||
def load_vllm_model(model_name="Qwen/Qwen3-8B"):
|
||||
"""Load vLLM model"""
|
||||
def load_vllm_model(model_name="Qwen/Qwen3-8B", trust_remote_code=False):
|
||||
"""Load vLLM model
|
||||
|
||||
Args:
|
||||
model_name (str): Name of the model to load
|
||||
trust_remote_code (bool): Whether to allow execution of code from the model repository.
|
||||
Defaults to False for security. Only enable for trusted models.
|
||||
"""
|
||||
if not VLLM_AVAILABLE:
|
||||
raise ImportError("vllm not available")
|
||||
|
||||
if trust_remote_code:
|
||||
print(
|
||||
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
|
||||
)
|
||||
|
||||
print(f"Loading vLLM: {model_name}")
|
||||
llm = LLM(model=model_name, trust_remote_code=True)
|
||||
llm = LLM(model=model_name, trust_remote_code=trust_remote_code)
|
||||
|
||||
# Qwen3 specific config
|
||||
if is_qwen3_model(model_name):
|
||||
@@ -178,19 +200,33 @@ def evaluate_rag(searcher, llm_func, queries, domain="default", top_k=3, complex
|
||||
}
|
||||
|
||||
|
||||
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
|
||||
"""Load Qwen2.5-VL multimodal model"""
|
||||
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=False):
|
||||
"""Load Qwen2.5-VL multimodal model
|
||||
|
||||
Args:
|
||||
model_name (str): Name of the model to load
|
||||
trust_remote_code (bool): Whether to allow execution of code from the model repository.
|
||||
Defaults to False for security. Only enable for trusted models.
|
||||
"""
|
||||
if not HF_AVAILABLE:
|
||||
raise ImportError("transformers not available")
|
||||
|
||||
if trust_remote_code:
|
||||
print(
|
||||
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
|
||||
)
|
||||
|
||||
print(f"Loading Qwen2.5-VL: {model_name}")
|
||||
|
||||
try:
|
||||
from transformers import AutoModelForVision2Seq, AutoProcessor
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
||||
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=trust_remote_code)
|
||||
model = AutoModelForVision2Seq.from_pretrained(
|
||||
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
return processor, model
|
||||
@@ -202,9 +238,14 @@ def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
|
||||
try:
|
||||
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
model_name, trust_remote_code=trust_remote_code
|
||||
)
|
||||
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
return processor, model
|
||||
|
||||
@@ -546,11 +546,30 @@ class OllamaChat(LLMInterface):
|
||||
|
||||
|
||||
class HFChat(LLMInterface):
|
||||
"""LLM interface for local Hugging Face Transformers models with proper chat templates."""
|
||||
"""LLM interface for local Hugging Face Transformers models with proper chat templates.
|
||||
|
||||
def __init__(self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat"):
|
||||
Args:
|
||||
model_name (str): Name of the Hugging Face model to load.
|
||||
trust_remote_code (bool): Whether to allow execution of code from the model repository.
|
||||
Defaults to False for security. Only enable for trusted models as this can pose
|
||||
a security risk if the model repository is compromised.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat", trust_remote_code: bool = False
|
||||
):
|
||||
logger.info(f"Initializing HFChat with model='{model_name}'")
|
||||
|
||||
# Security warning when trust_remote_code is enabled
|
||||
if trust_remote_code:
|
||||
logger.warning(
|
||||
"SECURITY WARNING: trust_remote_code=True allows execution of arbitrary code from the model repository. "
|
||||
"Only enable this for models from trusted sources. This creates a potential security risk if the model "
|
||||
"repository is compromised."
|
||||
)
|
||||
|
||||
self.trust_remote_code = trust_remote_code
|
||||
|
||||
# Pre-check model availability with helpful suggestions
|
||||
model_error = validate_model_and_suggest(model_name, "hf")
|
||||
if model_error:
|
||||
@@ -588,14 +607,16 @@ class HFChat(LLMInterface):
|
||||
|
||||
try:
|
||||
logger.info(f"Loading tokenizer for {model_name}...")
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, trust_remote_code=self.trust_remote_code
|
||||
)
|
||||
|
||||
logger.info(f"Loading model {model_name}...")
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
||||
device_map="auto" if self.device != "cpu" else None,
|
||||
trust_remote_code=True,
|
||||
trust_remote_code=self.trust_remote_code,
|
||||
)
|
||||
logger.info(f"Successfully loaded {model_name}")
|
||||
finally:
|
||||
@@ -859,7 +880,10 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
|
||||
host=llm_config.get("host"),
|
||||
)
|
||||
elif llm_type == "hf":
|
||||
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
||||
return HFChat(
|
||||
model_name=model or "deepseek-ai/deepseek-llm-7b-chat",
|
||||
trust_remote_code=llm_config.get("trust_remote_code", False),
|
||||
)
|
||||
elif llm_type == "openai":
|
||||
return OpenAIChat(
|
||||
model=model or "gpt-4o",
|
||||
|
||||
Reference in New Issue
Block a user