Compare commits
1 Commits
add-gh-pat
...
fix/pdf-du
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2afcdf7b77 |
8
.github/workflows/build-reusable.yml
vendored
8
.github/workflows/build-reusable.yml
vendored
@@ -16,10 +16,8 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
fetch-depth: 1
|
||||
token: ${{ secrets.GH_PAT != '' && secrets.GH_PAT || secrets.GITHUB_TOKEN }}
|
||||
ref: ${{ inputs.ref }}
|
||||
submodules: recursive
|
||||
|
||||
- name: Install uv and Python
|
||||
uses: astral-sh/setup-uv@v6
|
||||
@@ -93,10 +91,8 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
submodules: recursive
|
||||
fetch-depth: 1
|
||||
token: ${{ secrets.GH_PAT != '' && secrets.GH_PAT || secrets.GITHUB_TOKEN }}
|
||||
ref: ${{ inputs.ref }}
|
||||
submodules: recursive
|
||||
|
||||
- name: Install uv and Python
|
||||
uses: astral-sh/setup-uv@v6
|
||||
|
||||
5
.github/workflows/link-check.yml
vendored
5
.github/workflows/link-check.yml
vendored
@@ -12,11 +12,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
token: ${{ secrets.GH_PAT != '' && secrets.GH_PAT || secrets.GITHUB_TOKEN }}
|
||||
- uses: lycheeverse/lychee-action@v2
|
||||
with:
|
||||
args: --no-progress --insecure --user-agent 'curl/7.68.0' --exclude '.*api\.star-history\.com.*' --accept 200,201,202,203,204,205,206,207,208,226,300,301,302,303,304,305,306,307,308,503 README.md docs/ apps/ examples/ benchmarks/
|
||||
args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
5
.github/workflows/release-manual.yml
vendored
5
.github/workflows/release-manual.yml
vendored
@@ -19,9 +19,6 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
token: ${{ secrets.GH_PAT != '' && secrets.GH_PAT || secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Validate version
|
||||
run: |
|
||||
@@ -76,8 +73,6 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
token: ${{ secrets.GH_PAT != '' && secrets.GH_PAT || secrets.GITHUB_TOKEN }}
|
||||
ref: 'main'
|
||||
|
||||
- name: Download all artifacts
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -91,8 +91,7 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
||||
|
||||
*.meta.json
|
||||
*.passages.json
|
||||
*.npy
|
||||
*.db
|
||||
|
||||
batchtest.py
|
||||
tests/__pytest_cache__/
|
||||
tests/__pycache__/
|
||||
|
||||
73
README.md
73
README.md
@@ -16,24 +16,12 @@
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://forms.gle/rDbZf864gMNxhpTq8">
|
||||
<img src="https://img.shields.io/badge/📣_Community_Survey-Help_Shape_v0.4-007ec6?style=for-the-badge&logo=google-forms&logoColor=white" alt="Take Survey">
|
||||
</a>
|
||||
<p>
|
||||
We track <b>zero telemetry</b>. This survey is the ONLY way to tell us if you want <br>
|
||||
<b>GPU Acceleration</b> or <b>More Integrations</b> next.<br>
|
||||
👉 <a href="https://forms.gle/rDbZf864gMNxhpTq8"><b>Click here to cast your vote (2 mins)</b></a>
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||
The smallest vector index in the world. RAG Everything with LEANN!
|
||||
</h2>
|
||||
|
||||
LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
|
||||
|
||||
|
||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#slack-messages-search-your-team-conversations), [Twitter](#-twitter-bookmarks-your-personal-tweet-library)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
@@ -201,7 +189,7 @@ LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`,
|
||||
|
||||
#### LLM Backend
|
||||
|
||||
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, Anthropic, and Any OpenAI compatible API).
|
||||
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, and Any OpenAI compatible API).
|
||||
|
||||
|
||||
<details>
|
||||
@@ -269,7 +257,6 @@ Below is a list of base URLs for common providers to get you started.
|
||||
| **SiliconFlow** | `https://api.siliconflow.cn/v1` |
|
||||
| **Zhipu (BigModel)** | `https://open.bigmodel.cn/api/paas/v4/` |
|
||||
| **Mistral AI** | `https://api.mistral.ai/v1` |
|
||||
| **Anthropic** | `https://api.anthropic.com/v1` |
|
||||
|
||||
|
||||
|
||||
@@ -329,7 +316,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
|
||||
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||
|
||||
# LLM Parameters (Text generation models)
|
||||
--llm TYPE # LLM backend: openai, ollama, hf, or anthropic (default: openai)
|
||||
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
||||
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
|
||||
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
|
||||
|
||||
@@ -392,54 +379,6 @@ python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authenticat
|
||||
|
||||
</details>
|
||||
|
||||
### 🎨 ColQwen: Multimodal PDF Retrieval with Vision-Language Models
|
||||
|
||||
Search through PDFs using both text and visual understanding with ColQwen2/ColPali models. Perfect for research papers, technical documents, and any PDFs with complex layouts, figures, or diagrams.
|
||||
|
||||
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
|
||||
|
||||
```bash
|
||||
# Build index from PDFs
|
||||
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
|
||||
|
||||
# Search with text queries
|
||||
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
|
||||
|
||||
# Interactive Q&A
|
||||
python -m apps.colqwen_rag ask research_papers --interactive
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: ColQwen Setup & Usage</strong></summary>
|
||||
|
||||
#### Prerequisites
|
||||
```bash
|
||||
# Install dependencies
|
||||
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
|
||||
brew install poppler # macOS only, for PDF processing
|
||||
```
|
||||
|
||||
#### Build Index
|
||||
```bash
|
||||
python -m apps.colqwen_rag build \
|
||||
--pdfs ./pdf_directory/ \
|
||||
--index my_index \
|
||||
--model colqwen2 # or colpali
|
||||
```
|
||||
|
||||
#### Search
|
||||
```bash
|
||||
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
|
||||
```
|
||||
|
||||
#### Models
|
||||
- **ColQwen2** (`colqwen2`): Latest vision-language model with improved performance
|
||||
- **ColPali** (`colpali`): Proven multimodal retriever
|
||||
|
||||
For detailed usage, see the [ColQwen Guide](docs/COLQWEN_GUIDE.md).
|
||||
|
||||
</details>
|
||||
|
||||
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
||||
|
||||
> **Note:** The examples below currently support macOS only. Windows support coming soon.
|
||||
@@ -1106,10 +1045,10 @@ Options:
|
||||
leann ask INDEX_NAME [OPTIONS]
|
||||
|
||||
Options:
|
||||
--llm {ollama,openai,hf,anthropic} LLM provider (default: ollama)
|
||||
--model MODEL Model name (default: qwen3:8b)
|
||||
--interactive Interactive chat mode
|
||||
--top-k N Retrieval count (default: 20)
|
||||
--llm {ollama,openai,hf} LLM provider (default: ollama)
|
||||
--model MODEL Model name (default: qwen3:8b)
|
||||
--interactive Interactive chat mode
|
||||
--top-k N Retrieval count (default: 20)
|
||||
```
|
||||
|
||||
**List Command:**
|
||||
|
||||
@@ -6,7 +6,7 @@ Provides common parameters and functionality for all RAG examples.
|
||||
import argparse
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any, Union
|
||||
from typing import Any
|
||||
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
@@ -257,8 +257,8 @@ class BaseRAGExample(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def load_data(self, args) -> list[Union[str, dict[str, Any]]]:
|
||||
"""Load data from the source. Returns list of text chunks (strings or dicts with 'text' key)."""
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load data from the source. Returns list of text chunks."""
|
||||
pass
|
||||
|
||||
def get_llm_config(self, args) -> dict[str, Any]:
|
||||
@@ -282,8 +282,8 @@ class BaseRAGExample(ABC):
|
||||
|
||||
return config
|
||||
|
||||
async def build_index(self, args, texts: list[Union[str, dict[str, Any]]]) -> str:
|
||||
"""Build LEANN index from texts (accepts strings or dicts with 'text' key)."""
|
||||
async def build_index(self, args, texts: list[str]) -> str:
|
||||
"""Build LEANN index from texts."""
|
||||
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||
|
||||
print(f"\n[Building Index] Creating {self.name} index...")
|
||||
@@ -314,14 +314,8 @@ class BaseRAGExample(ABC):
|
||||
batch_size = 1000
|
||||
for i in range(0, len(texts), batch_size):
|
||||
batch = texts[i : i + batch_size]
|
||||
for item in batch:
|
||||
# Handle both dict format (from create_text_chunks) and plain strings
|
||||
if isinstance(item, dict):
|
||||
text = item.get("text", "")
|
||||
metadata = item.get("metadata")
|
||||
builder.add_text(text, metadata)
|
||||
else:
|
||||
builder.add_text(item)
|
||||
for text in batch:
|
||||
builder.add_text(text)
|
||||
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
|
||||
|
||||
print("Building index structure...")
|
||||
|
||||
@@ -12,7 +12,6 @@ from pathlib import Path
|
||||
try:
|
||||
from leann.chunking_utils import (
|
||||
CODE_EXTENSIONS,
|
||||
_traditional_chunks_as_dicts,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
@@ -26,7 +25,6 @@ except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||
sys.path.insert(0, str(leann_src))
|
||||
from leann.chunking_utils import (
|
||||
CODE_EXTENSIONS,
|
||||
_traditional_chunks_as_dicts,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
@@ -38,7 +36,6 @@ except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||
|
||||
__all__ = [
|
||||
"CODE_EXTENSIONS",
|
||||
"_traditional_chunks_as_dicts",
|
||||
"create_ast_chunks",
|
||||
"create_text_chunks",
|
||||
"create_traditional_chunks",
|
||||
|
||||
@@ -5,7 +5,6 @@ Supports PDF, TXT, MD, and other document formats.
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Union
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
@@ -52,7 +51,7 @@ class DocumentRAG(BaseRAGExample):
|
||||
help="Enable AST-aware chunking for code files in the data directory",
|
||||
)
|
||||
|
||||
async def load_data(self, args) -> list[Union[str, dict[str, Any]]]:
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load documents and convert to text chunks."""
|
||||
print(f"Loading documents from: {args.data_dir}")
|
||||
if args.file_types:
|
||||
|
||||
@@ -1,132 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Simple test script to test colqwen2 forward pass with a single image."""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add the current directory to path to import leann_multi_vector
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
import torch
|
||||
from leann_multi_vector import _embed_images, _ensure_repo_paths_importable, _load_colvision
|
||||
from PIL import Image
|
||||
|
||||
# Ensure repo paths are importable
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
# Set environment variable
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
|
||||
def create_test_image():
|
||||
"""Create a simple test image."""
|
||||
# Create a simple RGB image (800x600)
|
||||
img = Image.new("RGB", (800, 600), color="white")
|
||||
return img
|
||||
|
||||
|
||||
def load_test_image_from_file():
|
||||
"""Try to load an image from the indexes directory if available."""
|
||||
# Try to find an existing image in the indexes directory
|
||||
indexes_dir = Path(__file__).parent / "indexes"
|
||||
|
||||
# Look for images in common locations
|
||||
possible_paths = [
|
||||
indexes_dir / "vidore_fastplaid" / "images",
|
||||
indexes_dir / "colvision_large.leann.images",
|
||||
indexes_dir / "colvision.leann.images",
|
||||
]
|
||||
|
||||
for img_dir in possible_paths:
|
||||
if img_dir.exists():
|
||||
# Find first image file
|
||||
for ext in [".png", ".jpg", ".jpeg"]:
|
||||
for img_file in img_dir.glob(f"*{ext}"):
|
||||
print(f"Loading test image from: {img_file}")
|
||||
return Image.open(img_file)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
print("=" * 60)
|
||||
print("Testing ColQwen2 Forward Pass")
|
||||
print("=" * 60)
|
||||
|
||||
# Step 1: Load or create test image
|
||||
print("\n[Step 1] Loading test image...")
|
||||
test_image = load_test_image_from_file()
|
||||
if test_image is None:
|
||||
print("No existing image found, creating a simple test image...")
|
||||
test_image = create_test_image()
|
||||
else:
|
||||
print(f"✓ Loaded image: {test_image.size} ({test_image.mode})")
|
||||
|
||||
# Convert to RGB if needed
|
||||
if test_image.mode != "RGB":
|
||||
test_image = test_image.convert("RGB")
|
||||
print(f"✓ Converted to RGB: {test_image.size}")
|
||||
|
||||
# Step 2: Load model
|
||||
print("\n[Step 2] Loading ColQwen2 model...")
|
||||
try:
|
||||
model_name, model, processor, device_str, device, dtype = _load_colvision("colqwen2")
|
||||
print(f"✓ Model loaded: {model_name}")
|
||||
print(f"✓ Device: {device_str}, dtype: {dtype}")
|
||||
|
||||
# Print model info
|
||||
if hasattr(model, "device"):
|
||||
print(f"✓ Model device: {model.device}")
|
||||
if hasattr(model, "dtype"):
|
||||
print(f"✓ Model dtype: {model.dtype}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Error loading model: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
return
|
||||
|
||||
# Step 3: Test forward pass
|
||||
print("\n[Step 3] Running forward pass...")
|
||||
try:
|
||||
# Use the _embed_images function which handles batching and forward pass
|
||||
images = [test_image]
|
||||
print(f"Processing {len(images)} image(s)...")
|
||||
|
||||
doc_vecs = _embed_images(model, processor, images)
|
||||
|
||||
print("✓ Forward pass completed!")
|
||||
print(f"✓ Number of embeddings: {len(doc_vecs)}")
|
||||
|
||||
if len(doc_vecs) > 0:
|
||||
emb = doc_vecs[0]
|
||||
print(f"✓ Embedding shape: {emb.shape}")
|
||||
print(f"✓ Embedding dtype: {emb.dtype}")
|
||||
print("✓ Embedding stats:")
|
||||
print(f" - Min: {emb.min().item():.4f}")
|
||||
print(f" - Max: {emb.max().item():.4f}")
|
||||
print(f" - Mean: {emb.mean().item():.4f}")
|
||||
print(f" - Std: {emb.std().item():.4f}")
|
||||
|
||||
# Check for NaN or Inf
|
||||
if torch.isnan(emb).any():
|
||||
print("⚠ Warning: Embedding contains NaN values!")
|
||||
if torch.isinf(emb).any():
|
||||
print("⚠ Warning: Embedding contains Inf values!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Error during forward pass: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
return
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("Test completed successfully!")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,448 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Modular script to reproduce NDCG results for ViDoRe v1 benchmark.
|
||||
|
||||
This script uses the interface from leann_multi_vector.py to:
|
||||
1. Download ViDoRe v1 datasets
|
||||
2. Build indexes (LEANN or Fast-Plaid)
|
||||
3. Perform retrieval
|
||||
4. Evaluate using NDCG metrics
|
||||
|
||||
Usage:
|
||||
# Evaluate all ViDoRe v1 tasks
|
||||
python vidore_v1_benchmark.py --model colqwen2 --tasks all
|
||||
|
||||
# Evaluate specific task
|
||||
python vidore_v1_benchmark.py --model colqwen2 --task VidoreArxivQARetrieval
|
||||
|
||||
# Use Fast-Plaid index
|
||||
python vidore_v1_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
|
||||
|
||||
# Rebuild index
|
||||
python vidore_v1_benchmark.py --model colqwen2 --rebuild-index
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from datasets import load_dataset
|
||||
from leann_multi_vector import (
|
||||
ViDoReBenchmarkEvaluator,
|
||||
_ensure_repo_paths_importable,
|
||||
)
|
||||
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
# ViDoRe v1 task configurations
|
||||
# Prompts match MTEB task metadata prompts
|
||||
VIDORE_V1_TASKS = {
|
||||
"VidoreArxivQARetrieval": {
|
||||
"dataset_path": "vidore/arxivqa_test_subsampled_beir",
|
||||
"revision": "7d94d570960eac2408d3baa7a33f9de4822ae3e4",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreDocVQARetrieval": {
|
||||
"dataset_path": "vidore/docvqa_test_subsampled_beir",
|
||||
"revision": "162ba2fc1a8437eda8b6c37b240bc1c0f0deb092",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreInfoVQARetrieval": {
|
||||
"dataset_path": "vidore/infovqa_test_subsampled_beir",
|
||||
"revision": "b802cc5fd6c605df2d673a963667d74881d2c9a4",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreTabfquadRetrieval": {
|
||||
"dataset_path": "vidore/tabfquad_test_subsampled_beir",
|
||||
"revision": "61a2224bcd29b7b261a4892ff4c8bea353527a31",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreTatdqaRetrieval": {
|
||||
"dataset_path": "vidore/tatdqa_test_beir",
|
||||
"revision": "5feb5630fdff4d8d189ffedb2dba56862fdd45c0",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreShiftProjectRetrieval": {
|
||||
"dataset_path": "vidore/shiftproject_test_beir",
|
||||
"revision": "84a382e05c4473fed9cff2bbae95fe2379416117",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreSyntheticDocQAAIRetrieval": {
|
||||
"dataset_path": "vidore/syntheticDocQA_artificial_intelligence_test_beir",
|
||||
"revision": "2d9ebea5a1c6e9ef4a3b902a612f605dca11261c",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreSyntheticDocQAEnergyRetrieval": {
|
||||
"dataset_path": "vidore/syntheticDocQA_energy_test_beir",
|
||||
"revision": "9935aadbad5c8deec30910489db1b2c7133ae7a7",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreSyntheticDocQAGovernmentReportsRetrieval": {
|
||||
"dataset_path": "vidore/syntheticDocQA_government_reports_test_beir",
|
||||
"revision": "b4909afa930f81282fd20601e860668073ad02aa",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"VidoreSyntheticDocQAHealthcareIndustryRetrieval": {
|
||||
"dataset_path": "vidore/syntheticDocQA_healthcare_industry_test_beir",
|
||||
"revision": "f9e25d5b6e13e1ad9f5c3cce202565031b3ab164",
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
}
|
||||
|
||||
# Task name aliases (short names -> full names)
|
||||
TASK_ALIASES = {
|
||||
"arxivqa": "VidoreArxivQARetrieval",
|
||||
"docvqa": "VidoreDocVQARetrieval",
|
||||
"infovqa": "VidoreInfoVQARetrieval",
|
||||
"tabfquad": "VidoreTabfquadRetrieval",
|
||||
"tatdqa": "VidoreTatdqaRetrieval",
|
||||
"shiftproject": "VidoreShiftProjectRetrieval",
|
||||
"syntheticdocqa_ai": "VidoreSyntheticDocQAAIRetrieval",
|
||||
"syntheticdocqa_energy": "VidoreSyntheticDocQAEnergyRetrieval",
|
||||
"syntheticdocqa_government": "VidoreSyntheticDocQAGovernmentReportsRetrieval",
|
||||
"syntheticdocqa_healthcare": "VidoreSyntheticDocQAHealthcareIndustryRetrieval",
|
||||
}
|
||||
|
||||
|
||||
def normalize_task_name(task_name: str) -> str:
|
||||
"""Normalize task name (handle aliases)."""
|
||||
task_name_lower = task_name.lower()
|
||||
if task_name in VIDORE_V1_TASKS:
|
||||
return task_name
|
||||
if task_name_lower in TASK_ALIASES:
|
||||
return TASK_ALIASES[task_name_lower]
|
||||
# Try partial match
|
||||
for alias, full_name in TASK_ALIASES.items():
|
||||
if alias in task_name_lower or task_name_lower in alias:
|
||||
return full_name
|
||||
return task_name
|
||||
|
||||
|
||||
def get_safe_model_name(model_name: str) -> str:
|
||||
"""Get a safe model name for use in file paths."""
|
||||
import hashlib
|
||||
import os
|
||||
|
||||
# If it's a path, use basename or hash
|
||||
if os.path.exists(model_name) and os.path.isdir(model_name):
|
||||
# Use basename if it's reasonable, otherwise use hash
|
||||
basename = os.path.basename(model_name.rstrip("/"))
|
||||
if basename and len(basename) < 100 and not basename.startswith("."):
|
||||
return basename
|
||||
# Use hash for very long or problematic paths
|
||||
return hashlib.md5(model_name.encode()).hexdigest()[:16]
|
||||
# For HuggingFace model names, replace / with _
|
||||
return model_name.replace("/", "_").replace(":", "_")
|
||||
|
||||
|
||||
def load_vidore_v1_data(
|
||||
dataset_path: str,
|
||||
revision: Optional[str] = None,
|
||||
split: str = "test",
|
||||
):
|
||||
"""
|
||||
Load ViDoRe v1 dataset.
|
||||
|
||||
Returns:
|
||||
corpus: dict mapping corpus_id to PIL Image
|
||||
queries: dict mapping query_id to query text
|
||||
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
|
||||
"""
|
||||
print(f"Loading dataset: {dataset_path} (split={split})")
|
||||
|
||||
# Load queries
|
||||
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
|
||||
|
||||
queries = {}
|
||||
for row in query_ds:
|
||||
query_id = f"query-{split}-{row['query-id']}"
|
||||
queries[query_id] = row["query"]
|
||||
|
||||
# Load corpus (images)
|
||||
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
|
||||
|
||||
corpus = {}
|
||||
for row in corpus_ds:
|
||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
||||
# Extract image from the dataset row
|
||||
if "image" in row:
|
||||
corpus[corpus_id] = row["image"]
|
||||
elif "page_image" in row:
|
||||
corpus[corpus_id] = row["page_image"]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"No image field found in corpus. Available fields: {list(row.keys())}"
|
||||
)
|
||||
|
||||
# Load qrels (relevance judgments)
|
||||
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
|
||||
|
||||
qrels = {}
|
||||
for row in qrels_ds:
|
||||
query_id = f"query-{split}-{row['query-id']}"
|
||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
||||
if query_id not in qrels:
|
||||
qrels[query_id] = {}
|
||||
qrels[query_id][corpus_id] = int(row["score"])
|
||||
|
||||
print(
|
||||
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
|
||||
)
|
||||
|
||||
# Filter qrels to only include queries that exist
|
||||
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
|
||||
|
||||
# Filter out queries without any relevant documents (matching MTEB behavior)
|
||||
# This is important for correct NDCG calculation
|
||||
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
|
||||
queries_filtered = {
|
||||
qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered
|
||||
}
|
||||
|
||||
print(
|
||||
f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings"
|
||||
)
|
||||
|
||||
return corpus, queries_filtered, qrels_filtered
|
||||
|
||||
|
||||
def evaluate_task(
|
||||
task_name: str,
|
||||
model_name: str,
|
||||
index_path: str,
|
||||
use_fast_plaid: bool = False,
|
||||
fast_plaid_index_path: Optional[str] = None,
|
||||
rebuild_index: bool = False,
|
||||
top_k: int = 1000,
|
||||
first_stage_k: int = 500,
|
||||
k_values: Optional[list[int]] = None,
|
||||
output_dir: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Evaluate a single ViDoRe v1 task.
|
||||
"""
|
||||
print(f"\n{'=' * 80}")
|
||||
print(f"Evaluating task: {task_name}")
|
||||
print(f"{'=' * 80}")
|
||||
|
||||
# Normalize task name (handle aliases)
|
||||
task_name = normalize_task_name(task_name)
|
||||
|
||||
# Get task config
|
||||
if task_name not in VIDORE_V1_TASKS:
|
||||
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V1_TASKS.keys())}")
|
||||
|
||||
task_config = VIDORE_V1_TASKS[task_name]
|
||||
dataset_path = task_config["dataset_path"]
|
||||
revision = task_config["revision"]
|
||||
|
||||
# Load data
|
||||
corpus, queries, qrels = load_vidore_v1_data(
|
||||
dataset_path=dataset_path,
|
||||
revision=revision,
|
||||
split="test",
|
||||
)
|
||||
|
||||
# Initialize k_values if not provided
|
||||
if k_values is None:
|
||||
k_values = [1, 3, 5, 10, 20, 100, 1000]
|
||||
|
||||
# Check if we have any queries
|
||||
if len(queries) == 0:
|
||||
print(f"\nWarning: No queries found for task {task_name}. Skipping evaluation.")
|
||||
# Return zero scores
|
||||
scores = {}
|
||||
for k in k_values:
|
||||
scores[f"ndcg_at_{k}"] = 0.0
|
||||
scores[f"map_at_{k}"] = 0.0
|
||||
scores[f"recall_at_{k}"] = 0.0
|
||||
scores[f"precision_at_{k}"] = 0.0
|
||||
scores[f"mrr_at_{k}"] = 0.0
|
||||
return scores
|
||||
|
||||
# Initialize evaluator
|
||||
evaluator = ViDoReBenchmarkEvaluator(
|
||||
model_name=model_name,
|
||||
use_fast_plaid=use_fast_plaid,
|
||||
top_k=top_k,
|
||||
first_stage_k=first_stage_k,
|
||||
k_values=k_values,
|
||||
)
|
||||
|
||||
# Build or load index
|
||||
# Use safe model name for index path (different models need different indexes)
|
||||
safe_model_name = get_safe_model_name(model_name)
|
||||
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
|
||||
if index_path_full is None:
|
||||
index_path_full = f"./indexes/{task_name}_{safe_model_name}"
|
||||
if use_fast_plaid:
|
||||
index_path_full = f"./indexes/{task_name}_{safe_model_name}_fastplaid"
|
||||
|
||||
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
|
||||
corpus=corpus,
|
||||
index_path=index_path_full,
|
||||
rebuild=rebuild_index,
|
||||
)
|
||||
|
||||
# Search queries
|
||||
task_prompt = task_config.get("prompt")
|
||||
results = evaluator.search_queries(
|
||||
queries=queries,
|
||||
corpus_ids=corpus_ids_ordered,
|
||||
index_or_retriever=index_or_retriever,
|
||||
fast_plaid_index_path=fast_plaid_index_path,
|
||||
task_prompt=task_prompt,
|
||||
)
|
||||
|
||||
# Evaluate
|
||||
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
|
||||
|
||||
# Print results
|
||||
print(f"\n{'=' * 80}")
|
||||
print(f"Results for {task_name}:")
|
||||
print(f"{'=' * 80}")
|
||||
for metric, value in scores.items():
|
||||
if isinstance(value, (int, float)):
|
||||
print(f" {metric}: {value:.5f}")
|
||||
|
||||
# Save results
|
||||
if output_dir:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
results_file = os.path.join(output_dir, f"{task_name}_results.json")
|
||||
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
|
||||
|
||||
with open(results_file, "w") as f:
|
||||
json.dump(results, f, indent=2)
|
||||
print(f"\nSaved results to: {results_file}")
|
||||
|
||||
with open(scores_file, "w") as f:
|
||||
json.dump(scores, f, indent=2)
|
||||
print(f"Saved scores to: {scores_file}")
|
||||
|
||||
return scores
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Evaluate ViDoRe v1 benchmark using LEANN/Fast-Plaid indexing"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="colqwen2",
|
||||
help="Model to use: 'colqwen2', 'colpali', or path to a model directory (supports LoRA adapters)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--task",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specific task to evaluate (or 'all' for all tasks)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tasks",
|
||||
type=str,
|
||||
default="all",
|
||||
help="Tasks to evaluate: 'all' or comma-separated list",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to LEANN index (auto-generated if not provided)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-fast-plaid",
|
||||
action="store_true",
|
||||
help="Use Fast-Plaid instead of LEANN",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fast-plaid-index-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to Fast-Plaid index (auto-generated if not provided)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rebuild-index",
|
||||
action="store_true",
|
||||
help="Rebuild index even if it exists",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Top-k results to retrieve (MTEB default is max(k_values)=1000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--first-stage-k",
|
||||
type=int,
|
||||
default=500,
|
||||
help="First stage k for LEANN search",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--k-values",
|
||||
type=str,
|
||||
default="1,3,5,10,20,100,1000",
|
||||
help="Comma-separated k values for evaluation (e.g., '1,3,5,10,100')",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default="./vidore_v1_results",
|
||||
help="Output directory for results",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Parse k_values
|
||||
k_values = [int(k.strip()) for k in args.k_values.split(",")]
|
||||
|
||||
# Determine tasks to evaluate
|
||||
if args.task:
|
||||
tasks_to_eval = [normalize_task_name(args.task)]
|
||||
elif args.tasks.lower() == "all":
|
||||
tasks_to_eval = list(VIDORE_V1_TASKS.keys())
|
||||
else:
|
||||
tasks_to_eval = [normalize_task_name(t.strip()) for t in args.tasks.split(",")]
|
||||
|
||||
print(f"Tasks to evaluate: {tasks_to_eval}")
|
||||
|
||||
# Evaluate each task
|
||||
all_scores = {}
|
||||
for task_name in tasks_to_eval:
|
||||
try:
|
||||
scores = evaluate_task(
|
||||
task_name=task_name,
|
||||
model_name=args.model,
|
||||
index_path=args.index_path,
|
||||
use_fast_plaid=args.use_fast_plaid,
|
||||
fast_plaid_index_path=args.fast_plaid_index_path,
|
||||
rebuild_index=args.rebuild_index,
|
||||
top_k=args.top_k,
|
||||
first_stage_k=args.first_stage_k,
|
||||
k_values=k_values,
|
||||
output_dir=args.output_dir,
|
||||
)
|
||||
all_scores[task_name] = scores
|
||||
except Exception as e:
|
||||
print(f"\nError evaluating {task_name}: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
continue
|
||||
|
||||
# Print summary
|
||||
if all_scores:
|
||||
print(f"\n{'=' * 80}")
|
||||
print("SUMMARY")
|
||||
print(f"{'=' * 80}")
|
||||
for task_name, scores in all_scores.items():
|
||||
print(f"\n{task_name}:")
|
||||
# Print main metrics
|
||||
for metric in ["ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "map_at_10", "recall_at_10"]:
|
||||
if metric in scores:
|
||||
print(f" {metric}: {scores[metric]:.5f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,439 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Modular script to reproduce NDCG results for ViDoRe v2 benchmark.
|
||||
|
||||
This script uses the interface from leann_multi_vector.py to:
|
||||
1. Download ViDoRe v2 datasets
|
||||
2. Build indexes (LEANN or Fast-Plaid)
|
||||
3. Perform retrieval
|
||||
4. Evaluate using NDCG metrics
|
||||
|
||||
Usage:
|
||||
# Evaluate all ViDoRe v2 tasks
|
||||
python vidore_v2_benchmark.py --model colqwen2 --tasks all
|
||||
|
||||
# Evaluate specific task
|
||||
python vidore_v2_benchmark.py --model colqwen2 --task Vidore2ESGReportsRetrieval
|
||||
|
||||
# Use Fast-Plaid index
|
||||
python vidore_v2_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
|
||||
|
||||
# Rebuild index
|
||||
python vidore_v2_benchmark.py --model colqwen2 --rebuild-index
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from datasets import load_dataset
|
||||
from leann_multi_vector import (
|
||||
ViDoReBenchmarkEvaluator,
|
||||
_ensure_repo_paths_importable,
|
||||
)
|
||||
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
# Language name to dataset language field value mapping
|
||||
# Dataset uses ISO 639-3 + ISO 15924 format (e.g., "eng-Latn")
|
||||
LANGUAGE_MAPPING = {
|
||||
"english": "eng-Latn",
|
||||
"french": "fra-Latn",
|
||||
"spanish": "spa-Latn",
|
||||
"german": "deu-Latn",
|
||||
}
|
||||
|
||||
# ViDoRe v2 task configurations
|
||||
# Prompts match MTEB task metadata prompts
|
||||
VIDORE_V2_TASKS = {
|
||||
"Vidore2ESGReportsRetrieval": {
|
||||
"dataset_path": "vidore/esg_reports_v2",
|
||||
"revision": "0542c0d03da0ec1c8cbc517c8d78e7e95c75d3d3",
|
||||
"languages": ["french", "spanish", "english", "german"],
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"Vidore2EconomicsReportsRetrieval": {
|
||||
"dataset_path": "vidore/economics_reports_v2",
|
||||
"revision": "b3e3a04b07fbbaffe79be49dabf92f691fbca252",
|
||||
"languages": ["french", "spanish", "english", "german"],
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"Vidore2BioMedicalLecturesRetrieval": {
|
||||
"dataset_path": "vidore/biomedical_lectures_v2",
|
||||
"revision": "a29202f0da409034d651614d87cd8938d254e2ea",
|
||||
"languages": ["french", "spanish", "english", "german"],
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
"Vidore2ESGReportsHLRetrieval": {
|
||||
"dataset_path": "vidore/esg_reports_human_labeled_v2",
|
||||
"revision": "6d467dedb09a75144ede1421747e47cf036857dd",
|
||||
# Note: This dataset doesn't have language filtering - all queries are English
|
||||
"languages": None, # No language filtering needed
|
||||
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def load_vidore_v2_data(
|
||||
dataset_path: str,
|
||||
revision: Optional[str] = None,
|
||||
split: str = "test",
|
||||
language: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Load ViDoRe v2 dataset.
|
||||
|
||||
Returns:
|
||||
corpus: dict mapping corpus_id to PIL Image
|
||||
queries: dict mapping query_id to query text
|
||||
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
|
||||
"""
|
||||
print(f"Loading dataset: {dataset_path} (split={split}, language={language})")
|
||||
|
||||
# Load queries
|
||||
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
|
||||
|
||||
# Check if dataset has language field before filtering
|
||||
has_language_field = len(query_ds) > 0 and "language" in query_ds.column_names
|
||||
|
||||
if language and has_language_field:
|
||||
# Map language name to dataset language field value (e.g., "english" -> "eng-Latn")
|
||||
dataset_language = LANGUAGE_MAPPING.get(language, language)
|
||||
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == dataset_language)
|
||||
# Check if filtering resulted in empty dataset
|
||||
if len(query_ds_filtered) == 0:
|
||||
print(
|
||||
f"Warning: No queries found after filtering by language '{language}' (mapped to '{dataset_language}')."
|
||||
)
|
||||
# Try with original language value (dataset might use simple names like 'english')
|
||||
print(f"Trying with original language value '{language}'...")
|
||||
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == language)
|
||||
if len(query_ds_filtered) == 0:
|
||||
# Try to get a sample to see actual language values
|
||||
try:
|
||||
sample_ds = load_dataset(
|
||||
dataset_path, "queries", split=split, revision=revision
|
||||
)
|
||||
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
|
||||
sample_langs = set(sample_ds["language"])
|
||||
print(f"Available language values in dataset: {sample_langs}")
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
print(
|
||||
f"Found {len(query_ds_filtered)} queries using original language value '{language}'"
|
||||
)
|
||||
query_ds = query_ds_filtered
|
||||
|
||||
queries = {}
|
||||
for row in query_ds:
|
||||
query_id = f"query-{split}-{row['query-id']}"
|
||||
queries[query_id] = row["query"]
|
||||
|
||||
# Load corpus (images)
|
||||
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
|
||||
|
||||
corpus = {}
|
||||
for row in corpus_ds:
|
||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
||||
# Extract image from the dataset row
|
||||
if "image" in row:
|
||||
corpus[corpus_id] = row["image"]
|
||||
elif "page_image" in row:
|
||||
corpus[corpus_id] = row["page_image"]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"No image field found in corpus. Available fields: {list(row.keys())}"
|
||||
)
|
||||
|
||||
# Load qrels (relevance judgments)
|
||||
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
|
||||
|
||||
qrels = {}
|
||||
for row in qrels_ds:
|
||||
query_id = f"query-{split}-{row['query-id']}"
|
||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
||||
if query_id not in qrels:
|
||||
qrels[query_id] = {}
|
||||
qrels[query_id][corpus_id] = int(row["score"])
|
||||
|
||||
print(
|
||||
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
|
||||
)
|
||||
|
||||
# Filter qrels to only include queries that exist
|
||||
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
|
||||
|
||||
# Filter out queries without any relevant documents (matching MTEB behavior)
|
||||
# This is important for correct NDCG calculation
|
||||
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
|
||||
queries_filtered = {
|
||||
qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered
|
||||
}
|
||||
|
||||
print(
|
||||
f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings"
|
||||
)
|
||||
|
||||
return corpus, queries_filtered, qrels_filtered
|
||||
|
||||
|
||||
def evaluate_task(
|
||||
task_name: str,
|
||||
model_name: str,
|
||||
index_path: str,
|
||||
use_fast_plaid: bool = False,
|
||||
fast_plaid_index_path: Optional[str] = None,
|
||||
language: Optional[str] = None,
|
||||
rebuild_index: bool = False,
|
||||
top_k: int = 100,
|
||||
first_stage_k: int = 500,
|
||||
k_values: Optional[list[int]] = None,
|
||||
output_dir: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Evaluate a single ViDoRe v2 task.
|
||||
"""
|
||||
print(f"\n{'=' * 80}")
|
||||
print(f"Evaluating task: {task_name}")
|
||||
print(f"{'=' * 80}")
|
||||
|
||||
# Get task config
|
||||
if task_name not in VIDORE_V2_TASKS:
|
||||
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V2_TASKS.keys())}")
|
||||
|
||||
task_config = VIDORE_V2_TASKS[task_name]
|
||||
dataset_path = task_config["dataset_path"]
|
||||
revision = task_config["revision"]
|
||||
|
||||
# Determine language
|
||||
if language is None:
|
||||
# Use first language if multiple available
|
||||
languages = task_config.get("languages")
|
||||
if languages is None:
|
||||
# Task doesn't support language filtering (e.g., Vidore2ESGReportsHLRetrieval)
|
||||
language = None
|
||||
elif len(languages) == 1:
|
||||
language = languages[0]
|
||||
else:
|
||||
language = None
|
||||
|
||||
# Initialize k_values if not provided
|
||||
if k_values is None:
|
||||
k_values = [1, 3, 5, 10, 100]
|
||||
|
||||
# Load data
|
||||
corpus, queries, qrels = load_vidore_v2_data(
|
||||
dataset_path=dataset_path,
|
||||
revision=revision,
|
||||
split="test",
|
||||
language=language,
|
||||
)
|
||||
|
||||
# Check if we have any queries
|
||||
if len(queries) == 0:
|
||||
print(
|
||||
f"\nWarning: No queries found for task {task_name} with language {language}. Skipping evaluation."
|
||||
)
|
||||
# Return zero scores
|
||||
scores = {}
|
||||
for k in k_values:
|
||||
scores[f"ndcg_at_{k}"] = 0.0
|
||||
scores[f"map_at_{k}"] = 0.0
|
||||
scores[f"recall_at_{k}"] = 0.0
|
||||
scores[f"precision_at_{k}"] = 0.0
|
||||
scores[f"mrr_at_{k}"] = 0.0
|
||||
return scores
|
||||
|
||||
# Initialize evaluator
|
||||
evaluator = ViDoReBenchmarkEvaluator(
|
||||
model_name=model_name,
|
||||
use_fast_plaid=use_fast_plaid,
|
||||
top_k=top_k,
|
||||
first_stage_k=first_stage_k,
|
||||
k_values=k_values,
|
||||
)
|
||||
|
||||
# Build or load index
|
||||
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
|
||||
if index_path_full is None:
|
||||
index_path_full = f"./indexes/{task_name}_{model_name}"
|
||||
if use_fast_plaid:
|
||||
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
|
||||
|
||||
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
|
||||
corpus=corpus,
|
||||
index_path=index_path_full,
|
||||
rebuild=rebuild_index,
|
||||
)
|
||||
|
||||
# Search queries
|
||||
task_prompt = task_config.get("prompt")
|
||||
results = evaluator.search_queries(
|
||||
queries=queries,
|
||||
corpus_ids=corpus_ids_ordered,
|
||||
index_or_retriever=index_or_retriever,
|
||||
fast_plaid_index_path=fast_plaid_index_path,
|
||||
task_prompt=task_prompt,
|
||||
)
|
||||
|
||||
# Evaluate
|
||||
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
|
||||
|
||||
# Print results
|
||||
print(f"\n{'=' * 80}")
|
||||
print(f"Results for {task_name}:")
|
||||
print(f"{'=' * 80}")
|
||||
for metric, value in scores.items():
|
||||
if isinstance(value, (int, float)):
|
||||
print(f" {metric}: {value:.5f}")
|
||||
|
||||
# Save results
|
||||
if output_dir:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
results_file = os.path.join(output_dir, f"{task_name}_results.json")
|
||||
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
|
||||
|
||||
with open(results_file, "w") as f:
|
||||
json.dump(results, f, indent=2)
|
||||
print(f"\nSaved results to: {results_file}")
|
||||
|
||||
with open(scores_file, "w") as f:
|
||||
json.dump(scores, f, indent=2)
|
||||
print(f"Saved scores to: {scores_file}")
|
||||
|
||||
return scores
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Evaluate ViDoRe v2 benchmark using LEANN/Fast-Plaid indexing"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="colqwen2",
|
||||
choices=["colqwen2", "colpali"],
|
||||
help="Model to use",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--task",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specific task to evaluate (or 'all' for all tasks)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tasks",
|
||||
type=str,
|
||||
default="all",
|
||||
help="Tasks to evaluate: 'all' or comma-separated list",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to LEANN index (auto-generated if not provided)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-fast-plaid",
|
||||
action="store_true",
|
||||
help="Use Fast-Plaid instead of LEANN",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fast-plaid-index-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to Fast-Plaid index (auto-generated if not provided)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rebuild-index",
|
||||
action="store_true",
|
||||
help="Rebuild index even if it exists",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--language",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Language to evaluate (default: first available)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Top-k results to retrieve",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--first-stage-k",
|
||||
type=int,
|
||||
default=500,
|
||||
help="First stage k for LEANN search",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--k-values",
|
||||
type=str,
|
||||
default="1,3,5,10,100",
|
||||
help="Comma-separated k values for evaluation (e.g., '1,3,5,10,100')",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default="./vidore_v2_results",
|
||||
help="Output directory for results",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Parse k_values
|
||||
k_values = [int(k.strip()) for k in args.k_values.split(",")]
|
||||
|
||||
# Determine tasks to evaluate
|
||||
if args.task:
|
||||
tasks_to_eval = [args.task]
|
||||
elif args.tasks.lower() == "all":
|
||||
tasks_to_eval = list(VIDORE_V2_TASKS.keys())
|
||||
else:
|
||||
tasks_to_eval = [t.strip() for t in args.tasks.split(",")]
|
||||
|
||||
print(f"Tasks to evaluate: {tasks_to_eval}")
|
||||
|
||||
# Evaluate each task
|
||||
all_scores = {}
|
||||
for task_name in tasks_to_eval:
|
||||
try:
|
||||
scores = evaluate_task(
|
||||
task_name=task_name,
|
||||
model_name=args.model,
|
||||
index_path=args.index_path,
|
||||
use_fast_plaid=args.use_fast_plaid,
|
||||
fast_plaid_index_path=args.fast_plaid_index_path,
|
||||
language=args.language,
|
||||
rebuild_index=args.rebuild_index,
|
||||
top_k=args.top_k,
|
||||
first_stage_k=args.first_stage_k,
|
||||
k_values=k_values,
|
||||
output_dir=args.output_dir,
|
||||
)
|
||||
all_scores[task_name] = scores
|
||||
except Exception as e:
|
||||
print(f"\nError evaluating {task_name}: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
continue
|
||||
|
||||
# Print summary
|
||||
if all_scores:
|
||||
print(f"\n{'=' * 80}")
|
||||
print("SUMMARY")
|
||||
print(f"{'=' * 80}")
|
||||
for task_name, scores in all_scores.items():
|
||||
print(f"\n{task_name}:")
|
||||
# Print main metrics
|
||||
for metric in ["ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "map_at_10", "recall_at_10"]:
|
||||
if metric in scores:
|
||||
print(f" {metric}: {scores[metric]:.5f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -7,7 +7,6 @@ for indexing in LEANN. It supports various Slack MCP server implementations and
|
||||
flexible message processing options.
|
||||
"""
|
||||
|
||||
import ast
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
@@ -147,16 +146,16 @@ class SlackMCPReader:
|
||||
match = re.search(r"'error':\s*(\{[^}]+\})", str(e))
|
||||
if match:
|
||||
try:
|
||||
error_dict = ast.literal_eval(match.group(1))
|
||||
except (ValueError, SyntaxError):
|
||||
error_dict = eval(match.group(1))
|
||||
except (ValueError, SyntaxError, NameError):
|
||||
pass
|
||||
else:
|
||||
# Try alternative format
|
||||
match = re.search(r"Failed to fetch messages:\s*(\{[^}]+\})", str(e))
|
||||
if match:
|
||||
try:
|
||||
error_dict = ast.literal_eval(match.group(1))
|
||||
except (ValueError, SyntaxError):
|
||||
error_dict = eval(match.group(1))
|
||||
except (ValueError, SyntaxError, NameError):
|
||||
pass
|
||||
|
||||
if self._is_cache_sync_error(error_dict):
|
||||
|
||||
@@ -158,95 +158,6 @@ builder.build_index("./indexes/my-notes", chunks)
|
||||
|
||||
`embedding_options` is persisted to the index `meta.json`, so subsequent `LeannSearcher` or `LeannChat` sessions automatically reuse the same provider settings (the embedding server manager forwards them to the provider for you).
|
||||
|
||||
## Optional Embedding Features
|
||||
|
||||
### Task-Specific Prompt Templates
|
||||
|
||||
Some embedding models are trained with task-specific prompts to differentiate between documents and queries. The most notable example is **Google's EmbeddingGemma**, which requires different prompts depending on the use case:
|
||||
|
||||
- **Indexing documents**: `"title: none | text: "`
|
||||
- **Search queries**: `"task: search result | query: "`
|
||||
|
||||
LEANN supports automatic prompt prepending via the `--embedding-prompt-template` flag:
|
||||
|
||||
```bash
|
||||
# Build index with EmbeddingGemma (via LM Studio or Ollama)
|
||||
leann build my-docs \
|
||||
--docs ./documents \
|
||||
--embedding-mode openai \
|
||||
--embedding-model text-embedding-embeddinggemma-300m-qat \
|
||||
--embedding-api-base http://localhost:1234/v1 \
|
||||
--embedding-prompt-template "title: none | text: " \
|
||||
--force
|
||||
|
||||
# Search with query-specific prompt
|
||||
leann search my-docs \
|
||||
--query "What is quantum computing?" \
|
||||
--embedding-prompt-template "task: search result | query: "
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- **Only use with compatible models**: EmbeddingGemma and similar task-specific models
|
||||
- **NOT for regular models**: Adding prompts to models like `nomic-embed-text`, `text-embedding-3-small`, or `bge-base-en-v1.5` will corrupt embeddings
|
||||
- **Template is saved**: Build-time templates are saved to `.meta.json` for reference
|
||||
- **Flexible prompts**: You can use any prompt string, or leave it empty (`""`)
|
||||
|
||||
**Python API:**
|
||||
```python
|
||||
from leann.api import LeannBuilder
|
||||
|
||||
builder = LeannBuilder(
|
||||
embedding_mode="openai",
|
||||
embedding_model="text-embedding-embeddinggemma-300m-qat",
|
||||
embedding_options={
|
||||
"base_url": "http://localhost:1234/v1",
|
||||
"api_key": "lm-studio",
|
||||
"prompt_template": "title: none | text: ",
|
||||
},
|
||||
)
|
||||
builder.build_index("./indexes/my-docs", chunks)
|
||||
```
|
||||
|
||||
**References:**
|
||||
- [HuggingFace Blog: EmbeddingGemma](https://huggingface.co/blog/embeddinggemma) - Technical details
|
||||
|
||||
### LM Studio Auto-Detection (Optional)
|
||||
|
||||
When using LM Studio with the OpenAI-compatible API, LEANN can optionally auto-detect model context lengths via the LM Studio SDK. This eliminates manual configuration for token limits.
|
||||
|
||||
**Prerequisites:**
|
||||
```bash
|
||||
# Install Node.js (if not already installed)
|
||||
# Then install the LM Studio SDK globally
|
||||
npm install -g @lmstudio/sdk
|
||||
```
|
||||
|
||||
**How it works:**
|
||||
1. LEANN detects LM Studio URLs (`:1234`, `lmstudio` in URL)
|
||||
2. Queries model metadata via Node.js subprocess
|
||||
3. Automatically unloads model after query (respects your JIT auto-evict settings)
|
||||
4. Falls back to static registry if SDK unavailable
|
||||
|
||||
**No configuration needed** - it works automatically when SDK is installed:
|
||||
|
||||
```bash
|
||||
leann build my-docs \
|
||||
--docs ./documents \
|
||||
--embedding-mode openai \
|
||||
--embedding-model text-embedding-nomic-embed-text-v1.5 \
|
||||
--embedding-api-base http://localhost:1234/v1
|
||||
# Context length auto-detected if SDK available
|
||||
# Falls back to registry (2048) if not
|
||||
```
|
||||
|
||||
**Benefits:**
|
||||
- ✅ Automatic token limit detection
|
||||
- ✅ Respects LM Studio JIT auto-evict settings
|
||||
- ✅ No manual registry maintenance
|
||||
- ✅ Graceful fallback if SDK unavailable
|
||||
|
||||
**Note:** This is completely optional. LEANN works perfectly fine without the SDK using the built-in token limit registry.
|
||||
|
||||
## Index Selection: Matching Your Scale
|
||||
|
||||
### HNSW (Hierarchical Navigable Small World)
|
||||
@@ -454,7 +365,7 @@ leann search my-index "your query" \
|
||||
|
||||
### 2) Run remote builds with SkyPilot (cloud GPU)
|
||||
|
||||
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://docs.skypilot.co/en/latest/docs/index.html). A template is provided at `sky/leann-build.yaml`.
|
||||
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
|
||||
|
||||
```bash
|
||||
# One-time: install and configure SkyPilot
|
||||
|
||||
48
docs/faq.md
48
docs/faq.md
@@ -8,51 +8,3 @@ You can speed up the process by using a lightweight embedding model. Add this to
|
||||
--embedding-model sentence-transformers/all-MiniLM-L6-v2
|
||||
```
|
||||
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
|
||||
|
||||
## 2. When should I use prompt templates?
|
||||
|
||||
**Use prompt templates ONLY with task-specific embedding models** like Google's EmbeddingGemma. These models are specially trained to use different prompts for documents vs queries.
|
||||
|
||||
**DO NOT use with regular models** like `nomic-embed-text`, `text-embedding-3-small`, or `bge-base-en-v1.5` - adding prompts to these models will corrupt the embeddings.
|
||||
|
||||
**Example usage with EmbeddingGemma:**
|
||||
```bash
|
||||
# Build with document prompt
|
||||
leann build my-docs --embedding-prompt-template "title: none | text: "
|
||||
|
||||
# Search with query prompt
|
||||
leann search my-docs --query "your question" --embedding-prompt-template "task: search result | query: "
|
||||
```
|
||||
|
||||
See the [Configuration Guide: Task-Specific Prompt Templates](configuration-guide.md#task-specific-prompt-templates) for detailed usage.
|
||||
|
||||
## 3. Why is LM Studio loading multiple copies of my model?
|
||||
|
||||
This was fixed in recent versions. LEANN now properly unloads models after querying metadata, respecting your LM Studio JIT auto-evict settings.
|
||||
|
||||
**If you still see duplicates:**
|
||||
- Update to the latest LEANN version
|
||||
- Restart LM Studio to clear loaded models
|
||||
- Check that you have JIT auto-evict enabled in LM Studio settings
|
||||
|
||||
**How it works now:**
|
||||
1. LEANN loads model temporarily to get context length
|
||||
2. Immediately unloads after query
|
||||
3. LM Studio JIT loads model on-demand for actual embeddings
|
||||
4. Auto-evicts per your settings
|
||||
|
||||
## 4. Do I need Node.js and @lmstudio/sdk?
|
||||
|
||||
**No, it's completely optional.** LEANN works perfectly fine without them using a built-in token limit registry.
|
||||
|
||||
**Benefits if you install it:**
|
||||
- Automatic context length detection for LM Studio models
|
||||
- No manual registry maintenance
|
||||
- Always gets accurate token limits from the model itself
|
||||
|
||||
**To install (optional):**
|
||||
```bash
|
||||
npm install -g @lmstudio/sdk
|
||||
```
|
||||
|
||||
See [Configuration Guide: LM Studio Auto-Detection](configuration-guide.md#lm-studio-auto-detection-optional) for details.
|
||||
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.3.5"
|
||||
dependencies = ["leann-core==0.3.5", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.3.4"
|
||||
dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.3.5"
|
||||
version = "0.3.4"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.3.5",
|
||||
"leann-core==0.3.4",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
|
||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: e2d243c40d...5952745237
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.3.5"
|
||||
version = "0.3.4"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -916,7 +916,6 @@ class LeannSearcher:
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
use_grep: bool = False,
|
||||
provider_options: Optional[dict[str, Any]] = None,
|
||||
**kwargs,
|
||||
) -> list[SearchResult]:
|
||||
"""
|
||||
@@ -980,24 +979,10 @@ class LeannSearcher:
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Extract query template from stored embedding_options with fallback chain:
|
||||
# 1. Check provider_options override (highest priority)
|
||||
# 2. Check query_prompt_template (new format)
|
||||
# 3. Check prompt_template (old format for backward compat)
|
||||
# 4. None (no template)
|
||||
query_template = None
|
||||
if provider_options and "prompt_template" in provider_options:
|
||||
query_template = provider_options["prompt_template"]
|
||||
elif "query_prompt_template" in self.embedding_options:
|
||||
query_template = self.embedding_options["query_prompt_template"]
|
||||
elif "prompt_template" in self.embedding_options:
|
||||
query_template = self.embedding_options["prompt_template"]
|
||||
|
||||
query_embedding = self.backend_impl.compute_query_embedding(
|
||||
query,
|
||||
use_server_if_available=recompute_embeddings,
|
||||
zmq_port=zmq_port,
|
||||
query_template=query_template,
|
||||
)
|
||||
logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
embedding_time = time.time() - start_time
|
||||
@@ -1251,15 +1236,15 @@ class LeannChat:
|
||||
"Please provide the best answer you can based on this context and your knowledge."
|
||||
)
|
||||
|
||||
logger.info("The context provided to the LLM is:")
|
||||
logger.info(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
|
||||
logger.info("-" * 150)
|
||||
print("The context provided to the LLM is:")
|
||||
print(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
|
||||
print("-" * 150)
|
||||
for r in results:
|
||||
chunk_relevance = f"{r.score:.3f}"
|
||||
chunk_id = r.id
|
||||
chunk_content = r.text[:60]
|
||||
chunk_source = r.metadata.get("source", "")[:80]
|
||||
logger.info(
|
||||
print(
|
||||
f"{chunk_relevance:<10} | {chunk_id:<10} | {chunk_content:<60} | {chunk_source:<80}"
|
||||
)
|
||||
ask_time = time.time()
|
||||
|
||||
@@ -12,13 +12,7 @@ from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from .settings import (
|
||||
resolve_anthropic_api_key,
|
||||
resolve_anthropic_base_url,
|
||||
resolve_ollama_host,
|
||||
resolve_openai_api_key,
|
||||
resolve_openai_base_url,
|
||||
)
|
||||
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
@@ -851,81 +845,6 @@ class OpenAIChat(LLMInterface):
|
||||
return f"Error: Could not get a response from OpenAI. Details: {e}"
|
||||
|
||||
|
||||
class AnthropicChat(LLMInterface):
|
||||
"""LLM interface for Anthropic Claude models."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str = "claude-haiku-4-5",
|
||||
api_key: Optional[str] = None,
|
||||
base_url: Optional[str] = None,
|
||||
):
|
||||
self.model = model
|
||||
self.base_url = resolve_anthropic_base_url(base_url)
|
||||
self.api_key = resolve_anthropic_api_key(api_key)
|
||||
|
||||
if not self.api_key:
|
||||
raise ValueError(
|
||||
"Anthropic API key is required. Set ANTHROPIC_API_KEY environment variable or pass api_key parameter."
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Initializing Anthropic Chat with model='%s' and base_url='%s'",
|
||||
model,
|
||||
self.base_url,
|
||||
)
|
||||
|
||||
try:
|
||||
import anthropic
|
||||
|
||||
# Allow custom Anthropic-compatible endpoints via base_url
|
||||
self.client = anthropic.Anthropic(
|
||||
api_key=self.api_key,
|
||||
base_url=self.base_url,
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The 'anthropic' library is required for Anthropic models. Please install it with 'pip install anthropic'."
|
||||
)
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
logger.info(f"Sending request to Anthropic with model {self.model}")
|
||||
|
||||
try:
|
||||
# Anthropic API parameters
|
||||
params = {
|
||||
"model": self.model,
|
||||
"max_tokens": kwargs.get("max_tokens", 1000),
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
}
|
||||
|
||||
# Add optional parameters
|
||||
if "temperature" in kwargs:
|
||||
params["temperature"] = kwargs["temperature"]
|
||||
if "top_p" in kwargs:
|
||||
params["top_p"] = kwargs["top_p"]
|
||||
|
||||
response = self.client.messages.create(**params)
|
||||
|
||||
# Extract text from response
|
||||
response_text = response.content[0].text
|
||||
|
||||
# Log token usage
|
||||
print(
|
||||
f"Total tokens = {response.usage.input_tokens + response.usage.output_tokens}, "
|
||||
f"input tokens = {response.usage.input_tokens}, "
|
||||
f"output tokens = {response.usage.output_tokens}"
|
||||
)
|
||||
|
||||
if response.stop_reason == "max_tokens":
|
||||
print("The query is exceeding the maximum allowed number of tokens")
|
||||
|
||||
return response_text.strip()
|
||||
except Exception as e:
|
||||
logger.error(f"Error communicating with Anthropic: {e}")
|
||||
return f"Error: Could not get a response from Anthropic. Details: {e}"
|
||||
|
||||
|
||||
class SimulatedChat(LLMInterface):
|
||||
"""A simple simulated chat for testing and development."""
|
||||
|
||||
@@ -978,12 +897,6 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
|
||||
)
|
||||
elif llm_type == "gemini":
|
||||
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
|
||||
elif llm_type == "anthropic":
|
||||
return AnthropicChat(
|
||||
model=model or "claude-3-5-sonnet-20241022",
|
||||
api_key=llm_config.get("api_key"),
|
||||
base_url=llm_config.get("base_url"),
|
||||
)
|
||||
elif llm_type == "simulated":
|
||||
return SimulatedChat()
|
||||
else:
|
||||
|
||||
@@ -5,15 +5,12 @@ Packaged within leann-core so installed wheels can import it reliably.
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Optional
|
||||
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Flag to ensure AST token warning only shown once per session
|
||||
_ast_token_warning_shown = False
|
||||
|
||||
|
||||
def estimate_token_count(text: str) -> int:
|
||||
"""
|
||||
@@ -177,44 +174,37 @@ def create_ast_chunks(
|
||||
max_chunk_size: int = 512,
|
||||
chunk_overlap: int = 64,
|
||||
metadata_template: str = "default",
|
||||
) -> list[dict[str, Any]]:
|
||||
) -> list[str]:
|
||||
"""Create AST-aware chunks from code documents using astchunk.
|
||||
|
||||
Falls back to traditional chunking if astchunk is unavailable.
|
||||
|
||||
Returns:
|
||||
List of dicts with {"text": str, "metadata": dict}
|
||||
"""
|
||||
try:
|
||||
from astchunk import ASTChunkBuilder # optional dependency
|
||||
except ImportError as e:
|
||||
logger.error(f"astchunk not available: {e}")
|
||||
logger.info("Falling back to traditional chunking for code files")
|
||||
return _traditional_chunks_as_dicts(documents, max_chunk_size, chunk_overlap)
|
||||
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
|
||||
|
||||
all_chunks = []
|
||||
for doc in documents:
|
||||
language = doc.metadata.get("language")
|
||||
if not language:
|
||||
logger.warning("No language detected; falling back to traditional chunking")
|
||||
all_chunks.extend(_traditional_chunks_as_dicts([doc], max_chunk_size, chunk_overlap))
|
||||
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||
continue
|
||||
|
||||
try:
|
||||
# Warn once if AST chunk size + overlap might exceed common token limits
|
||||
# Note: Actual truncation happens at embedding time with dynamic model limits
|
||||
global _ast_token_warning_shown
|
||||
# Warn if AST chunk size + overlap might exceed common token limits
|
||||
estimated_max_tokens = int(
|
||||
(max_chunk_size + chunk_overlap) * 1.2
|
||||
) # Conservative estimate
|
||||
if estimated_max_tokens > 512 and not _ast_token_warning_shown:
|
||||
if estimated_max_tokens > 512:
|
||||
logger.warning(
|
||||
f"AST chunk size ({max_chunk_size}) + overlap ({chunk_overlap}) = {max_chunk_size + chunk_overlap} chars "
|
||||
f"may exceed 512 token limit (~{estimated_max_tokens} tokens estimated). "
|
||||
f"Consider reducing --ast-chunk-size to {int(400 / 1.2)} or --ast-chunk-overlap to {int(50 / 1.2)}. "
|
||||
f"Note: Chunks will be auto-truncated at embedding time based on your model's actual token limit."
|
||||
f"Consider reducing --ast-chunk-size to {int(400 / 1.2)} or --ast-chunk-overlap to {int(50 / 1.2)}"
|
||||
)
|
||||
_ast_token_warning_shown = True
|
||||
|
||||
configs = {
|
||||
"max_chunk_size": max_chunk_size,
|
||||
@@ -239,40 +229,17 @@ def create_ast_chunks(
|
||||
|
||||
chunks = chunk_builder.chunkify(code_content)
|
||||
for chunk in chunks:
|
||||
chunk_text = None
|
||||
astchunk_metadata = {}
|
||||
|
||||
if hasattr(chunk, "text"):
|
||||
chunk_text = chunk.text
|
||||
elif isinstance(chunk, dict) and "text" in chunk:
|
||||
chunk_text = chunk["text"]
|
||||
elif isinstance(chunk, str):
|
||||
chunk_text = chunk
|
||||
elif isinstance(chunk, dict):
|
||||
# Handle astchunk format: {"content": "...", "metadata": {...}}
|
||||
if "content" in chunk:
|
||||
chunk_text = chunk["content"]
|
||||
astchunk_metadata = chunk.get("metadata", {})
|
||||
elif "text" in chunk:
|
||||
chunk_text = chunk["text"]
|
||||
else:
|
||||
chunk_text = str(chunk) # Last resort
|
||||
else:
|
||||
chunk_text = str(chunk)
|
||||
|
||||
if chunk_text and chunk_text.strip():
|
||||
# Extract document-level metadata
|
||||
doc_metadata = {
|
||||
"file_path": doc.metadata.get("file_path", ""),
|
||||
"file_name": doc.metadata.get("file_name", ""),
|
||||
}
|
||||
if "creation_date" in doc.metadata:
|
||||
doc_metadata["creation_date"] = doc.metadata["creation_date"]
|
||||
if "last_modified_date" in doc.metadata:
|
||||
doc_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
|
||||
|
||||
# Merge document metadata + astchunk metadata
|
||||
combined_metadata = {**doc_metadata, **astchunk_metadata}
|
||||
|
||||
all_chunks.append({"text": chunk_text.strip(), "metadata": combined_metadata})
|
||||
all_chunks.append(chunk_text.strip())
|
||||
|
||||
logger.info(
|
||||
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
|
||||
@@ -280,19 +247,15 @@ def create_ast_chunks(
|
||||
except Exception as e:
|
||||
logger.warning(f"AST chunking failed for {language} file: {e}")
|
||||
logger.info("Falling back to traditional chunking")
|
||||
all_chunks.extend(_traditional_chunks_as_dicts([doc], max_chunk_size, chunk_overlap))
|
||||
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||
|
||||
return all_chunks
|
||||
|
||||
|
||||
def create_traditional_chunks(
|
||||
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Create traditional text chunks using LlamaIndex SentenceSplitter.
|
||||
|
||||
Returns:
|
||||
List of dicts with {"text": str, "metadata": dict}
|
||||
"""
|
||||
) -> list[str]:
|
||||
"""Create traditional text chunks using LlamaIndex SentenceSplitter."""
|
||||
if chunk_size <= 0:
|
||||
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
|
||||
chunk_size = 256
|
||||
@@ -308,40 +271,19 @@ def create_traditional_chunks(
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
|
||||
result = []
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
# Extract document-level metadata
|
||||
doc_metadata = {
|
||||
"file_path": doc.metadata.get("file_path", ""),
|
||||
"file_name": doc.metadata.get("file_name", ""),
|
||||
}
|
||||
if "creation_date" in doc.metadata:
|
||||
doc_metadata["creation_date"] = doc.metadata["creation_date"]
|
||||
if "last_modified_date" in doc.metadata:
|
||||
doc_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
|
||||
|
||||
try:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
if nodes:
|
||||
for node in nodes:
|
||||
result.append({"text": node.get_content(), "metadata": doc_metadata})
|
||||
all_texts.extend(node.get_content() for node in nodes)
|
||||
except Exception as e:
|
||||
logger.error(f"Traditional chunking failed for document: {e}")
|
||||
content = doc.get_content()
|
||||
if content and content.strip():
|
||||
result.append({"text": content.strip(), "metadata": doc_metadata})
|
||||
all_texts.append(content.strip())
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def _traditional_chunks_as_dicts(
|
||||
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Helper: Traditional chunking that returns dict format for consistency.
|
||||
|
||||
This is now just an alias for create_traditional_chunks for backwards compatibility.
|
||||
"""
|
||||
return create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||
return all_texts
|
||||
|
||||
|
||||
def create_text_chunks(
|
||||
@@ -353,12 +295,8 @@ def create_text_chunks(
|
||||
ast_chunk_overlap: int = 64,
|
||||
code_file_extensions: Optional[list[str]] = None,
|
||||
ast_fallback_traditional: bool = True,
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Create text chunks from documents with optional AST support for code files.
|
||||
|
||||
Returns:
|
||||
List of dicts with {"text": str, "metadata": dict}
|
||||
"""
|
||||
) -> list[str]:
|
||||
"""Create text chunks from documents with optional AST support for code files."""
|
||||
if not documents:
|
||||
logger.warning("No documents provided for chunking")
|
||||
return []
|
||||
@@ -393,17 +331,24 @@ def create_text_chunks(
|
||||
logger.error(f"AST chunking failed: {e}")
|
||||
if ast_fallback_traditional:
|
||||
all_chunks.extend(
|
||||
_traditional_chunks_as_dicts(code_docs, chunk_size, chunk_overlap)
|
||||
create_traditional_chunks(code_docs, chunk_size, chunk_overlap)
|
||||
)
|
||||
else:
|
||||
raise
|
||||
if text_docs:
|
||||
all_chunks.extend(_traditional_chunks_as_dicts(text_docs, chunk_size, chunk_overlap))
|
||||
all_chunks.extend(create_traditional_chunks(text_docs, chunk_size, chunk_overlap))
|
||||
else:
|
||||
all_chunks = _traditional_chunks_as_dicts(documents, chunk_size, chunk_overlap)
|
||||
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||
|
||||
logger.info(f"Total chunks created: {len(all_chunks)}")
|
||||
|
||||
# Note: Token truncation is now handled at embedding time with dynamic model limits
|
||||
# See get_model_token_limit() and truncate_to_token_limit() in embedding_compute.py
|
||||
return all_chunks
|
||||
# Validate chunk token limits (default to 512 for safety)
|
||||
# This provides a safety net for embedding models with token limits
|
||||
validated_chunks, num_truncated = validate_chunk_token_limits(all_chunks, max_tokens=512)
|
||||
|
||||
if num_truncated > 0:
|
||||
logger.info(
|
||||
f"Post-chunking validation: {num_truncated} chunks were truncated to fit 512 token limit"
|
||||
)
|
||||
|
||||
return validated_chunks
|
||||
|
||||
@@ -11,12 +11,7 @@ from tqdm import tqdm
|
||||
from .api import LeannBuilder, LeannChat, LeannSearcher
|
||||
from .interactive_utils import create_cli_session
|
||||
from .registry import register_project_directory
|
||||
from .settings import (
|
||||
resolve_anthropic_base_url,
|
||||
resolve_ollama_host,
|
||||
resolve_openai_api_key,
|
||||
resolve_openai_base_url,
|
||||
)
|
||||
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||
|
||||
|
||||
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
|
||||
@@ -149,18 +144,6 @@ Examples:
|
||||
default=None,
|
||||
help="API key for embedding service (defaults to OPENAI_API_KEY)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--embedding-prompt-template",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Prompt template to prepend to all texts for embedding (e.g., 'query: ' for search)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--query-prompt-template",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Prompt template for queries (different from build template for task-specific models)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--force", "-f", action="store_true", help="Force rebuild existing index"
|
||||
)
|
||||
@@ -277,12 +260,6 @@ Examples:
|
||||
action="store_true",
|
||||
help="Display file paths and metadata in search results",
|
||||
)
|
||||
search_parser.add_argument(
|
||||
"--embedding-prompt-template",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Prompt template to prepend to query for embedding (e.g., 'query: ' for search)",
|
||||
)
|
||||
|
||||
# Ask command
|
||||
ask_parser = subparsers.add_parser("ask", help="Ask questions")
|
||||
@@ -296,7 +273,7 @@ Examples:
|
||||
"--llm",
|
||||
type=str,
|
||||
default="ollama",
|
||||
choices=["simulated", "ollama", "hf", "openai", "anthropic"],
|
||||
choices=["simulated", "ollama", "hf", "openai"],
|
||||
help="LLM provider (default: ollama)",
|
||||
)
|
||||
ask_parser.add_argument(
|
||||
@@ -346,7 +323,7 @@ Examples:
|
||||
"--api-key",
|
||||
type=str,
|
||||
default=None,
|
||||
help="API key for cloud LLM providers (OpenAI, Anthropic)",
|
||||
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
|
||||
)
|
||||
|
||||
# List command
|
||||
@@ -1311,8 +1288,13 @@ Examples:
|
||||
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||
)
|
||||
|
||||
# create_text_chunks now returns list[dict] with metadata preserved
|
||||
all_texts.extend(chunk_texts)
|
||||
# Note: AST chunking currently returns plain text chunks without metadata
|
||||
# We preserve basic file info by associating chunks with their source documents
|
||||
# For better metadata preservation, documents list order should be maintained
|
||||
for chunk_text in chunk_texts:
|
||||
# TODO: Enhance create_text_chunks to return metadata alongside text
|
||||
# For now, we store chunks with empty metadata
|
||||
all_texts.append({"text": chunk_text, "metadata": {}})
|
||||
|
||||
except ImportError as e:
|
||||
print(
|
||||
@@ -1430,14 +1412,6 @@ Examples:
|
||||
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
|
||||
if resolved_embedding_key:
|
||||
embedding_options["api_key"] = resolved_embedding_key
|
||||
if args.query_prompt_template:
|
||||
# New format: separate templates
|
||||
if args.embedding_prompt_template:
|
||||
embedding_options["build_prompt_template"] = args.embedding_prompt_template
|
||||
embedding_options["query_prompt_template"] = args.query_prompt_template
|
||||
elif args.embedding_prompt_template:
|
||||
# Old format: single template (backward compat)
|
||||
embedding_options["prompt_template"] = args.embedding_prompt_template
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=args.backend_name,
|
||||
@@ -1559,11 +1533,6 @@ Examples:
|
||||
print("Invalid input. Aborting search.")
|
||||
return
|
||||
|
||||
# Build provider_options for runtime override
|
||||
provider_options = {}
|
||||
if args.embedding_prompt_template:
|
||||
provider_options["prompt_template"] = args.embedding_prompt_template
|
||||
|
||||
searcher = LeannSearcher(index_path=index_path)
|
||||
results = searcher.search(
|
||||
query,
|
||||
@@ -1573,7 +1542,6 @@ Examples:
|
||||
prune_ratio=args.prune_ratio,
|
||||
recompute_embeddings=args.recompute_embeddings,
|
||||
pruning_strategy=args.pruning_strategy,
|
||||
provider_options=provider_options if provider_options else None,
|
||||
)
|
||||
|
||||
print(f"Search results for '{query}' (top {len(results)}):")
|
||||
@@ -1621,12 +1589,6 @@ Examples:
|
||||
resolved_api_key = resolve_openai_api_key(args.api_key)
|
||||
if resolved_api_key:
|
||||
llm_config["api_key"] = resolved_api_key
|
||||
elif args.llm == "anthropic":
|
||||
# For Anthropic, pass base_url and API key if provided
|
||||
if args.api_base:
|
||||
llm_config["base_url"] = resolve_anthropic_base_url(args.api_base)
|
||||
if args.api_key:
|
||||
llm_config["api_key"] = args.api_key
|
||||
|
||||
chat = LeannChat(index_path=index_path, llm_config=llm_config)
|
||||
|
||||
|
||||
@@ -4,310 +4,119 @@ Consolidates all embedding computation logic using SentenceTransformer
|
||||
Preserves all optimization parameters to ensure performance
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
import torch
|
||||
|
||||
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||
|
||||
|
||||
def truncate_to_token_limit(texts: list[str], max_tokens: int = 512) -> list[str]:
|
||||
"""
|
||||
Truncate texts to token limit using tiktoken or conservative character truncation.
|
||||
|
||||
Args:
|
||||
texts: List of texts to truncate
|
||||
max_tokens: Maximum tokens allowed per text
|
||||
|
||||
Returns:
|
||||
List of truncated texts that should fit within token limit
|
||||
"""
|
||||
try:
|
||||
import tiktoken
|
||||
|
||||
encoder = tiktoken.get_encoding("cl100k_base")
|
||||
truncated = []
|
||||
|
||||
for text in texts:
|
||||
tokens = encoder.encode(text)
|
||||
if len(tokens) > max_tokens:
|
||||
# Truncate to max_tokens and decode back to text
|
||||
truncated_tokens = tokens[:max_tokens]
|
||||
truncated_text = encoder.decode(truncated_tokens)
|
||||
truncated.append(truncated_text)
|
||||
logger.warning(
|
||||
f"Truncated text from {len(tokens)} to {max_tokens} tokens "
|
||||
f"(from {len(text)} to {len(truncated_text)} characters)"
|
||||
)
|
||||
else:
|
||||
truncated.append(text)
|
||||
return truncated
|
||||
|
||||
except ImportError:
|
||||
# Fallback: Conservative character truncation
|
||||
# Assume worst case: 1.5 tokens per character for code content
|
||||
char_limit = int(max_tokens / 1.5)
|
||||
truncated = []
|
||||
|
||||
for text in texts:
|
||||
if len(text) > char_limit:
|
||||
truncated_text = text[:char_limit]
|
||||
truncated.append(truncated_text)
|
||||
logger.warning(
|
||||
f"Truncated text from {len(text)} to {char_limit} characters "
|
||||
f"(conservative estimate for {max_tokens} tokens)"
|
||||
)
|
||||
else:
|
||||
truncated.append(text)
|
||||
return truncated
|
||||
|
||||
|
||||
def get_model_token_limit(model_name: str) -> int:
|
||||
"""
|
||||
Get token limit for a given embedding model.
|
||||
|
||||
Args:
|
||||
model_name: Name of the embedding model
|
||||
|
||||
Returns:
|
||||
Token limit for the model, defaults to 512 if unknown
|
||||
"""
|
||||
# Handle versioned model names (e.g., "nomic-embed-text:latest" -> "nomic-embed-text")
|
||||
base_model_name = model_name.split(":")[0]
|
||||
|
||||
# Check exact match first
|
||||
if model_name in EMBEDDING_MODEL_LIMITS:
|
||||
return EMBEDDING_MODEL_LIMITS[model_name]
|
||||
|
||||
# Check base name match
|
||||
if base_model_name in EMBEDDING_MODEL_LIMITS:
|
||||
return EMBEDDING_MODEL_LIMITS[base_model_name]
|
||||
|
||||
# Check partial matches for common patterns
|
||||
for known_model, limit in EMBEDDING_MODEL_LIMITS.items():
|
||||
if known_model in base_model_name or base_model_name in known_model:
|
||||
return limit
|
||||
|
||||
# Default to conservative 512 token limit
|
||||
logger.warning(f"Unknown model '{model_name}', using default 512 token limit")
|
||||
return 512
|
||||
|
||||
|
||||
# Set up logger with proper level
|
||||
logger = logging.getLogger(__name__)
|
||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||
logger.setLevel(log_level)
|
||||
|
||||
# Token limit registry for embedding models
|
||||
# Used as fallback when dynamic discovery fails (e.g., LM Studio, OpenAI)
|
||||
# Ollama models use dynamic discovery via /api/show
|
||||
# Global model cache to avoid repeated loading
|
||||
_model_cache: dict[str, Any] = {}
|
||||
|
||||
# Known embedding model token limits
|
||||
EMBEDDING_MODEL_LIMITS = {
|
||||
# Nomic models (common across servers)
|
||||
"nomic-embed-text": 2048, # Corrected from 512 - verified via /api/show
|
||||
"nomic-embed-text-v1.5": 2048,
|
||||
"nomic-embed-text": 512,
|
||||
"nomic-embed-text-v2": 512,
|
||||
# Other embedding models
|
||||
"mxbai-embed-large": 512,
|
||||
"all-minilm": 512,
|
||||
"bge-m3": 8192,
|
||||
"snowflake-arctic-embed": 512,
|
||||
# OpenAI models
|
||||
"text-embedding-3-small": 8192,
|
||||
"text-embedding-3-large": 8192,
|
||||
"text-embedding-ada-002": 8192,
|
||||
# Add more models as needed
|
||||
}
|
||||
|
||||
# Runtime cache for dynamically discovered token limits
|
||||
# Key: (model_name, base_url), Value: token_limit
|
||||
# Prevents repeated SDK/API calls for the same model
|
||||
_token_limit_cache: dict[tuple[str, str], int] = {}
|
||||
|
||||
|
||||
def get_model_token_limit(
|
||||
model_name: str,
|
||||
base_url: Optional[str] = None,
|
||||
default: int = 2048,
|
||||
) -> int:
|
||||
"""
|
||||
Get token limit for a given embedding model.
|
||||
Uses hybrid approach: dynamic discovery for Ollama, registry fallback for others.
|
||||
Caches discovered limits to prevent repeated API/SDK calls.
|
||||
|
||||
Args:
|
||||
model_name: Name of the embedding model
|
||||
base_url: Base URL of the embedding server (for dynamic discovery)
|
||||
default: Default token limit if model not found
|
||||
|
||||
Returns:
|
||||
Token limit for the model in tokens
|
||||
"""
|
||||
# Check cache first to avoid repeated SDK/API calls
|
||||
cache_key = (model_name, base_url or "")
|
||||
if cache_key in _token_limit_cache:
|
||||
cached_limit = _token_limit_cache[cache_key]
|
||||
logger.debug(f"Using cached token limit for {model_name}: {cached_limit}")
|
||||
return cached_limit
|
||||
|
||||
# Try Ollama dynamic discovery if base_url provided
|
||||
if base_url:
|
||||
# Detect Ollama servers by port or "ollama" in URL
|
||||
if "11434" in base_url or "ollama" in base_url.lower():
|
||||
limit = _query_ollama_context_limit(model_name, base_url)
|
||||
if limit:
|
||||
_token_limit_cache[cache_key] = limit
|
||||
return limit
|
||||
|
||||
# Try LM Studio SDK discovery
|
||||
if "1234" in base_url or "lmstudio" in base_url.lower() or "lm.studio" in base_url.lower():
|
||||
# Convert HTTP to WebSocket URL
|
||||
ws_url = base_url.replace("https://", "wss://").replace("http://", "ws://")
|
||||
# Remove /v1 suffix if present
|
||||
if ws_url.endswith("/v1"):
|
||||
ws_url = ws_url[:-3]
|
||||
|
||||
limit = _query_lmstudio_context_limit(model_name, ws_url)
|
||||
if limit:
|
||||
_token_limit_cache[cache_key] = limit
|
||||
return limit
|
||||
|
||||
# Fallback to known model registry with version handling (from PR #154)
|
||||
# Handle versioned model names (e.g., "nomic-embed-text:latest" -> "nomic-embed-text")
|
||||
base_model_name = model_name.split(":")[0]
|
||||
|
||||
# Check exact match first
|
||||
if model_name in EMBEDDING_MODEL_LIMITS:
|
||||
limit = EMBEDDING_MODEL_LIMITS[model_name]
|
||||
_token_limit_cache[cache_key] = limit
|
||||
return limit
|
||||
|
||||
# Check base name match
|
||||
if base_model_name in EMBEDDING_MODEL_LIMITS:
|
||||
limit = EMBEDDING_MODEL_LIMITS[base_model_name]
|
||||
_token_limit_cache[cache_key] = limit
|
||||
return limit
|
||||
|
||||
# Check partial matches for common patterns
|
||||
for known_model, registry_limit in EMBEDDING_MODEL_LIMITS.items():
|
||||
if known_model in base_model_name or base_model_name in known_model:
|
||||
_token_limit_cache[cache_key] = registry_limit
|
||||
return registry_limit
|
||||
|
||||
# Default fallback
|
||||
logger.warning(f"Unknown model '{model_name}', using default {default} token limit")
|
||||
_token_limit_cache[cache_key] = default
|
||||
return default
|
||||
|
||||
|
||||
def truncate_to_token_limit(texts: list[str], token_limit: int) -> list[str]:
|
||||
"""
|
||||
Truncate texts to fit within token limit using tiktoken.
|
||||
|
||||
Args:
|
||||
texts: List of text strings to truncate
|
||||
token_limit: Maximum number of tokens allowed
|
||||
|
||||
Returns:
|
||||
List of truncated texts (same length as input)
|
||||
"""
|
||||
if not texts:
|
||||
return []
|
||||
|
||||
# Use tiktoken with cl100k_base encoding
|
||||
enc = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
truncated_texts = []
|
||||
truncation_count = 0
|
||||
total_tokens_removed = 0
|
||||
max_original_length = 0
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
tokens = enc.encode(text)
|
||||
original_length = len(tokens)
|
||||
|
||||
if original_length <= token_limit:
|
||||
# Text is within limit, keep as is
|
||||
truncated_texts.append(text)
|
||||
else:
|
||||
# Truncate to token_limit
|
||||
truncated_tokens = tokens[:token_limit]
|
||||
truncated_text = enc.decode(truncated_tokens)
|
||||
truncated_texts.append(truncated_text)
|
||||
|
||||
# Track truncation statistics
|
||||
truncation_count += 1
|
||||
tokens_removed = original_length - token_limit
|
||||
total_tokens_removed += tokens_removed
|
||||
max_original_length = max(max_original_length, original_length)
|
||||
|
||||
# Log individual truncation at WARNING level (first few only)
|
||||
if truncation_count <= 3:
|
||||
logger.warning(
|
||||
f"Text {i + 1} truncated: {original_length} → {token_limit} tokens "
|
||||
f"({tokens_removed} tokens removed)"
|
||||
)
|
||||
elif truncation_count == 4:
|
||||
logger.warning("Further truncation warnings suppressed...")
|
||||
|
||||
# Log summary at INFO level
|
||||
if truncation_count > 0:
|
||||
logger.warning(
|
||||
f"Truncation summary: {truncation_count}/{len(texts)} texts truncated "
|
||||
f"(removed {total_tokens_removed} tokens total, longest was {max_original_length} tokens)"
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"No truncation needed - all {len(texts)} texts within {token_limit} token limit"
|
||||
)
|
||||
|
||||
return truncated_texts
|
||||
|
||||
|
||||
def _query_ollama_context_limit(model_name: str, base_url: str) -> Optional[int]:
|
||||
"""
|
||||
Query Ollama /api/show for model context limit.
|
||||
|
||||
Args:
|
||||
model_name: Name of the Ollama model
|
||||
base_url: Base URL of the Ollama server
|
||||
|
||||
Returns:
|
||||
Context limit in tokens if found, None otherwise
|
||||
"""
|
||||
try:
|
||||
import requests
|
||||
|
||||
response = requests.post(
|
||||
f"{base_url}/api/show",
|
||||
json={"name": model_name},
|
||||
timeout=5,
|
||||
)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
if "model_info" in data:
|
||||
# Look for *.context_length in model_info
|
||||
for key, value in data["model_info"].items():
|
||||
if "context_length" in key and isinstance(value, int):
|
||||
logger.info(f"Detected {model_name} context limit: {value} tokens")
|
||||
return value
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to query Ollama context limit: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _query_lmstudio_context_limit(model_name: str, base_url: str) -> Optional[int]:
|
||||
"""
|
||||
Query LM Studio SDK for model context length via Node.js subprocess.
|
||||
|
||||
Args:
|
||||
model_name: Name of the LM Studio model
|
||||
base_url: Base URL of the LM Studio server (WebSocket format, e.g., "ws://localhost:1234")
|
||||
|
||||
Returns:
|
||||
Context limit in tokens if found, None otherwise
|
||||
"""
|
||||
# Inline JavaScript using @lmstudio/sdk
|
||||
# Note: Load model temporarily for metadata, then unload to respect JIT auto-evict
|
||||
js_code = f"""
|
||||
const {{ LMStudioClient }} = require('@lmstudio/sdk');
|
||||
(async () => {{
|
||||
try {{
|
||||
const client = new LMStudioClient({{ baseUrl: '{base_url}' }});
|
||||
const model = await client.embedding.load('{model_name}', {{ verbose: false }});
|
||||
const contextLength = await model.getContextLength();
|
||||
await model.unload(); // Unload immediately to respect JIT auto-evict settings
|
||||
console.log(JSON.stringify({{ contextLength, identifier: '{model_name}' }}));
|
||||
}} catch (error) {{
|
||||
console.error(JSON.stringify({{ error: error.message }}));
|
||||
process.exit(1);
|
||||
}}
|
||||
}})();
|
||||
"""
|
||||
|
||||
try:
|
||||
# Set NODE_PATH to include global modules for @lmstudio/sdk resolution
|
||||
env = os.environ.copy()
|
||||
|
||||
# Try to get npm global root (works with nvm, brew node, etc.)
|
||||
try:
|
||||
npm_root = subprocess.run(
|
||||
["npm", "root", "-g"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=5,
|
||||
)
|
||||
if npm_root.returncode == 0:
|
||||
global_modules = npm_root.stdout.strip()
|
||||
# Append to existing NODE_PATH if present
|
||||
existing_node_path = env.get("NODE_PATH", "")
|
||||
env["NODE_PATH"] = (
|
||||
f"{global_modules}:{existing_node_path}"
|
||||
if existing_node_path
|
||||
else global_modules
|
||||
)
|
||||
except Exception:
|
||||
# If npm not available, continue with existing NODE_PATH
|
||||
pass
|
||||
|
||||
result = subprocess.run(
|
||||
["node", "-e", js_code],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=10,
|
||||
env=env,
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
logger.debug(f"LM Studio SDK error: {result.stderr}")
|
||||
return None
|
||||
|
||||
data = json.loads(result.stdout)
|
||||
context_length = data.get("contextLength")
|
||||
|
||||
if context_length and context_length > 0:
|
||||
logger.info(f"LM Studio SDK detected {model_name} context length: {context_length}")
|
||||
return context_length
|
||||
|
||||
except FileNotFoundError:
|
||||
logger.debug("Node.js not found - install Node.js for LM Studio SDK features")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.debug("LM Studio SDK query timeout")
|
||||
except json.JSONDecodeError:
|
||||
logger.debug("LM Studio SDK returned invalid JSON")
|
||||
except Exception as e:
|
||||
logger.debug(f"LM Studio SDK query failed: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
# Global model cache to avoid repeated loading
|
||||
_model_cache: dict[str, Any] = {}
|
||||
|
||||
|
||||
def compute_embeddings(
|
||||
texts: list[str],
|
||||
@@ -352,7 +161,6 @@ def compute_embeddings(
|
||||
model_name,
|
||||
base_url=provider_options.get("base_url"),
|
||||
api_key=provider_options.get("api_key"),
|
||||
provider_options=provider_options,
|
||||
)
|
||||
elif mode == "mlx":
|
||||
return compute_embeddings_mlx(texts, model_name)
|
||||
@@ -362,7 +170,6 @@ def compute_embeddings(
|
||||
model_name,
|
||||
is_build=is_build,
|
||||
host=provider_options.get("host"),
|
||||
provider_options=provider_options,
|
||||
)
|
||||
elif mode == "gemini":
|
||||
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
|
||||
@@ -701,7 +508,6 @@ def compute_embeddings_openai(
|
||||
model_name: str,
|
||||
base_url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
provider_options: Optional[dict[str, Any]] = None,
|
||||
) -> np.ndarray:
|
||||
# TODO: @yichuan-w add progress bar only in build mode
|
||||
"""Compute embeddings using OpenAI API"""
|
||||
@@ -720,40 +526,26 @@ def compute_embeddings_openai(
|
||||
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
|
||||
)
|
||||
|
||||
# Extract base_url and api_key from provider_options if not provided directly
|
||||
provider_options = provider_options or {}
|
||||
effective_base_url = base_url or provider_options.get("base_url")
|
||||
effective_api_key = api_key or provider_options.get("api_key")
|
||||
|
||||
resolved_base_url = resolve_openai_base_url(effective_base_url)
|
||||
resolved_api_key = resolve_openai_api_key(effective_api_key)
|
||||
resolved_base_url = resolve_openai_base_url(base_url)
|
||||
resolved_api_key = resolve_openai_api_key(api_key)
|
||||
|
||||
if not resolved_api_key:
|
||||
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
||||
|
||||
# Create OpenAI client
|
||||
client = openai.OpenAI(api_key=resolved_api_key, base_url=resolved_base_url)
|
||||
# Cache OpenAI client
|
||||
cache_key = f"openai_client::{resolved_base_url}"
|
||||
if cache_key in _model_cache:
|
||||
client = _model_cache[cache_key]
|
||||
else:
|
||||
client = openai.OpenAI(api_key=resolved_api_key, base_url=resolved_base_url)
|
||||
_model_cache[cache_key] = client
|
||||
logger.info("OpenAI client cached")
|
||||
|
||||
logger.info(
|
||||
f"Computing embeddings for {len(texts)} texts using OpenAI API, model: '{model_name}'"
|
||||
)
|
||||
print(f"len of texts: {len(texts)}")
|
||||
|
||||
# Apply prompt template if provided
|
||||
# Priority: build_prompt_template (new format) > prompt_template (old format)
|
||||
prompt_template = provider_options.get("build_prompt_template") or provider_options.get(
|
||||
"prompt_template"
|
||||
)
|
||||
|
||||
if prompt_template:
|
||||
logger.warning(f"Applying prompt template: '{prompt_template}'")
|
||||
texts = [f"{prompt_template}{text}" for text in texts]
|
||||
|
||||
# Query token limit and apply truncation
|
||||
token_limit = get_model_token_limit(model_name, base_url=effective_base_url)
|
||||
logger.info(f"Using token limit: {token_limit} for model '{model_name}'")
|
||||
texts = truncate_to_token_limit(texts, token_limit)
|
||||
|
||||
# OpenAI has limits on batch size and input length
|
||||
max_batch_size = 800 # Conservative batch size because the token limit is 300K
|
||||
all_embeddings = []
|
||||
@@ -784,15 +576,7 @@ def compute_embeddings_openai(
|
||||
try:
|
||||
response = client.embeddings.create(model=model_name, input=batch_texts)
|
||||
batch_embeddings = [embedding.embedding for embedding in response.data]
|
||||
|
||||
# Verify we got the expected number of embeddings
|
||||
if len(batch_embeddings) != len(batch_texts):
|
||||
logger.warning(
|
||||
f"Expected {len(batch_texts)} embeddings but got {len(batch_embeddings)}"
|
||||
)
|
||||
|
||||
# Only take the number of embeddings that match the batch size
|
||||
all_embeddings.extend(batch_embeddings[: len(batch_texts)])
|
||||
all_embeddings.extend(batch_embeddings)
|
||||
except Exception as e:
|
||||
logger.error(f"Batch {i} failed: {e}")
|
||||
raise
|
||||
@@ -882,7 +666,6 @@ def compute_embeddings_ollama(
|
||||
model_name: str,
|
||||
is_build: bool = False,
|
||||
host: Optional[str] = None,
|
||||
provider_options: Optional[dict[str, Any]] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using Ollama API with true batch processing.
|
||||
@@ -895,7 +678,6 @@ def compute_embeddings_ollama(
|
||||
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
host: Ollama host URL (defaults to environment or http://localhost:11434)
|
||||
provider_options: Optional provider-specific options (e.g., prompt_template)
|
||||
|
||||
Returns:
|
||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||
@@ -1032,24 +814,15 @@ def compute_embeddings_ollama(
|
||||
|
||||
logger.info(f"Using batch size: {batch_size} for true batch processing")
|
||||
|
||||
# Apply prompt template if provided
|
||||
provider_options = provider_options or {}
|
||||
# Priority: build_prompt_template (new format) > prompt_template (old format)
|
||||
prompt_template = provider_options.get("build_prompt_template") or provider_options.get(
|
||||
"prompt_template"
|
||||
)
|
||||
|
||||
if prompt_template:
|
||||
logger.warning(f"Applying prompt template: '{prompt_template}'")
|
||||
texts = [f"{prompt_template}{text}" for text in texts]
|
||||
|
||||
# Get model token limit and apply truncation before batching
|
||||
token_limit = get_model_token_limit(model_name, base_url=resolved_host)
|
||||
# Get model token limit and apply truncation
|
||||
token_limit = get_model_token_limit(model_name)
|
||||
logger.info(f"Model '{model_name}' token limit: {token_limit}")
|
||||
|
||||
# Apply truncation to all texts before batch processing
|
||||
# Function logs truncation details internally
|
||||
texts = truncate_to_token_limit(texts, token_limit)
|
||||
# Apply token-aware truncation to all texts
|
||||
truncated_texts = truncate_to_token_limit(texts, token_limit)
|
||||
if len(truncated_texts) != len(texts):
|
||||
logger.error("Truncation failed - text count mismatch")
|
||||
truncated_texts = texts # Fallback to original texts
|
||||
|
||||
def get_batch_embeddings(batch_texts):
|
||||
"""Get embeddings for a batch of texts using /api/embed endpoint."""
|
||||
@@ -1107,12 +880,12 @@ def compute_embeddings_ollama(
|
||||
|
||||
return None, list(range(len(batch_texts)))
|
||||
|
||||
# Process texts in batches
|
||||
# Process truncated texts in batches
|
||||
all_embeddings = []
|
||||
all_failed_indices = []
|
||||
|
||||
# Setup progress bar if needed
|
||||
show_progress = is_build or len(texts) > 10
|
||||
show_progress = is_build or len(truncated_texts) > 10
|
||||
try:
|
||||
if show_progress:
|
||||
from tqdm import tqdm
|
||||
@@ -1120,7 +893,7 @@ def compute_embeddings_ollama(
|
||||
show_progress = False
|
||||
|
||||
# Process batches
|
||||
num_batches = (len(texts) + batch_size - 1) // batch_size
|
||||
num_batches = (len(truncated_texts) + batch_size - 1) // batch_size
|
||||
|
||||
if show_progress:
|
||||
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings (batched)")
|
||||
@@ -1129,8 +902,8 @@ def compute_embeddings_ollama(
|
||||
|
||||
for batch_idx in batch_iterator:
|
||||
start_idx = batch_idx * batch_size
|
||||
end_idx = min(start_idx + batch_size, len(texts))
|
||||
batch_texts = texts[start_idx:end_idx]
|
||||
end_idx = min(start_idx + batch_size, len(truncated_texts))
|
||||
batch_texts = truncated_texts[start_idx:end_idx]
|
||||
|
||||
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
|
||||
|
||||
@@ -1145,11 +918,11 @@ def compute_embeddings_ollama(
|
||||
|
||||
# Handle failed embeddings
|
||||
if all_failed_indices:
|
||||
if len(all_failed_indices) == len(texts):
|
||||
if len(all_failed_indices) == len(truncated_texts):
|
||||
raise RuntimeError("Failed to compute any embeddings")
|
||||
|
||||
logger.warning(
|
||||
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
|
||||
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(truncated_texts)} texts"
|
||||
)
|
||||
|
||||
# Use zero embeddings as fallback for failed ones
|
||||
|
||||
@@ -77,7 +77,6 @@ class LeannBackendSearcherInterface(ABC):
|
||||
query: str,
|
||||
use_server_if_available: bool = True,
|
||||
zmq_port: Optional[int] = None,
|
||||
query_template: Optional[str] = None,
|
||||
) -> np.ndarray:
|
||||
"""Compute embedding for a query string
|
||||
|
||||
@@ -85,7 +84,6 @@ class LeannBackendSearcherInterface(ABC):
|
||||
query: The query string to embed
|
||||
zmq_port: ZMQ port for embedding server
|
||||
use_server_if_available: Whether to try using embedding server first
|
||||
query_template: Optional prompt template to prepend to query
|
||||
|
||||
Returns:
|
||||
Query embedding as numpy array with shape (1, D)
|
||||
|
||||
@@ -33,8 +33,6 @@ def autodiscover_backends():
|
||||
discovered_backends = []
|
||||
for dist in importlib.metadata.distributions():
|
||||
dist_name = dist.metadata["name"]
|
||||
if dist_name is None:
|
||||
continue
|
||||
if dist_name.startswith("leann-backend-"):
|
||||
backend_module_name = dist_name.replace("-", "_")
|
||||
discovered_backends.append(backend_module_name)
|
||||
|
||||
@@ -71,15 +71,6 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
or "mips"
|
||||
)
|
||||
|
||||
# Filter out ALL prompt templates from provider_options during search
|
||||
# Templates are applied in compute_query_embedding (line 109-110) BEFORE server call
|
||||
# The server should never apply templates during search to avoid double-templating
|
||||
search_provider_options = {
|
||||
k: v
|
||||
for k, v in self.embedding_options.items()
|
||||
if k not in ("build_prompt_template", "query_prompt_template", "prompt_template")
|
||||
}
|
||||
|
||||
server_started, actual_port = self.embedding_server_manager.start_server(
|
||||
port=port,
|
||||
model_name=self.embedding_model,
|
||||
@@ -87,7 +78,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
passages_file=passages_source_file,
|
||||
distance_metric=distance_metric,
|
||||
enable_warmup=kwargs.get("enable_warmup", False),
|
||||
provider_options=search_provider_options,
|
||||
provider_options=self.embedding_options,
|
||||
)
|
||||
if not server_started:
|
||||
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
|
||||
@@ -99,7 +90,6 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
query: str,
|
||||
use_server_if_available: bool = True,
|
||||
zmq_port: int = 5557,
|
||||
query_template: Optional[str] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embedding for a query string.
|
||||
@@ -108,16 +98,10 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
query: The query string to embed
|
||||
zmq_port: ZMQ port for embedding server
|
||||
use_server_if_available: Whether to try using embedding server first
|
||||
query_template: Optional prompt template to prepend to query
|
||||
|
||||
Returns:
|
||||
Query embedding as numpy array
|
||||
"""
|
||||
# Apply query template BEFORE any computation path
|
||||
# This ensures template is applied consistently for both server and fallback paths
|
||||
if query_template:
|
||||
query = f"{query_template}{query}"
|
||||
|
||||
# Try to use embedding server if available and requested
|
||||
if use_server_if_available:
|
||||
try:
|
||||
|
||||
@@ -9,7 +9,6 @@ from typing import Any
|
||||
# Default fallbacks to preserve current behaviour while keeping them in one place.
|
||||
_DEFAULT_OLLAMA_HOST = "http://localhost:11434"
|
||||
_DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1"
|
||||
_DEFAULT_ANTHROPIC_BASE_URL = "https://api.anthropic.com"
|
||||
|
||||
|
||||
def _clean_url(value: str) -> str:
|
||||
@@ -53,23 +52,6 @@ def resolve_openai_base_url(explicit: str | None = None) -> str:
|
||||
return _clean_url(_DEFAULT_OPENAI_BASE_URL)
|
||||
|
||||
|
||||
def resolve_anthropic_base_url(explicit: str | None = None) -> str:
|
||||
"""Resolve the base URL for Anthropic-compatible services."""
|
||||
|
||||
candidates = (
|
||||
explicit,
|
||||
os.getenv("LEANN_ANTHROPIC_BASE_URL"),
|
||||
os.getenv("ANTHROPIC_BASE_URL"),
|
||||
os.getenv("LOCAL_ANTHROPIC_BASE_URL"),
|
||||
)
|
||||
|
||||
for candidate in candidates:
|
||||
if candidate:
|
||||
return _clean_url(candidate)
|
||||
|
||||
return _clean_url(_DEFAULT_ANTHROPIC_BASE_URL)
|
||||
|
||||
|
||||
def resolve_openai_api_key(explicit: str | None = None) -> str | None:
|
||||
"""Resolve the API key for OpenAI-compatible services."""
|
||||
|
||||
@@ -79,15 +61,6 @@ def resolve_openai_api_key(explicit: str | None = None) -> str | None:
|
||||
return os.getenv("OPENAI_API_KEY")
|
||||
|
||||
|
||||
def resolve_anthropic_api_key(explicit: str | None = None) -> str | None:
|
||||
"""Resolve the API key for Anthropic services."""
|
||||
|
||||
if explicit:
|
||||
return explicit
|
||||
|
||||
return os.getenv("ANTHROPIC_API_KEY")
|
||||
|
||||
|
||||
def encode_provider_options(options: dict[str, Any] | None) -> str | None:
|
||||
"""Serialize provider options for child processes."""
|
||||
|
||||
|
||||
@@ -53,11 +53,6 @@ leann build my-project --docs $(git ls-files)
|
||||
# Start Claude Code
|
||||
claude
|
||||
```
|
||||
**Performance tip**: For maximum speed when storage space is not a concern, add the `--no-recompute` flag to your build command. This materializes all tensors and stores them on disk, avoiding recomputation on subsequent builds:
|
||||
|
||||
```bash
|
||||
leann build my-project --docs $(git ls-files) --no-recompute
|
||||
```
|
||||
|
||||
## 🚀 Advanced Usage Examples to build the index
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.3.5"
|
||||
version = "0.3.4"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -57,8 +57,6 @@ dependencies = [
|
||||
"tree-sitter-c-sharp>=0.20.0",
|
||||
"tree-sitter-typescript>=0.20.0",
|
||||
"torchvision>=0.23.0",
|
||||
"einops",
|
||||
"seaborn",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@@ -69,8 +67,7 @@ diskann = [
|
||||
# Add a new optional dependency group for document processing
|
||||
documents = [
|
||||
"beautifulsoup4>=4.13.0", # For HTML parsing
|
||||
"python-docx>=0.8.11", # For Word documents (creating/editing)
|
||||
"docx2txt>=0.9", # For Word documents (text extraction)
|
||||
"python-docx>=0.8.11", # For Word documents
|
||||
"openpyxl>=3.1.0", # For Excel files
|
||||
"pandas>=2.2.0", # For data processing
|
||||
]
|
||||
@@ -165,7 +162,6 @@ python_functions = ["test_*"]
|
||||
markers = [
|
||||
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
|
||||
"openai: marks tests that require OpenAI API key",
|
||||
"integration: marks tests that require live services (Ollama, LM Studio, etc.)",
|
||||
]
|
||||
timeout = 300 # Reduced from 600s (10min) to 300s (5min) for CI safety
|
||||
addopts = [
|
||||
|
||||
162
test_colqwen_reproduction.py
Normal file
162
test_colqwen_reproduction.py
Normal file
@@ -0,0 +1,162 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to reproduce ColQwen results from issue #119
|
||||
https://github.com/yichuan-w/LEANN/issues/119
|
||||
|
||||
This script demonstrates the ColQwen workflow:
|
||||
1. Download sample PDF
|
||||
2. Convert to images
|
||||
3. Build multimodal index
|
||||
4. Run test queries
|
||||
5. Generate similarity maps
|
||||
"""
|
||||
|
||||
import importlib.util
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def main():
|
||||
print("🧪 ColQwen Reproduction Test - Issue #119")
|
||||
print("=" * 50)
|
||||
|
||||
# Check if we're in the right directory
|
||||
repo_root = Path.cwd()
|
||||
if not (repo_root / "apps" / "colqwen_rag.py").exists():
|
||||
print("❌ Please run this script from the LEANN repository root")
|
||||
print(" cd /path/to/LEANN && python test_colqwen_reproduction.py")
|
||||
return
|
||||
|
||||
print("✅ Repository structure looks good")
|
||||
|
||||
# Step 1: Check dependencies
|
||||
print("\n📦 Checking dependencies...")
|
||||
try:
|
||||
import torch
|
||||
|
||||
# Check if pdf2image is available
|
||||
if importlib.util.find_spec("pdf2image") is None:
|
||||
raise ImportError("pdf2image not found")
|
||||
# Check if colpali_engine is available
|
||||
if importlib.util.find_spec("colpali_engine") is None:
|
||||
raise ImportError("colpali_engine not found")
|
||||
|
||||
print("✅ Core dependencies available")
|
||||
print(f" - PyTorch: {torch.__version__}")
|
||||
print(f" - CUDA available: {torch.cuda.is_available()}")
|
||||
print(
|
||||
f" - MPS available: {hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()}"
|
||||
)
|
||||
except ImportError as e:
|
||||
print(f"❌ Missing dependency: {e}")
|
||||
print("\n📥 Install missing dependencies:")
|
||||
print(
|
||||
" uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn"
|
||||
)
|
||||
return
|
||||
|
||||
# Step 2: Download sample PDF
|
||||
print("\n📄 Setting up sample PDF...")
|
||||
pdf_dir = repo_root / "test_pdfs"
|
||||
pdf_dir.mkdir(exist_ok=True)
|
||||
sample_pdf = pdf_dir / "attention_paper.pdf"
|
||||
|
||||
if not sample_pdf.exists():
|
||||
print("📥 Downloading sample paper (Attention Is All You Need)...")
|
||||
import urllib.request
|
||||
|
||||
try:
|
||||
urllib.request.urlretrieve("https://arxiv.org/pdf/1706.03762.pdf", sample_pdf)
|
||||
print(f"✅ Downloaded: {sample_pdf}")
|
||||
except Exception as e:
|
||||
print(f"❌ Download failed: {e}")
|
||||
print(" Please manually download a PDF to test_pdfs/attention_paper.pdf")
|
||||
return
|
||||
else:
|
||||
print(f"✅ Using existing PDF: {sample_pdf}")
|
||||
|
||||
# Step 3: Test ColQwen RAG
|
||||
print("\n🚀 Testing ColQwen RAG...")
|
||||
|
||||
# Build index
|
||||
print("\n1️⃣ Building multimodal index...")
|
||||
build_cmd = f"python -m apps.colqwen_rag build --pdfs {pdf_dir} --index test_attention --model colqwen2 --pages-dir test_pages"
|
||||
print(f" Command: {build_cmd}")
|
||||
|
||||
try:
|
||||
result = os.system(build_cmd)
|
||||
if result == 0:
|
||||
print("✅ Index built successfully!")
|
||||
else:
|
||||
print("❌ Index building failed")
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"❌ Error building index: {e}")
|
||||
return
|
||||
|
||||
# Test search
|
||||
print("\n2️⃣ Testing search...")
|
||||
test_queries = [
|
||||
"How does attention mechanism work?",
|
||||
"What is the transformer architecture?",
|
||||
"How do you compute self-attention?",
|
||||
]
|
||||
|
||||
for query in test_queries:
|
||||
print(f"\n🔍 Query: '{query}'")
|
||||
search_cmd = f'python -m apps.colqwen_rag search test_attention "{query}" --top-k 3'
|
||||
print(f" Command: {search_cmd}")
|
||||
|
||||
try:
|
||||
result = os.system(search_cmd)
|
||||
if result == 0:
|
||||
print("✅ Search completed")
|
||||
else:
|
||||
print("❌ Search failed")
|
||||
except Exception as e:
|
||||
print(f"❌ Search error: {e}")
|
||||
|
||||
# Test interactive mode (briefly)
|
||||
print("\n3️⃣ Testing interactive mode...")
|
||||
print(" You can test interactive mode with:")
|
||||
print(" python -m apps.colqwen_rag ask test_attention --interactive")
|
||||
|
||||
# Step 4: Test similarity maps (using existing script)
|
||||
print("\n4️⃣ Testing similarity maps...")
|
||||
similarity_script = (
|
||||
repo_root
|
||||
/ "apps"
|
||||
/ "multimodal"
|
||||
/ "vision-based-pdf-multi-vector"
|
||||
/ "multi-vector-leann-similarity-map.py"
|
||||
)
|
||||
|
||||
if similarity_script.exists():
|
||||
print(" You can generate similarity maps with:")
|
||||
print(f" cd {similarity_script.parent}")
|
||||
print(" python multi-vector-leann-similarity-map.py")
|
||||
print(" (Edit the script to use your local PDF)")
|
||||
|
||||
print("\n🎉 ColQwen reproduction test completed!")
|
||||
print("\n📋 Summary:")
|
||||
print(" ✅ Dependencies checked")
|
||||
print(" ✅ Sample PDF prepared")
|
||||
print(" ✅ Index building tested")
|
||||
print(" ✅ Search functionality tested")
|
||||
print(" ✅ Interactive mode available")
|
||||
print(" ✅ Similarity maps available")
|
||||
|
||||
print("\n🔗 Related repositories to check:")
|
||||
print(" - https://github.com/lightonai/fast-plaid")
|
||||
print(" - https://github.com/lightonai/pylate")
|
||||
print(" - https://github.com/stanford-futuredata/ColBERT")
|
||||
|
||||
print("\n📝 Next steps:")
|
||||
print(" 1. Test with your own PDFs")
|
||||
print(" 2. Experiment with different queries")
|
||||
print(" 3. Generate similarity maps for visual analysis")
|
||||
print(" 4. Compare ColQwen2 vs ColPali performance")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -36,14 +36,6 @@ Tests DiskANN graph partitioning functionality:
|
||||
- Includes performance comparison between DiskANN (with partition) and HNSW
|
||||
- **Note**: These tests are skipped in CI due to hardware requirements and computation time
|
||||
|
||||
### `test_prompt_template_e2e.py`
|
||||
Integration tests for prompt template feature with live embedding services:
|
||||
- Tests prompt template prepending with EmbeddingGemma (OpenAI-compatible API via LM Studio)
|
||||
- Tests hybrid token limit discovery (Ollama dynamic detection, registry fallback, default)
|
||||
- Tests LM Studio SDK bridge for automatic context length detection (requires Node.js + @lmstudio/sdk)
|
||||
- **Note**: These tests require live services (LM Studio, Ollama) and are marked with `@pytest.mark.integration`
|
||||
- **Important**: Prompt templates are ONLY for EmbeddingGemma and similar task-specific models, NOT regular embedding models
|
||||
|
||||
## Running Tests
|
||||
|
||||
### Install test dependencies:
|
||||
@@ -74,12 +66,6 @@ pytest tests/ -m "not openai"
|
||||
# Skip slow tests
|
||||
pytest tests/ -m "not slow"
|
||||
|
||||
# Skip integration tests (that require live services)
|
||||
pytest tests/ -m "not integration"
|
||||
|
||||
# Run only integration tests (requires LM Studio or Ollama running)
|
||||
pytest tests/test_prompt_template_e2e.py -v -s
|
||||
|
||||
# Run DiskANN partition tests (requires local machine, not CI)
|
||||
pytest tests/test_diskann_partition.py
|
||||
```
|
||||
@@ -115,20 +101,6 @@ The `pytest.ini` file configures:
|
||||
- Custom markers for slow and OpenAI tests
|
||||
- Verbose output with short tracebacks
|
||||
|
||||
### Integration Test Prerequisites
|
||||
|
||||
Integration tests (`test_prompt_template_e2e.py`) require live services:
|
||||
|
||||
**Required:**
|
||||
- LM Studio running at `http://localhost:1234` with EmbeddingGemma model loaded
|
||||
|
||||
**Optional:**
|
||||
- Ollama running at `http://localhost:11434` for token limit detection tests
|
||||
- Node.js + @lmstudio/sdk installed (`npm install -g @lmstudio/sdk`) for SDK bridge tests
|
||||
|
||||
Tests gracefully skip if services are unavailable.
|
||||
|
||||
### Known Issues
|
||||
|
||||
- OpenAI tests are automatically skipped if no API key is provided
|
||||
- Integration tests require live embedding services and may fail due to proxy settings (set `unset ALL_PROXY all_proxy` if needed)
|
||||
|
||||
@@ -8,7 +8,7 @@ import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from unittest.mock import Mock, patch
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -116,10 +116,8 @@ class TestChunkingFunctions:
|
||||
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
assert len(chunks) > 0
|
||||
# Traditional chunks now return dict format for consistency
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks)
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks)
|
||||
assert all(len(chunk["text"].strip()) > 0 for chunk in chunks)
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||
|
||||
def test_create_traditional_chunks_empty_docs(self):
|
||||
"""Test traditional chunking with empty documents."""
|
||||
@@ -160,22 +158,11 @@ class Calculator:
|
||||
|
||||
# Should have multiple chunks due to different functions/classes
|
||||
assert len(chunks) > 0
|
||||
# R3: Expect dict format with "text" and "metadata" keys
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks), "All chunks should be dicts"
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks), (
|
||||
"Each chunk should have 'text' and 'metadata' keys"
|
||||
)
|
||||
assert all(len(chunk["text"].strip()) > 0 for chunk in chunks), (
|
||||
"Each chunk text should be non-empty"
|
||||
)
|
||||
|
||||
# Check metadata is present
|
||||
assert all("file_path" in chunk["metadata"] for chunk in chunks), (
|
||||
"Each chunk should have file_path metadata"
|
||||
)
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||
|
||||
# Check that code structure is somewhat preserved
|
||||
combined_content = " ".join([c["text"] for c in chunks])
|
||||
combined_content = " ".join(chunks)
|
||||
assert "def hello_world" in combined_content
|
||||
assert "class Calculator" in combined_content
|
||||
|
||||
@@ -207,11 +194,7 @@ class Calculator:
|
||||
chunks = create_text_chunks(docs, use_ast_chunking=False, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
assert len(chunks) > 0
|
||||
# R3: Traditional chunking should also return dict format for consistency
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks), "All chunks should be dicts"
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks), (
|
||||
"Each chunk should have 'text' and 'metadata' keys"
|
||||
)
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
|
||||
def test_create_text_chunks_ast_mode(self):
|
||||
"""Test text chunking in AST mode."""
|
||||
@@ -230,11 +213,7 @@ class Calculator:
|
||||
)
|
||||
|
||||
assert len(chunks) > 0
|
||||
# R3: AST mode should also return dict format
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks), "All chunks should be dicts"
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks), (
|
||||
"Each chunk should have 'text' and 'metadata' keys"
|
||||
)
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
|
||||
def test_create_text_chunks_custom_extensions(self):
|
||||
"""Test text chunking with custom code file extensions."""
|
||||
@@ -374,552 +353,6 @@ class MathUtils:
|
||||
pytest.skip("Test timed out - likely due to model download in CI")
|
||||
|
||||
|
||||
class TestASTContentExtraction:
|
||||
"""Test AST content extraction bug fix.
|
||||
|
||||
These tests verify that astchunk's dict format with 'content' key is handled correctly,
|
||||
and that the extraction logic doesn't fall through to stringifying entire dicts.
|
||||
"""
|
||||
|
||||
def test_extract_content_from_astchunk_dict(self):
|
||||
"""Test that astchunk dict format with 'content' key is handled correctly.
|
||||
|
||||
Bug: Current code checks for chunk["text"] but astchunk returns chunk["content"].
|
||||
This causes fallthrough to str(chunk), stringifying the entire dict.
|
||||
|
||||
This test will FAIL until the bug is fixed because:
|
||||
- Current code will stringify the dict: "{'content': '...', 'metadata': {...}}"
|
||||
- Fixed code should extract just the content value
|
||||
"""
|
||||
# Mock the ASTChunkBuilder class
|
||||
mock_builder = Mock()
|
||||
|
||||
# Astchunk returns this format
|
||||
astchunk_format_chunk = {
|
||||
"content": "def hello():\n print('world')",
|
||||
"metadata": {
|
||||
"filepath": "test.py",
|
||||
"line_count": 2,
|
||||
"start_line_no": 0,
|
||||
"end_line_no": 1,
|
||||
"node_count": 1,
|
||||
},
|
||||
}
|
||||
mock_builder.chunkify.return_value = [astchunk_format_chunk]
|
||||
|
||||
# Create mock document
|
||||
doc = MockDocument(
|
||||
"def hello():\n print('world')", "/test/test.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module and its ASTChunkBuilder class
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
# Patch sys.modules to inject our mock before the import
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should return dict format with proper metadata
|
||||
assert len(chunks) > 0, "Should return at least one chunk"
|
||||
|
||||
# R3: Each chunk should be a dict
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Chunk should be a dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
assert "metadata" in chunk, "Chunk should have 'metadata' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
|
||||
# CRITICAL: Should NOT contain stringified dict markers in the text field
|
||||
# These assertions will FAIL with current buggy code
|
||||
assert "'content':" not in chunk_text, (
|
||||
f"Chunk text contains stringified dict - extraction failed! Got: {chunk_text[:100]}..."
|
||||
)
|
||||
assert "'metadata':" not in chunk_text, (
|
||||
"Chunk text contains stringified metadata - extraction failed! "
|
||||
f"Got: {chunk_text[:100]}..."
|
||||
)
|
||||
assert "{" not in chunk_text or "def hello" in chunk_text.split("{")[0], (
|
||||
"Chunk text appears to be a stringified dict"
|
||||
)
|
||||
|
||||
# Should contain actual content
|
||||
assert "def hello()" in chunk_text, "Should extract actual code content"
|
||||
assert "print('world')" in chunk_text, "Should extract complete code content"
|
||||
|
||||
# R3: Should preserve astchunk metadata
|
||||
assert "filepath" in chunk["metadata"] or "file_path" in chunk["metadata"], (
|
||||
"Should preserve file path metadata"
|
||||
)
|
||||
|
||||
def test_extract_text_key_fallback(self):
|
||||
"""Test that 'text' key still works for backward compatibility.
|
||||
|
||||
Some chunks might use 'text' instead of 'content' - ensure backward compatibility.
|
||||
This test should PASS even with current code.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
# Some chunks might use "text" key
|
||||
text_key_chunk = {"text": "def legacy_function():\n return True"}
|
||||
mock_builder.chunkify.return_value = [text_key_chunk]
|
||||
|
||||
# Create mock document
|
||||
doc = MockDocument(
|
||||
"def legacy_function():\n return True", "/test/legacy.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should extract text correctly as dict format
|
||||
assert len(chunks) > 0
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Chunk should be a dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
|
||||
# Should NOT be stringified
|
||||
assert "'text':" not in chunk_text, "Should not stringify dict with 'text' key"
|
||||
|
||||
# Should contain actual content
|
||||
assert "def legacy_function()" in chunk_text
|
||||
assert "return True" in chunk_text
|
||||
|
||||
def test_handles_string_chunks(self):
|
||||
"""Test that plain string chunks still work.
|
||||
|
||||
Some chunkers might return plain strings - verify these are preserved.
|
||||
This test should PASS with current code.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
# Plain string chunk
|
||||
plain_string_chunk = "def simple_function():\n pass"
|
||||
mock_builder.chunkify.return_value = [plain_string_chunk]
|
||||
|
||||
# Create mock document
|
||||
doc = MockDocument(
|
||||
"def simple_function():\n pass", "/test/simple.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should wrap string in dict format
|
||||
assert len(chunks) > 0
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Even string chunks should be wrapped in dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
|
||||
assert chunk_text == plain_string_chunk.strip(), (
|
||||
"Should preserve plain string chunk content"
|
||||
)
|
||||
assert "def simple_function()" in chunk_text
|
||||
assert "pass" in chunk_text
|
||||
|
||||
def test_multiple_chunks_with_mixed_formats(self):
|
||||
"""Test handling of multiple chunks with different formats.
|
||||
|
||||
Real-world scenario: astchunk might return a mix of formats.
|
||||
This test will FAIL if any chunk with 'content' key gets stringified.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
# Mix of formats
|
||||
mixed_chunks = [
|
||||
{"content": "def first():\n return 1", "metadata": {"line_count": 2}},
|
||||
"def second():\n return 2", # Plain string
|
||||
{"text": "def third():\n return 3"}, # Old format
|
||||
{"content": "class MyClass:\n pass", "metadata": {"node_count": 1}},
|
||||
]
|
||||
mock_builder.chunkify.return_value = mixed_chunks
|
||||
|
||||
# Create mock document
|
||||
code = "def first():\n return 1\n\ndef second():\n return 2\n\ndef third():\n return 3\n\nclass MyClass:\n pass"
|
||||
doc = MockDocument(code, "/test/mixed.py", {"language": "python"})
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should extract all chunks correctly as dicts
|
||||
assert len(chunks) == 4, "Should extract all 4 chunks"
|
||||
|
||||
# Check each chunk
|
||||
for i, chunk in enumerate(chunks):
|
||||
assert isinstance(chunk, dict), f"Chunk {i} should be a dict"
|
||||
assert "text" in chunk, f"Chunk {i} should have 'text' key"
|
||||
assert "metadata" in chunk, f"Chunk {i} should have 'metadata' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
# None should be stringified dicts
|
||||
assert "'content':" not in chunk_text, f"Chunk {i} text is stringified (has 'content':)"
|
||||
assert "'metadata':" not in chunk_text, (
|
||||
f"Chunk {i} text is stringified (has 'metadata':)"
|
||||
)
|
||||
assert "'text':" not in chunk_text, f"Chunk {i} text is stringified (has 'text':)"
|
||||
|
||||
# Verify actual content is present
|
||||
combined = "\n".join([c["text"] for c in chunks])
|
||||
assert "def first()" in combined
|
||||
assert "def second()" in combined
|
||||
assert "def third()" in combined
|
||||
assert "class MyClass:" in combined
|
||||
|
||||
def test_empty_content_value_handling(self):
|
||||
"""Test handling of chunks with empty content values.
|
||||
|
||||
Edge case: chunk has 'content' key but value is empty.
|
||||
Should skip these chunks, not stringify them.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
chunks_with_empty = [
|
||||
{"content": "", "metadata": {"line_count": 0}}, # Empty content
|
||||
{"content": " ", "metadata": {"line_count": 1}}, # Whitespace only
|
||||
{"content": "def valid():\n return True", "metadata": {"line_count": 2}}, # Valid
|
||||
]
|
||||
mock_builder.chunkify.return_value = chunks_with_empty
|
||||
|
||||
doc = MockDocument(
|
||||
"def valid():\n return True", "/test/empty.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should only have the valid chunk (empty ones filtered out)
|
||||
assert len(chunks) == 1, "Should filter out empty content chunks"
|
||||
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Chunk should be a dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
assert "def valid()" in chunk["text"]
|
||||
|
||||
# Should not have stringified the empty dict
|
||||
assert "'content': ''" not in chunk["text"]
|
||||
|
||||
|
||||
class TestASTMetadataPreservation:
|
||||
"""Test metadata preservation in AST chunk dictionaries.
|
||||
|
||||
R3: These tests define the contract for metadata preservation when returning
|
||||
chunk dictionaries instead of plain strings. Each chunk dict should have:
|
||||
- "text": str - the actual chunk content
|
||||
- "metadata": dict - all metadata from document AND astchunk
|
||||
|
||||
These tests will FAIL until G3 implementation changes return type to list[dict].
|
||||
"""
|
||||
|
||||
def test_ast_chunks_preserve_file_metadata(self):
|
||||
"""Test that document metadata is preserved in chunk metadata.
|
||||
|
||||
This test verifies that all document-level metadata (file_path, file_name,
|
||||
creation_date, last_modified_date) is included in each chunk's metadata dict.
|
||||
|
||||
This will FAIL because current code returns list[str], not list[dict].
|
||||
"""
|
||||
# Create mock document with rich metadata
|
||||
python_code = '''
|
||||
def calculate_sum(numbers):
|
||||
"""Calculate sum of numbers."""
|
||||
return sum(numbers)
|
||||
|
||||
class DataProcessor:
|
||||
"""Process data records."""
|
||||
|
||||
def process(self, data):
|
||||
return [x * 2 for x in data]
|
||||
'''
|
||||
doc = MockDocument(
|
||||
python_code,
|
||||
file_path="/project/src/utils.py",
|
||||
metadata={
|
||||
"language": "python",
|
||||
"file_path": "/project/src/utils.py",
|
||||
"file_name": "utils.py",
|
||||
"creation_date": "2024-01-15T10:30:00",
|
||||
"last_modified_date": "2024-10-31T15:45:00",
|
||||
},
|
||||
)
|
||||
|
||||
# Mock astchunk to return chunks with metadata
|
||||
mock_builder = Mock()
|
||||
astchunk_chunks = [
|
||||
{
|
||||
"content": "def calculate_sum(numbers):\n return sum(numbers)",
|
||||
"metadata": {
|
||||
"filepath": "/project/src/utils.py",
|
||||
"line_count": 2,
|
||||
"start_line_no": 1,
|
||||
"end_line_no": 2,
|
||||
"node_count": 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
"content": "class DataProcessor:\n def process(self, data):\n return [x * 2 for x in data]",
|
||||
"metadata": {
|
||||
"filepath": "/project/src/utils.py",
|
||||
"line_count": 3,
|
||||
"start_line_no": 5,
|
||||
"end_line_no": 7,
|
||||
"node_count": 2,
|
||||
},
|
||||
},
|
||||
]
|
||||
mock_builder.chunkify.return_value = astchunk_chunks
|
||||
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# CRITICAL: These assertions will FAIL with current list[str] return type
|
||||
assert len(chunks) == 2, "Should return 2 chunks"
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
# Structure assertions - WILL FAIL: current code returns strings
|
||||
assert isinstance(chunk, dict), f"Chunk {i} should be dict, got {type(chunk)}"
|
||||
assert "text" in chunk, f"Chunk {i} must have 'text' key"
|
||||
assert "metadata" in chunk, f"Chunk {i} must have 'metadata' key"
|
||||
assert isinstance(chunk["metadata"], dict), f"Chunk {i} metadata should be dict"
|
||||
|
||||
# Document metadata preservation - WILL FAIL
|
||||
metadata = chunk["metadata"]
|
||||
assert "file_path" in metadata, f"Chunk {i} should preserve file_path"
|
||||
assert metadata["file_path"] == "/project/src/utils.py", (
|
||||
f"Chunk {i} file_path incorrect"
|
||||
)
|
||||
|
||||
assert "file_name" in metadata, f"Chunk {i} should preserve file_name"
|
||||
assert metadata["file_name"] == "utils.py", f"Chunk {i} file_name incorrect"
|
||||
|
||||
assert "creation_date" in metadata, f"Chunk {i} should preserve creation_date"
|
||||
assert metadata["creation_date"] == "2024-01-15T10:30:00", (
|
||||
f"Chunk {i} creation_date incorrect"
|
||||
)
|
||||
|
||||
assert "last_modified_date" in metadata, f"Chunk {i} should preserve last_modified_date"
|
||||
assert metadata["last_modified_date"] == "2024-10-31T15:45:00", (
|
||||
f"Chunk {i} last_modified_date incorrect"
|
||||
)
|
||||
|
||||
# Verify metadata is consistent across chunks from same document
|
||||
assert chunks[0]["metadata"]["file_path"] == chunks[1]["metadata"]["file_path"], (
|
||||
"All chunks from same document should have same file_path"
|
||||
)
|
||||
|
||||
# Verify text content is present and not stringified
|
||||
assert "def calculate_sum" in chunks[0]["text"]
|
||||
assert "class DataProcessor" in chunks[1]["text"]
|
||||
|
||||
def test_ast_chunks_include_astchunk_metadata(self):
|
||||
"""Test that astchunk-specific metadata is merged into chunk metadata.
|
||||
|
||||
This test verifies that astchunk's metadata (line_count, start_line_no,
|
||||
end_line_no, node_count) is merged with document metadata.
|
||||
|
||||
This will FAIL because current code returns list[str], not list[dict].
|
||||
"""
|
||||
python_code = '''
|
||||
def function_one():
|
||||
"""First function."""
|
||||
x = 1
|
||||
y = 2
|
||||
return x + y
|
||||
|
||||
def function_two():
|
||||
"""Second function."""
|
||||
return 42
|
||||
'''
|
||||
doc = MockDocument(
|
||||
python_code,
|
||||
file_path="/test/code.py",
|
||||
metadata={
|
||||
"language": "python",
|
||||
"file_path": "/test/code.py",
|
||||
"file_name": "code.py",
|
||||
},
|
||||
)
|
||||
|
||||
# Mock astchunk with detailed metadata
|
||||
mock_builder = Mock()
|
||||
astchunk_chunks = [
|
||||
{
|
||||
"content": "def function_one():\n x = 1\n y = 2\n return x + y",
|
||||
"metadata": {
|
||||
"filepath": "/test/code.py",
|
||||
"line_count": 4,
|
||||
"start_line_no": 1,
|
||||
"end_line_no": 4,
|
||||
"node_count": 5, # function, assignments, return
|
||||
},
|
||||
},
|
||||
{
|
||||
"content": "def function_two():\n return 42",
|
||||
"metadata": {
|
||||
"filepath": "/test/code.py",
|
||||
"line_count": 2,
|
||||
"start_line_no": 7,
|
||||
"end_line_no": 8,
|
||||
"node_count": 2, # function, return
|
||||
},
|
||||
},
|
||||
]
|
||||
mock_builder.chunkify.return_value = astchunk_chunks
|
||||
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# CRITICAL: These will FAIL with current list[str] return
|
||||
assert len(chunks) == 2
|
||||
|
||||
# First chunk - function_one
|
||||
chunk1 = chunks[0]
|
||||
assert isinstance(chunk1, dict), "Chunk should be dict"
|
||||
assert "metadata" in chunk1
|
||||
|
||||
metadata1 = chunk1["metadata"]
|
||||
|
||||
# Check astchunk metadata is present
|
||||
assert "line_count" in metadata1, "Should include astchunk line_count"
|
||||
assert metadata1["line_count"] == 4, "line_count should be 4"
|
||||
|
||||
assert "start_line_no" in metadata1, "Should include astchunk start_line_no"
|
||||
assert metadata1["start_line_no"] == 1, "start_line_no should be 1"
|
||||
|
||||
assert "end_line_no" in metadata1, "Should include astchunk end_line_no"
|
||||
assert metadata1["end_line_no"] == 4, "end_line_no should be 4"
|
||||
|
||||
assert "node_count" in metadata1, "Should include astchunk node_count"
|
||||
assert metadata1["node_count"] == 5, "node_count should be 5"
|
||||
|
||||
# Second chunk - function_two
|
||||
chunk2 = chunks[1]
|
||||
metadata2 = chunk2["metadata"]
|
||||
|
||||
assert metadata2["line_count"] == 2, "line_count should be 2"
|
||||
assert metadata2["start_line_no"] == 7, "start_line_no should be 7"
|
||||
assert metadata2["end_line_no"] == 8, "end_line_no should be 8"
|
||||
assert metadata2["node_count"] == 2, "node_count should be 2"
|
||||
|
||||
# Verify document metadata is ALSO present (merged, not replaced)
|
||||
assert metadata1["file_path"] == "/test/code.py"
|
||||
assert metadata1["file_name"] == "code.py"
|
||||
assert metadata2["file_path"] == "/test/code.py"
|
||||
assert metadata2["file_name"] == "code.py"
|
||||
|
||||
# Verify text content is correct
|
||||
assert "def function_one" in chunk1["text"]
|
||||
assert "def function_two" in chunk2["text"]
|
||||
|
||||
def test_traditional_chunks_as_dicts_helper(self):
|
||||
"""Test the helper function that wraps traditional chunks as dicts.
|
||||
|
||||
This test verifies that when create_traditional_chunks is called,
|
||||
its plain string chunks are wrapped into dict format with metadata.
|
||||
|
||||
This will FAIL because the helper function _traditional_chunks_as_dicts()
|
||||
doesn't exist yet, and create_traditional_chunks returns list[str].
|
||||
"""
|
||||
# Create documents with various metadata
|
||||
docs = [
|
||||
MockDocument(
|
||||
"This is the first paragraph of text. It contains multiple sentences. "
|
||||
"This should be split into chunks based on size.",
|
||||
file_path="/docs/readme.txt",
|
||||
metadata={
|
||||
"file_path": "/docs/readme.txt",
|
||||
"file_name": "readme.txt",
|
||||
"creation_date": "2024-01-01",
|
||||
},
|
||||
),
|
||||
MockDocument(
|
||||
"Second document with different metadata. It also has content that needs chunking.",
|
||||
file_path="/docs/guide.md",
|
||||
metadata={
|
||||
"file_path": "/docs/guide.md",
|
||||
"file_name": "guide.md",
|
||||
"last_modified_date": "2024-10-31",
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
# Call create_traditional_chunks (which should now return list[dict])
|
||||
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
# CRITICAL: Will FAIL - current code returns list[str]
|
||||
assert len(chunks) > 0, "Should return chunks"
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
# Structure assertions - WILL FAIL
|
||||
assert isinstance(chunk, dict), f"Chunk {i} should be dict, got {type(chunk)}"
|
||||
assert "text" in chunk, f"Chunk {i} must have 'text' key"
|
||||
assert "metadata" in chunk, f"Chunk {i} must have 'metadata' key"
|
||||
|
||||
# Text should be non-empty
|
||||
assert len(chunk["text"].strip()) > 0, f"Chunk {i} text should be non-empty"
|
||||
|
||||
# Metadata should include document info
|
||||
metadata = chunk["metadata"]
|
||||
assert "file_path" in metadata, f"Chunk {i} should have file_path in metadata"
|
||||
assert "file_name" in metadata, f"Chunk {i} should have file_name in metadata"
|
||||
|
||||
# Verify metadata tracking works correctly
|
||||
# At least one chunk should be from readme.txt
|
||||
readme_chunks = [c for c in chunks if "readme.txt" in c["metadata"]["file_name"]]
|
||||
assert len(readme_chunks) > 0, "Should have chunks from readme.txt"
|
||||
|
||||
# At least one chunk should be from guide.md
|
||||
guide_chunks = [c for c in chunks if "guide.md" in c["metadata"]["file_name"]]
|
||||
assert len(guide_chunks) > 0, "Should have chunks from guide.md"
|
||||
|
||||
# Verify creation_date is preserved for readme chunks
|
||||
for chunk in readme_chunks:
|
||||
assert chunk["metadata"].get("creation_date") == "2024-01-01", (
|
||||
"readme.txt chunks should preserve creation_date"
|
||||
)
|
||||
|
||||
# Verify last_modified_date is preserved for guide chunks
|
||||
for chunk in guide_chunks:
|
||||
assert chunk["metadata"].get("last_modified_date") == "2024-10-31", (
|
||||
"guide.md chunks should preserve last_modified_date"
|
||||
)
|
||||
|
||||
# Verify text content is present
|
||||
all_text = " ".join([c["text"] for c in chunks])
|
||||
assert "first paragraph" in all_text
|
||||
assert "Second document" in all_text
|
||||
|
||||
|
||||
class TestErrorHandling:
|
||||
"""Test error handling and edge cases."""
|
||||
|
||||
|
||||
@@ -1,533 +0,0 @@
|
||||
"""
|
||||
Tests for CLI argument integration of --embedding-prompt-template.
|
||||
|
||||
These tests verify that:
|
||||
1. The --embedding-prompt-template flag is properly registered on build and search commands
|
||||
2. The template value flows from CLI args to embedding_options dict
|
||||
3. The template is passed through to compute_embeddings() function
|
||||
4. Default behavior (no flag) is handled correctly
|
||||
"""
|
||||
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
from leann.cli import LeannCLI
|
||||
|
||||
|
||||
class TestCLIPromptTemplateArgument:
|
||||
"""Tests for --embedding-prompt-template on build and search commands."""
|
||||
|
||||
def test_commands_accept_prompt_template_argument(self):
|
||||
"""Verify that build and search parsers accept --embedding-prompt-template flag."""
|
||||
cli = LeannCLI()
|
||||
parser = cli.create_parser()
|
||||
template_value = "search_query: "
|
||||
|
||||
# Test build command
|
||||
build_args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
"/tmp/test-docs",
|
||||
"--embedding-prompt-template",
|
||||
template_value,
|
||||
]
|
||||
)
|
||||
assert build_args.command == "build"
|
||||
assert hasattr(build_args, "embedding_prompt_template"), (
|
||||
"build command should have embedding_prompt_template attribute"
|
||||
)
|
||||
assert build_args.embedding_prompt_template == template_value
|
||||
|
||||
# Test search command
|
||||
search_args = parser.parse_args(
|
||||
["search", "test-index", "my query", "--embedding-prompt-template", template_value]
|
||||
)
|
||||
assert search_args.command == "search"
|
||||
assert hasattr(search_args, "embedding_prompt_template"), (
|
||||
"search command should have embedding_prompt_template attribute"
|
||||
)
|
||||
assert search_args.embedding_prompt_template == template_value
|
||||
|
||||
def test_commands_default_to_none(self):
|
||||
"""Verify default value is None when flag not provided (backward compatibility)."""
|
||||
cli = LeannCLI()
|
||||
parser = cli.create_parser()
|
||||
|
||||
# Test build command default
|
||||
build_args = parser.parse_args(["build", "test-index", "--docs", "/tmp/test-docs"])
|
||||
assert hasattr(build_args, "embedding_prompt_template"), (
|
||||
"build command should have embedding_prompt_template attribute"
|
||||
)
|
||||
assert build_args.embedding_prompt_template is None, (
|
||||
"Build default value should be None when flag not provided"
|
||||
)
|
||||
|
||||
# Test search command default
|
||||
search_args = parser.parse_args(["search", "test-index", "my query"])
|
||||
assert hasattr(search_args, "embedding_prompt_template"), (
|
||||
"search command should have embedding_prompt_template attribute"
|
||||
)
|
||||
assert search_args.embedding_prompt_template is None, (
|
||||
"Search default value should be None when flag not provided"
|
||||
)
|
||||
|
||||
|
||||
class TestBuildCommandPromptTemplateArgumentExtras:
|
||||
"""Additional build-specific tests for prompt template argument."""
|
||||
|
||||
def test_build_command_prompt_template_with_multiword_value(self):
|
||||
"""
|
||||
Verify that template values with spaces are handled correctly.
|
||||
|
||||
Templates like "search_document: " or "Represent this sentence for searching: "
|
||||
should be accepted as a single string argument.
|
||||
"""
|
||||
cli = LeannCLI()
|
||||
parser = cli.create_parser()
|
||||
|
||||
template = "Represent this sentence for searching: "
|
||||
args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
"/tmp/test-docs",
|
||||
"--embedding-prompt-template",
|
||||
template,
|
||||
]
|
||||
)
|
||||
|
||||
assert args.embedding_prompt_template == template
|
||||
|
||||
|
||||
class TestPromptTemplateStoredInEmbeddingOptions:
|
||||
"""Tests for template storage in embedding_options dict."""
|
||||
|
||||
@patch("leann.cli.LeannBuilder")
|
||||
def test_prompt_template_stored_in_embedding_options_on_build(
|
||||
self, mock_builder_class, tmp_path
|
||||
):
|
||||
"""
|
||||
Verify that when --embedding-prompt-template is provided to build command,
|
||||
the value is stored in embedding_options dict passed to LeannBuilder.
|
||||
|
||||
This test will fail because the CLI doesn't currently process this argument
|
||||
and add it to embedding_options.
|
||||
"""
|
||||
# Setup mocks
|
||||
mock_builder = Mock()
|
||||
mock_builder_class.return_value = mock_builder
|
||||
|
||||
# Create CLI and run build command
|
||||
cli = LeannCLI()
|
||||
|
||||
# Mock load_documents to return a document so builder is created
|
||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
||||
|
||||
parser = cli.create_parser()
|
||||
|
||||
template = "search_query: "
|
||||
args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
str(tmp_path),
|
||||
"--embedding-prompt-template",
|
||||
template,
|
||||
"--force", # Force rebuild to ensure LeannBuilder is called
|
||||
]
|
||||
)
|
||||
|
||||
# Run the build command
|
||||
import asyncio
|
||||
|
||||
asyncio.run(cli.build_index(args))
|
||||
|
||||
# Check that LeannBuilder was called with embedding_options containing prompt_template
|
||||
call_kwargs = mock_builder_class.call_args.kwargs
|
||||
assert "embedding_options" in call_kwargs, "LeannBuilder should receive embedding_options"
|
||||
|
||||
embedding_options = call_kwargs["embedding_options"]
|
||||
assert embedding_options is not None, (
|
||||
"embedding_options should not be None when template provided"
|
||||
)
|
||||
assert "prompt_template" in embedding_options, (
|
||||
"embedding_options should contain 'prompt_template' key"
|
||||
)
|
||||
assert embedding_options["prompt_template"] == template, (
|
||||
f"Template should be '{template}', got {embedding_options.get('prompt_template')}"
|
||||
)
|
||||
|
||||
@patch("leann.cli.LeannBuilder")
|
||||
def test_prompt_template_not_in_options_when_not_provided(self, mock_builder_class, tmp_path):
|
||||
"""
|
||||
Verify that when --embedding-prompt-template is NOT provided,
|
||||
embedding_options either doesn't have the key or it's None.
|
||||
|
||||
This ensures we don't pass empty/None values unnecessarily.
|
||||
"""
|
||||
# Setup mocks
|
||||
mock_builder = Mock()
|
||||
mock_builder_class.return_value = mock_builder
|
||||
|
||||
cli = LeannCLI()
|
||||
|
||||
# Mock load_documents to return a document so builder is created
|
||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
||||
|
||||
parser = cli.create_parser()
|
||||
|
||||
args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
str(tmp_path),
|
||||
"--force", # Force rebuild to ensure LeannBuilder is called
|
||||
]
|
||||
)
|
||||
|
||||
import asyncio
|
||||
|
||||
asyncio.run(cli.build_index(args))
|
||||
|
||||
# Check that if embedding_options is passed, it doesn't have prompt_template
|
||||
call_kwargs = mock_builder_class.call_args.kwargs
|
||||
if call_kwargs.get("embedding_options"):
|
||||
embedding_options = call_kwargs["embedding_options"]
|
||||
# Either the key shouldn't exist, or it should be None
|
||||
assert (
|
||||
"prompt_template" not in embedding_options
|
||||
or embedding_options["prompt_template"] is None
|
||||
), "prompt_template should not be set when flag not provided"
|
||||
|
||||
# R1 Tests: Build-time separate template storage
|
||||
@patch("leann.cli.LeannBuilder")
|
||||
def test_build_stores_separate_templates(self, mock_builder_class, tmp_path):
|
||||
"""
|
||||
R1 Test 1: Verify that when both --embedding-prompt-template and
|
||||
--query-prompt-template are provided to build command, both values
|
||||
are stored separately in embedding_options dict as build_prompt_template
|
||||
and query_prompt_template.
|
||||
|
||||
This test will fail because:
|
||||
1. CLI doesn't accept --query-prompt-template flag yet
|
||||
2. CLI doesn't store templates as separate build_prompt_template and
|
||||
query_prompt_template keys
|
||||
|
||||
Expected behavior after implementation:
|
||||
- .meta.json contains: {"embedding_options": {
|
||||
"build_prompt_template": "doc: ",
|
||||
"query_prompt_template": "query: "
|
||||
}}
|
||||
"""
|
||||
# Setup mocks
|
||||
mock_builder = Mock()
|
||||
mock_builder_class.return_value = mock_builder
|
||||
|
||||
cli = LeannCLI()
|
||||
|
||||
# Mock load_documents to return a document so builder is created
|
||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
||||
|
||||
parser = cli.create_parser()
|
||||
|
||||
build_template = "doc: "
|
||||
query_template = "query: "
|
||||
args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
str(tmp_path),
|
||||
"--embedding-prompt-template",
|
||||
build_template,
|
||||
"--query-prompt-template",
|
||||
query_template,
|
||||
"--force",
|
||||
]
|
||||
)
|
||||
|
||||
# Run the build command
|
||||
import asyncio
|
||||
|
||||
asyncio.run(cli.build_index(args))
|
||||
|
||||
# Check that LeannBuilder was called with separate template keys
|
||||
call_kwargs = mock_builder_class.call_args.kwargs
|
||||
assert "embedding_options" in call_kwargs, "LeannBuilder should receive embedding_options"
|
||||
|
||||
embedding_options = call_kwargs["embedding_options"]
|
||||
assert embedding_options is not None, (
|
||||
"embedding_options should not be None when templates provided"
|
||||
)
|
||||
|
||||
assert "build_prompt_template" in embedding_options, (
|
||||
"embedding_options should contain 'build_prompt_template' key"
|
||||
)
|
||||
assert embedding_options["build_prompt_template"] == build_template, (
|
||||
f"build_prompt_template should be '{build_template}'"
|
||||
)
|
||||
|
||||
assert "query_prompt_template" in embedding_options, (
|
||||
"embedding_options should contain 'query_prompt_template' key"
|
||||
)
|
||||
assert embedding_options["query_prompt_template"] == query_template, (
|
||||
f"query_prompt_template should be '{query_template}'"
|
||||
)
|
||||
|
||||
# Old key should NOT be present when using new separate template format
|
||||
assert "prompt_template" not in embedding_options, (
|
||||
"Old 'prompt_template' key should not be present with separate templates"
|
||||
)
|
||||
|
||||
@patch("leann.cli.LeannBuilder")
|
||||
def test_build_backward_compat_single_template(self, mock_builder_class, tmp_path):
|
||||
"""
|
||||
R1 Test 2: Verify backward compatibility - when only
|
||||
--embedding-prompt-template is provided (old behavior), it should
|
||||
still be stored as 'prompt_template' in embedding_options.
|
||||
|
||||
This ensures existing workflows continue to work unchanged.
|
||||
|
||||
This test currently passes because it matches existing behavior, but it
|
||||
documents the requirement that this behavior must be preserved after
|
||||
implementing the separate template feature.
|
||||
|
||||
Expected behavior:
|
||||
- .meta.json contains: {"embedding_options": {"prompt_template": "prompt: "}}
|
||||
- No build_prompt_template or query_prompt_template keys
|
||||
"""
|
||||
# Setup mocks
|
||||
mock_builder = Mock()
|
||||
mock_builder_class.return_value = mock_builder
|
||||
|
||||
cli = LeannCLI()
|
||||
|
||||
# Mock load_documents to return a document so builder is created
|
||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
||||
|
||||
parser = cli.create_parser()
|
||||
|
||||
template = "prompt: "
|
||||
args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
str(tmp_path),
|
||||
"--embedding-prompt-template",
|
||||
template,
|
||||
"--force",
|
||||
]
|
||||
)
|
||||
|
||||
# Run the build command
|
||||
import asyncio
|
||||
|
||||
asyncio.run(cli.build_index(args))
|
||||
|
||||
# Check that LeannBuilder was called with old format
|
||||
call_kwargs = mock_builder_class.call_args.kwargs
|
||||
assert "embedding_options" in call_kwargs, "LeannBuilder should receive embedding_options"
|
||||
|
||||
embedding_options = call_kwargs["embedding_options"]
|
||||
assert embedding_options is not None, (
|
||||
"embedding_options should not be None when template provided"
|
||||
)
|
||||
|
||||
assert "prompt_template" in embedding_options, (
|
||||
"embedding_options should contain old 'prompt_template' key for backward compat"
|
||||
)
|
||||
assert embedding_options["prompt_template"] == template, (
|
||||
f"prompt_template should be '{template}'"
|
||||
)
|
||||
|
||||
# New keys should NOT be present in backward compat mode
|
||||
assert "build_prompt_template" not in embedding_options, (
|
||||
"build_prompt_template should not be present with single template flag"
|
||||
)
|
||||
assert "query_prompt_template" not in embedding_options, (
|
||||
"query_prompt_template should not be present with single template flag"
|
||||
)
|
||||
|
||||
@patch("leann.cli.LeannBuilder")
|
||||
def test_build_no_templates(self, mock_builder_class, tmp_path):
|
||||
"""
|
||||
R1 Test 3: Verify that when no template flags are provided,
|
||||
embedding_options has no prompt template keys.
|
||||
|
||||
This ensures clean defaults and no unnecessary keys in .meta.json.
|
||||
|
||||
This test currently passes because it matches existing behavior, but it
|
||||
documents the requirement that this behavior must be preserved after
|
||||
implementing the separate template feature.
|
||||
|
||||
Expected behavior:
|
||||
- .meta.json has no prompt_template, build_prompt_template, or
|
||||
query_prompt_template keys (or embedding_options is empty/None)
|
||||
"""
|
||||
# Setup mocks
|
||||
mock_builder = Mock()
|
||||
mock_builder_class.return_value = mock_builder
|
||||
|
||||
cli = LeannCLI()
|
||||
|
||||
# Mock load_documents to return a document so builder is created
|
||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
||||
|
||||
parser = cli.create_parser()
|
||||
|
||||
args = parser.parse_args(["build", "test-index", "--docs", str(tmp_path), "--force"])
|
||||
|
||||
# Run the build command
|
||||
import asyncio
|
||||
|
||||
asyncio.run(cli.build_index(args))
|
||||
|
||||
# Check that no template keys are present
|
||||
call_kwargs = mock_builder_class.call_args.kwargs
|
||||
if call_kwargs.get("embedding_options"):
|
||||
embedding_options = call_kwargs["embedding_options"]
|
||||
|
||||
# None of the template keys should be present
|
||||
assert "prompt_template" not in embedding_options, (
|
||||
"prompt_template should not be present when no flags provided"
|
||||
)
|
||||
assert "build_prompt_template" not in embedding_options, (
|
||||
"build_prompt_template should not be present when no flags provided"
|
||||
)
|
||||
assert "query_prompt_template" not in embedding_options, (
|
||||
"query_prompt_template should not be present when no flags provided"
|
||||
)
|
||||
|
||||
|
||||
class TestPromptTemplateFlowsToComputeEmbeddings:
|
||||
"""Tests for template flowing through to compute_embeddings function."""
|
||||
|
||||
@patch("leann.api.compute_embeddings")
|
||||
def test_prompt_template_flows_to_compute_embeddings_via_provider_options(
|
||||
self, mock_compute_embeddings, tmp_path
|
||||
):
|
||||
"""
|
||||
Verify that the prompt template flows from CLI args through LeannBuilder
|
||||
to compute_embeddings() function via provider_options parameter.
|
||||
|
||||
This is an integration test that verifies the complete flow:
|
||||
CLI → embedding_options → LeannBuilder → compute_embeddings(provider_options)
|
||||
|
||||
This test will fail because:
|
||||
1. CLI doesn't capture the argument yet
|
||||
2. embedding_options doesn't include prompt_template
|
||||
3. LeannBuilder doesn't pass it through to compute_embeddings
|
||||
"""
|
||||
# Mock compute_embeddings to return dummy embeddings as numpy array
|
||||
import numpy as np
|
||||
|
||||
mock_compute_embeddings.return_value = np.array([[0.1, 0.2, 0.3]], dtype=np.float32)
|
||||
|
||||
# Use real LeannBuilder (not mocked) to test the actual flow
|
||||
cli = LeannCLI()
|
||||
|
||||
# Mock load_documents to return a simple document
|
||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
||||
|
||||
parser = cli.create_parser()
|
||||
|
||||
template = "search_document: "
|
||||
args = parser.parse_args(
|
||||
[
|
||||
"build",
|
||||
"test-index",
|
||||
"--docs",
|
||||
str(tmp_path),
|
||||
"--embedding-prompt-template",
|
||||
template,
|
||||
"--backend-name",
|
||||
"hnsw", # Use hnsw backend
|
||||
"--force", # Force rebuild to ensure index is created
|
||||
]
|
||||
)
|
||||
|
||||
# This should fail because the flow isn't implemented yet
|
||||
import asyncio
|
||||
|
||||
asyncio.run(cli.build_index(args))
|
||||
|
||||
# Verify compute_embeddings was called with provider_options containing prompt_template
|
||||
assert mock_compute_embeddings.called, "compute_embeddings should have been called"
|
||||
|
||||
# Check the call arguments
|
||||
call_kwargs = mock_compute_embeddings.call_args.kwargs
|
||||
assert "provider_options" in call_kwargs, (
|
||||
"compute_embeddings should receive provider_options parameter"
|
||||
)
|
||||
|
||||
provider_options = call_kwargs["provider_options"]
|
||||
assert provider_options is not None, "provider_options should not be None"
|
||||
assert "prompt_template" in provider_options, (
|
||||
"provider_options should contain prompt_template key"
|
||||
)
|
||||
assert provider_options["prompt_template"] == template, (
|
||||
f"Template should be '{template}', got {provider_options.get('prompt_template')}"
|
||||
)
|
||||
|
||||
|
||||
class TestPromptTemplateArgumentHelp:
|
||||
"""Tests for argument help text and documentation."""
|
||||
|
||||
def test_build_command_prompt_template_has_help_text(self):
|
||||
"""
|
||||
Verify that --embedding-prompt-template has descriptive help text.
|
||||
|
||||
Good help text is crucial for CLI usability.
|
||||
"""
|
||||
cli = LeannCLI()
|
||||
parser = cli.create_parser()
|
||||
|
||||
# Get the build subparser
|
||||
# This is a bit tricky - we need to parse to get the help
|
||||
# We'll check that the help includes relevant keywords
|
||||
import io
|
||||
from contextlib import redirect_stdout
|
||||
|
||||
f = io.StringIO()
|
||||
try:
|
||||
with redirect_stdout(f):
|
||||
parser.parse_args(["build", "--help"])
|
||||
except SystemExit:
|
||||
pass # --help causes sys.exit(0)
|
||||
|
||||
help_text = f.getvalue()
|
||||
assert "--embedding-prompt-template" in help_text, (
|
||||
"Help text should mention --embedding-prompt-template"
|
||||
)
|
||||
# Check for keywords that should be in the help
|
||||
help_lower = help_text.lower()
|
||||
assert any(keyword in help_lower for keyword in ["template", "prompt", "prepend"]), (
|
||||
"Help text should explain what the prompt template does"
|
||||
)
|
||||
|
||||
def test_search_command_prompt_template_has_help_text(self):
|
||||
"""
|
||||
Verify that search command also has help text for --embedding-prompt-template.
|
||||
"""
|
||||
cli = LeannCLI()
|
||||
parser = cli.create_parser()
|
||||
|
||||
import io
|
||||
from contextlib import redirect_stdout
|
||||
|
||||
f = io.StringIO()
|
||||
try:
|
||||
with redirect_stdout(f):
|
||||
parser.parse_args(["search", "--help"])
|
||||
except SystemExit:
|
||||
pass # --help causes sys.exit(0)
|
||||
|
||||
help_text = f.getvalue()
|
||||
assert "--embedding-prompt-template" in help_text, (
|
||||
"Search help text should mention --embedding-prompt-template"
|
||||
)
|
||||
@@ -1,281 +0,0 @@
|
||||
"""Unit tests for prompt template prepending in OpenAI embeddings.
|
||||
|
||||
This test suite defines the contract for prompt template functionality that allows
|
||||
users to prepend a consistent prompt to all embedding inputs. These tests verify:
|
||||
|
||||
1. Template prepending to all input texts before embedding computation
|
||||
2. Graceful handling of None/missing provider_options
|
||||
3. Empty string template behavior (no-op)
|
||||
4. Logging of template application for observability
|
||||
5. Template application before token truncation
|
||||
|
||||
All tests are written in Red Phase - they should FAIL initially because the
|
||||
implementation does not exist yet.
|
||||
"""
|
||||
|
||||
from unittest.mock import MagicMock, Mock, patch
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from leann.embedding_compute import compute_embeddings_openai
|
||||
|
||||
|
||||
class TestPromptTemplatePrepending:
|
||||
"""Tests for prompt template prepending in compute_embeddings_openai."""
|
||||
|
||||
@pytest.fixture
|
||||
def mock_openai_client(self):
|
||||
"""Create mock OpenAI client that captures input texts."""
|
||||
mock_client = MagicMock()
|
||||
|
||||
# Mock the embeddings.create response
|
||||
mock_response = Mock()
|
||||
mock_response.data = [
|
||||
Mock(embedding=[0.1, 0.2, 0.3]),
|
||||
Mock(embedding=[0.4, 0.5, 0.6]),
|
||||
]
|
||||
mock_client.embeddings.create.return_value = mock_response
|
||||
|
||||
return mock_client
|
||||
|
||||
@pytest.fixture
|
||||
def mock_openai_module(self, mock_openai_client, monkeypatch):
|
||||
"""Mock the openai module to return our mock client."""
|
||||
# Mock the API key environment variable
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "fake-test-key-for-mocking")
|
||||
|
||||
# openai is imported inside the function, so we need to patch it there
|
||||
with patch("openai.OpenAI", return_value=mock_openai_client) as mock_openai:
|
||||
yield mock_openai
|
||||
|
||||
def test_prompt_template_prepended_to_all_texts(self, mock_openai_module, mock_openai_client):
|
||||
"""Verify template is prepended to all input texts.
|
||||
|
||||
When provider_options contains "prompt_template", that template should
|
||||
be prepended to every text in the input list before sending to OpenAI API.
|
||||
|
||||
This is the core functionality: the template acts as a consistent prefix
|
||||
that provides context or instruction for the embedding model.
|
||||
"""
|
||||
texts = ["First document", "Second document"]
|
||||
template = "search_document: "
|
||||
provider_options = {"prompt_template": template}
|
||||
|
||||
# Call compute_embeddings_openai with provider_options
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
# Verify embeddings.create was called with templated texts
|
||||
mock_openai_client.embeddings.create.assert_called_once()
|
||||
call_args = mock_openai_client.embeddings.create.call_args
|
||||
|
||||
# Extract the input texts sent to API
|
||||
sent_texts = call_args.kwargs["input"]
|
||||
|
||||
# Verify template was prepended to all texts
|
||||
assert len(sent_texts) == 2, "Should send same number of texts"
|
||||
assert sent_texts[0] == "search_document: First document", (
|
||||
"Template should be prepended to first text"
|
||||
)
|
||||
assert sent_texts[1] == "search_document: Second document", (
|
||||
"Template should be prepended to second text"
|
||||
)
|
||||
|
||||
# Verify result is valid embeddings array
|
||||
assert isinstance(result, np.ndarray)
|
||||
assert result.shape == (2, 3), "Should return correct shape"
|
||||
|
||||
def test_template_not_applied_when_missing_or_empty(
|
||||
self, mock_openai_module, mock_openai_client
|
||||
):
|
||||
"""Verify template not applied when provider_options is None, missing key, or empty string.
|
||||
|
||||
This consolidated test covers three scenarios where templates should NOT be applied:
|
||||
1. provider_options is None (default behavior)
|
||||
2. provider_options exists but missing 'prompt_template' key
|
||||
3. prompt_template is explicitly set to empty string ""
|
||||
|
||||
In all cases, texts should be sent to the API unchanged.
|
||||
"""
|
||||
# Scenario 1: None provider_options
|
||||
texts = ["Original text one", "Original text two"]
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=None,
|
||||
)
|
||||
call_args = mock_openai_client.embeddings.create.call_args
|
||||
sent_texts = call_args.kwargs["input"]
|
||||
assert sent_texts[0] == "Original text one", (
|
||||
"Text should be unchanged with None provider_options"
|
||||
)
|
||||
assert sent_texts[1] == "Original text two"
|
||||
assert isinstance(result, np.ndarray)
|
||||
assert result.shape == (2, 3)
|
||||
|
||||
# Reset mock for next scenario
|
||||
mock_openai_client.reset_mock()
|
||||
mock_response = Mock()
|
||||
mock_response.data = [
|
||||
Mock(embedding=[0.1, 0.2, 0.3]),
|
||||
Mock(embedding=[0.4, 0.5, 0.6]),
|
||||
]
|
||||
mock_openai_client.embeddings.create.return_value = mock_response
|
||||
|
||||
# Scenario 2: Missing 'prompt_template' key
|
||||
texts = ["Text without template", "Another text"]
|
||||
provider_options = {"base_url": "https://api.openai.com/v1"}
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
call_args = mock_openai_client.embeddings.create.call_args
|
||||
sent_texts = call_args.kwargs["input"]
|
||||
assert sent_texts[0] == "Text without template", "Text should be unchanged with missing key"
|
||||
assert sent_texts[1] == "Another text"
|
||||
assert isinstance(result, np.ndarray)
|
||||
|
||||
# Reset mock for next scenario
|
||||
mock_openai_client.reset_mock()
|
||||
mock_openai_client.embeddings.create.return_value = mock_response
|
||||
|
||||
# Scenario 3: Empty string template
|
||||
texts = ["Text one", "Text two"]
|
||||
provider_options = {"prompt_template": ""}
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
call_args = mock_openai_client.embeddings.create.call_args
|
||||
sent_texts = call_args.kwargs["input"]
|
||||
assert sent_texts[0] == "Text one", "Empty template should not modify text"
|
||||
assert sent_texts[1] == "Text two"
|
||||
assert isinstance(result, np.ndarray)
|
||||
|
||||
def test_prompt_template_with_multiple_batches(self, mock_openai_module, mock_openai_client):
|
||||
"""Verify template is prepended in all batches when texts exceed batch size.
|
||||
|
||||
OpenAI API has batch size limits. When input texts are split into
|
||||
multiple batches, the template should be prepended to texts in every batch.
|
||||
|
||||
This ensures consistency across all API calls.
|
||||
"""
|
||||
# Create many texts that will be split into multiple batches
|
||||
texts = [f"Document {i}" for i in range(1000)]
|
||||
template = "passage: "
|
||||
provider_options = {"prompt_template": template}
|
||||
|
||||
# Mock multiple batch responses
|
||||
mock_response = Mock()
|
||||
mock_response.data = [Mock(embedding=[0.1, 0.2, 0.3]) for _ in range(1000)]
|
||||
mock_openai_client.embeddings.create.return_value = mock_response
|
||||
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
# Verify embeddings.create was called multiple times (batching)
|
||||
assert mock_openai_client.embeddings.create.call_count >= 2, (
|
||||
"Should make multiple API calls for large text list"
|
||||
)
|
||||
|
||||
# Verify template was prepended in ALL batches
|
||||
for call in mock_openai_client.embeddings.create.call_args_list:
|
||||
sent_texts = call.kwargs["input"]
|
||||
for text in sent_texts:
|
||||
assert text.startswith(template), (
|
||||
f"All texts in all batches should start with template. Got: {text}"
|
||||
)
|
||||
|
||||
# Verify result shape
|
||||
assert result.shape[0] == 1000, "Should return embeddings for all texts"
|
||||
|
||||
def test_prompt_template_with_special_characters(self, mock_openai_module, mock_openai_client):
|
||||
"""Verify template with special characters is handled correctly.
|
||||
|
||||
Templates may contain special characters, Unicode, newlines, etc.
|
||||
These should all be prepended correctly without encoding issues.
|
||||
"""
|
||||
texts = ["Document content"]
|
||||
# Template with various special characters
|
||||
template = "🔍 Search query [EN]: "
|
||||
provider_options = {"prompt_template": template}
|
||||
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
# Verify special characters in template were preserved
|
||||
call_args = mock_openai_client.embeddings.create.call_args
|
||||
sent_texts = call_args.kwargs["input"]
|
||||
|
||||
assert sent_texts[0] == "🔍 Search query [EN]: Document content", (
|
||||
"Special characters in template should be preserved"
|
||||
)
|
||||
|
||||
assert isinstance(result, np.ndarray)
|
||||
|
||||
def test_prompt_template_integration_with_existing_validation(
|
||||
self, mock_openai_module, mock_openai_client
|
||||
):
|
||||
"""Verify template works with existing input validation.
|
||||
|
||||
compute_embeddings_openai has validation for empty texts and whitespace.
|
||||
Template prepending should happen AFTER validation, so validation errors
|
||||
are thrown based on original texts, not templated texts.
|
||||
|
||||
This ensures users get clear error messages about their input.
|
||||
"""
|
||||
# Empty text should still raise ValueError even with template
|
||||
texts = [""]
|
||||
provider_options = {"prompt_template": "prefix: "}
|
||||
|
||||
with pytest.raises(ValueError, match="empty/invalid"):
|
||||
compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
def test_prompt_template_with_api_key_and_base_url(
|
||||
self, mock_openai_module, mock_openai_client
|
||||
):
|
||||
"""Verify template works alongside other provider_options.
|
||||
|
||||
provider_options may contain multiple settings: prompt_template,
|
||||
base_url, api_key. All should work together correctly.
|
||||
"""
|
||||
texts = ["Test document"]
|
||||
provider_options = {
|
||||
"prompt_template": "embed: ",
|
||||
"base_url": "https://custom.api.com/v1",
|
||||
"api_key": "test-key-123",
|
||||
}
|
||||
|
||||
result = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name="text-embedding-3-small",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
# Verify template was applied
|
||||
call_args = mock_openai_client.embeddings.create.call_args
|
||||
sent_texts = call_args.kwargs["input"]
|
||||
assert sent_texts[0] == "embed: Test document"
|
||||
|
||||
# Verify OpenAI client was created with correct base_url
|
||||
mock_openai_module.assert_called()
|
||||
client_init_kwargs = mock_openai_module.call_args.kwargs
|
||||
assert client_init_kwargs["base_url"] == "https://custom.api.com/v1"
|
||||
assert client_init_kwargs["api_key"] == "test-key-123"
|
||||
|
||||
assert isinstance(result, np.ndarray)
|
||||
@@ -1,315 +0,0 @@
|
||||
"""Unit tests for LM Studio TypeScript SDK bridge functionality.
|
||||
|
||||
This test suite defines the contract for the LM Studio SDK bridge that queries
|
||||
model context length via Node.js subprocess. These tests verify:
|
||||
|
||||
1. Successful SDK query returns context length
|
||||
2. Graceful fallback when Node.js not installed (FileNotFoundError)
|
||||
3. Graceful fallback when SDK not installed (npm error)
|
||||
4. Timeout handling (subprocess.TimeoutExpired)
|
||||
5. Invalid JSON response handling
|
||||
|
||||
All tests are written in Red Phase - they should FAIL initially because the
|
||||
`_query_lmstudio_context_limit` function does not exist yet.
|
||||
|
||||
The function contract:
|
||||
- Inputs: model_name (str), base_url (str, WebSocket format "ws://localhost:1234")
|
||||
- Outputs: context_length (int) or None on error
|
||||
- Requirements:
|
||||
1. Call Node.js with inline JavaScript using @lmstudio/sdk
|
||||
2. 10-second timeout (accounts for Node.js startup)
|
||||
3. Graceful fallback on any error (returns None, doesn't raise)
|
||||
4. Parse JSON response with contextLength field
|
||||
5. Log errors at debug level (not warning/error)
|
||||
"""
|
||||
|
||||
import subprocess
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
|
||||
# Try to import the function - if it doesn't exist, tests will fail as expected
|
||||
try:
|
||||
from leann.embedding_compute import _query_lmstudio_context_limit
|
||||
except ImportError:
|
||||
# Function doesn't exist yet (Red Phase) - create a placeholder that will fail
|
||||
def _query_lmstudio_context_limit(*args, **kwargs):
|
||||
raise NotImplementedError(
|
||||
"_query_lmstudio_context_limit not implemented yet - this is the Red Phase"
|
||||
)
|
||||
|
||||
|
||||
class TestLMStudioBridge:
|
||||
"""Tests for LM Studio TypeScript SDK bridge integration."""
|
||||
|
||||
def test_query_lmstudio_success(self, monkeypatch):
|
||||
"""Verify successful SDK query returns context length.
|
||||
|
||||
When the Node.js subprocess successfully queries the LM Studio SDK,
|
||||
it should return a JSON response with contextLength field. The function
|
||||
should parse this and return the integer context length.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
# Verify timeout is set to 10 seconds
|
||||
assert kwargs.get("timeout") == 10, "Should use 10-second timeout for Node.js startup"
|
||||
|
||||
# Verify capture_output and text=True are set
|
||||
assert kwargs.get("capture_output") is True, "Should capture stdout/stderr"
|
||||
assert kwargs.get("text") is True, "Should decode output as text"
|
||||
|
||||
# Return successful JSON response
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = '{"contextLength": 8192, "identifier": "custom-model"}'
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
# Test with typical LM Studio model
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="custom-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit == 8192, "Should return context length from SDK response"
|
||||
|
||||
def test_query_lmstudio_nodejs_not_found(self, monkeypatch):
|
||||
"""Verify graceful fallback when Node.js not installed.
|
||||
|
||||
When Node.js is not installed, subprocess.run will raise FileNotFoundError.
|
||||
The function should catch this and return None (graceful fallback to registry).
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
raise FileNotFoundError("node: command not found")
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="custom-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None when Node.js not installed"
|
||||
|
||||
def test_query_lmstudio_sdk_not_installed(self, monkeypatch):
|
||||
"""Verify graceful fallback when @lmstudio/sdk not installed.
|
||||
|
||||
When the SDK npm package is not installed, Node.js will return non-zero
|
||||
exit code with error message in stderr. The function should detect this
|
||||
and return None.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 1
|
||||
mock_result.stdout = ""
|
||||
mock_result.stderr = (
|
||||
"Error: Cannot find module '@lmstudio/sdk'\nRequire stack:\n- /path/to/script.js"
|
||||
)
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="custom-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None when SDK not installed"
|
||||
|
||||
def test_query_lmstudio_timeout(self, monkeypatch):
|
||||
"""Verify graceful fallback when subprocess times out.
|
||||
|
||||
When the Node.js process takes longer than 10 seconds (e.g., LM Studio
|
||||
not responding), subprocess.TimeoutExpired should be raised. The function
|
||||
should catch this and return None.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
raise subprocess.TimeoutExpired(cmd=["node", "lmstudio_bridge.js"], timeout=10)
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="custom-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None on timeout"
|
||||
|
||||
def test_query_lmstudio_invalid_json(self, monkeypatch):
|
||||
"""Verify graceful fallback when response is invalid JSON.
|
||||
|
||||
When the subprocess returns malformed JSON (e.g., due to SDK error),
|
||||
json.loads will raise ValueError/JSONDecodeError. The function should
|
||||
catch this and return None.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = "This is not valid JSON"
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="custom-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None when JSON parsing fails"
|
||||
|
||||
def test_query_lmstudio_missing_context_length_field(self, monkeypatch):
|
||||
"""Verify graceful fallback when JSON lacks contextLength field.
|
||||
|
||||
When the SDK returns valid JSON but without the expected contextLength
|
||||
field (e.g., error response), the function should return None.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = '{"identifier": "test-model", "error": "Model not found"}'
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="nonexistent-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None when contextLength field missing"
|
||||
|
||||
def test_query_lmstudio_null_context_length(self, monkeypatch):
|
||||
"""Verify graceful fallback when contextLength is null.
|
||||
|
||||
When the SDK returns contextLength: null (model couldn't be loaded),
|
||||
the function should return None for registry fallback.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = '{"contextLength": null, "identifier": "test-model"}'
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="test-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None when contextLength is null"
|
||||
|
||||
def test_query_lmstudio_zero_context_length(self, monkeypatch):
|
||||
"""Verify graceful fallback when contextLength is zero.
|
||||
|
||||
When the SDK returns contextLength: 0 (invalid value), the function
|
||||
should return None to trigger registry fallback.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = '{"contextLength": 0, "identifier": "test-model"}'
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="test-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit is None, "Should return None when contextLength is zero"
|
||||
|
||||
def test_query_lmstudio_with_custom_port(self, monkeypatch):
|
||||
"""Verify SDK query works with non-default WebSocket port.
|
||||
|
||||
LM Studio can run on custom ports. The function should pass the
|
||||
provided base_url to the Node.js subprocess.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
# Verify the base_url argument is passed correctly
|
||||
command = args[0] if args else kwargs.get("args", [])
|
||||
assert "ws://localhost:8080" in " ".join(command), (
|
||||
"Should pass custom port to subprocess"
|
||||
)
|
||||
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = '{"contextLength": 4096, "identifier": "custom-model"}'
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="custom-model", base_url="ws://localhost:8080"
|
||||
)
|
||||
|
||||
assert limit == 4096, "Should work with custom WebSocket port"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"context_length,expected",
|
||||
[
|
||||
(512, 512), # Small context
|
||||
(2048, 2048), # Common context
|
||||
(8192, 8192), # Large context
|
||||
(32768, 32768), # Very large context
|
||||
],
|
||||
)
|
||||
def test_query_lmstudio_various_context_lengths(self, monkeypatch, context_length, expected):
|
||||
"""Verify SDK query handles various context length values.
|
||||
|
||||
Different models have different context lengths. The function should
|
||||
correctly parse and return any positive integer value.
|
||||
"""
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
mock_result = Mock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = f'{{"contextLength": {context_length}, "identifier": "test"}}'
|
||||
mock_result.stderr = ""
|
||||
return mock_result
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
limit = _query_lmstudio_context_limit(
|
||||
model_name="test-model", base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
assert limit == expected, f"Should return {expected} for context length {context_length}"
|
||||
|
||||
def test_query_lmstudio_logs_at_debug_level(self, monkeypatch, caplog):
|
||||
"""Verify errors are logged at DEBUG level, not WARNING/ERROR.
|
||||
|
||||
Following the graceful fallback pattern from Ollama implementation,
|
||||
errors should be logged at debug level to avoid alarming users when
|
||||
fallback to registry works fine.
|
||||
"""
|
||||
import logging
|
||||
|
||||
caplog.set_level(logging.DEBUG, logger="leann.embedding_compute")
|
||||
|
||||
def mock_run(*args, **kwargs):
|
||||
raise FileNotFoundError("node: command not found")
|
||||
|
||||
monkeypatch.setattr("subprocess.run", mock_run)
|
||||
|
||||
_query_lmstudio_context_limit(model_name="test-model", base_url="ws://localhost:1234")
|
||||
|
||||
# Check that debug logging occurred (not warning/error)
|
||||
debug_logs = [record for record in caplog.records if record.levelname == "DEBUG"]
|
||||
assert len(debug_logs) > 0, "Should log error at DEBUG level"
|
||||
|
||||
# Verify no WARNING or ERROR logs
|
||||
warning_or_error_logs = [
|
||||
record for record in caplog.records if record.levelname in ["WARNING", "ERROR"]
|
||||
]
|
||||
assert len(warning_or_error_logs) == 0, (
|
||||
"Should not log at WARNING/ERROR level for expected failures"
|
||||
)
|
||||
@@ -1,400 +0,0 @@
|
||||
"""End-to-end integration tests for prompt template and token limit features.
|
||||
|
||||
These tests verify real-world functionality with live services:
|
||||
- OpenAI-compatible APIs (OpenAI, LM Studio) with prompt template support
|
||||
- Ollama with dynamic token limit detection
|
||||
- Hybrid token limit discovery mechanism
|
||||
|
||||
Run with: pytest tests/test_prompt_template_e2e.py -v -s
|
||||
Skip if services unavailable: pytest tests/test_prompt_template_e2e.py -m "not integration"
|
||||
|
||||
Prerequisites:
|
||||
1. LM Studio running with embedding model: http://localhost:1234
|
||||
2. [Optional] Ollama running: ollama serve
|
||||
3. [Optional] Ollama model: ollama pull nomic-embed-text
|
||||
4. [Optional] Node.js + @lmstudio/sdk for context length detection
|
||||
"""
|
||||
|
||||
import logging
|
||||
import socket
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import requests
|
||||
from leann.embedding_compute import (
|
||||
compute_embeddings_ollama,
|
||||
compute_embeddings_openai,
|
||||
get_model_token_limit,
|
||||
)
|
||||
|
||||
# Test markers for conditional execution
|
||||
pytestmark = pytest.mark.integration
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_service_available(host: str, port: int, timeout: float = 2.0) -> bool:
|
||||
"""Check if a service is available on the given host:port."""
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
sock.settimeout(timeout)
|
||||
result = sock.connect_ex((host, port))
|
||||
sock.close()
|
||||
return result == 0
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def check_ollama_available() -> bool:
|
||||
"""Check if Ollama service is available."""
|
||||
if not check_service_available("localhost", 11434):
|
||||
return False
|
||||
try:
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=2.0)
|
||||
return response.status_code == 200
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def check_lmstudio_available() -> bool:
|
||||
"""Check if LM Studio service is available."""
|
||||
if not check_service_available("localhost", 1234):
|
||||
return False
|
||||
try:
|
||||
response = requests.get("http://localhost:1234/v1/models", timeout=2.0)
|
||||
return response.status_code == 200
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def get_lmstudio_first_model() -> str:
|
||||
"""Get the first available model from LM Studio."""
|
||||
try:
|
||||
response = requests.get("http://localhost:1234/v1/models", timeout=5.0)
|
||||
data = response.json()
|
||||
models = data.get("data", [])
|
||||
if models:
|
||||
return models[0]["id"]
|
||||
except Exception:
|
||||
pass
|
||||
return None
|
||||
|
||||
|
||||
class TestPromptTemplateOpenAI:
|
||||
"""End-to-end tests for prompt template with OpenAI-compatible APIs (LM Studio)."""
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not check_lmstudio_available(), reason="LM Studio service not available on localhost:1234"
|
||||
)
|
||||
def test_lmstudio_embedding_with_prompt_template(self):
|
||||
"""Test prompt templates with LM Studio using OpenAI-compatible API."""
|
||||
model_name = get_lmstudio_first_model()
|
||||
if not model_name:
|
||||
pytest.skip("No models loaded in LM Studio")
|
||||
|
||||
texts = ["artificial intelligence", "machine learning"]
|
||||
prompt_template = "search_query: "
|
||||
|
||||
# Get embeddings with prompt template via provider_options
|
||||
provider_options = {"prompt_template": prompt_template}
|
||||
embeddings = compute_embeddings_openai(
|
||||
texts=texts,
|
||||
model_name=model_name,
|
||||
base_url="http://localhost:1234/v1",
|
||||
api_key="lm-studio", # LM Studio doesn't require real key
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
assert embeddings is not None
|
||||
assert len(embeddings) == 2
|
||||
assert all(isinstance(emb, np.ndarray) for emb in embeddings)
|
||||
assert all(len(emb) > 0 for emb in embeddings)
|
||||
|
||||
logger.info(
|
||||
f"✓ LM Studio embeddings with prompt template: {len(embeddings)} vectors, {len(embeddings[0])} dimensions"
|
||||
)
|
||||
|
||||
@pytest.mark.skipif(not check_lmstudio_available(), reason="LM Studio service not available")
|
||||
def test_lmstudio_prompt_template_affects_embeddings(self):
|
||||
"""Verify that prompt templates actually change embedding values."""
|
||||
model_name = get_lmstudio_first_model()
|
||||
if not model_name:
|
||||
pytest.skip("No models loaded in LM Studio")
|
||||
|
||||
text = "machine learning"
|
||||
base_url = "http://localhost:1234/v1"
|
||||
api_key = "lm-studio"
|
||||
|
||||
# Get embeddings without template
|
||||
embeddings_no_template = compute_embeddings_openai(
|
||||
texts=[text],
|
||||
model_name=model_name,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
provider_options={},
|
||||
)
|
||||
|
||||
# Get embeddings with template
|
||||
embeddings_with_template = compute_embeddings_openai(
|
||||
texts=[text],
|
||||
model_name=model_name,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
provider_options={"prompt_template": "search_query: "},
|
||||
)
|
||||
|
||||
# Embeddings should be different when template is applied
|
||||
assert not np.allclose(embeddings_no_template[0], embeddings_with_template[0])
|
||||
|
||||
logger.info("✓ Prompt template changes embedding values as expected")
|
||||
|
||||
|
||||
class TestPromptTemplateOllama:
|
||||
"""End-to-end tests for prompt template with Ollama."""
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not check_ollama_available(), reason="Ollama service not available on localhost:11434"
|
||||
)
|
||||
def test_ollama_embedding_with_prompt_template(self):
|
||||
"""Test prompt templates with Ollama using any available embedding model."""
|
||||
# Get any available embedding model
|
||||
try:
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=2.0)
|
||||
models = response.json().get("models", [])
|
||||
|
||||
embedding_models = []
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
base_name = name.split(":")[0]
|
||||
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5", "nomic"]):
|
||||
embedding_models.append(name)
|
||||
|
||||
if not embedding_models:
|
||||
pytest.skip("No embedding models available in Ollama")
|
||||
|
||||
model_name = embedding_models[0]
|
||||
|
||||
texts = ["artificial intelligence", "machine learning"]
|
||||
prompt_template = "search_query: "
|
||||
|
||||
# Get embeddings with prompt template via provider_options
|
||||
provider_options = {"prompt_template": prompt_template}
|
||||
embeddings = compute_embeddings_ollama(
|
||||
texts=texts,
|
||||
model_name=model_name,
|
||||
is_build=False,
|
||||
host="http://localhost:11434",
|
||||
provider_options=provider_options,
|
||||
)
|
||||
|
||||
assert embeddings is not None
|
||||
assert len(embeddings) == 2
|
||||
assert all(isinstance(emb, np.ndarray) for emb in embeddings)
|
||||
assert all(len(emb) > 0 for emb in embeddings)
|
||||
|
||||
logger.info(
|
||||
f"✓ Ollama embeddings with prompt template: {len(embeddings)} vectors, {len(embeddings[0])} dimensions"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
pytest.skip(f"Could not test Ollama prompt template: {e}")
|
||||
|
||||
@pytest.mark.skipif(not check_ollama_available(), reason="Ollama service not available")
|
||||
def test_ollama_prompt_template_affects_embeddings(self):
|
||||
"""Verify that prompt templates actually change embedding values with Ollama."""
|
||||
# Get any available embedding model
|
||||
try:
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=2.0)
|
||||
models = response.json().get("models", [])
|
||||
|
||||
embedding_models = []
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
base_name = name.split(":")[0]
|
||||
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5", "nomic"]):
|
||||
embedding_models.append(name)
|
||||
|
||||
if not embedding_models:
|
||||
pytest.skip("No embedding models available in Ollama")
|
||||
|
||||
model_name = embedding_models[0]
|
||||
text = "machine learning"
|
||||
host = "http://localhost:11434"
|
||||
|
||||
# Get embeddings without template
|
||||
embeddings_no_template = compute_embeddings_ollama(
|
||||
texts=[text], model_name=model_name, is_build=False, host=host, provider_options={}
|
||||
)
|
||||
|
||||
# Get embeddings with template
|
||||
embeddings_with_template = compute_embeddings_ollama(
|
||||
texts=[text],
|
||||
model_name=model_name,
|
||||
is_build=False,
|
||||
host=host,
|
||||
provider_options={"prompt_template": "search_query: "},
|
||||
)
|
||||
|
||||
# Embeddings should be different when template is applied
|
||||
assert not np.allclose(embeddings_no_template[0], embeddings_with_template[0])
|
||||
|
||||
logger.info("✓ Ollama prompt template changes embedding values as expected")
|
||||
|
||||
except Exception as e:
|
||||
pytest.skip(f"Could not test Ollama prompt template: {e}")
|
||||
|
||||
|
||||
class TestLMStudioSDK:
|
||||
"""End-to-end tests for LM Studio SDK integration."""
|
||||
|
||||
@pytest.mark.skipif(not check_lmstudio_available(), reason="LM Studio service not available")
|
||||
def test_lmstudio_model_listing(self):
|
||||
"""Test that we can list models from LM Studio."""
|
||||
try:
|
||||
response = requests.get("http://localhost:1234/v1/models", timeout=5.0)
|
||||
assert response.status_code == 200
|
||||
|
||||
data = response.json()
|
||||
assert "data" in data
|
||||
|
||||
models = data["data"]
|
||||
logger.info(f"✓ LM Studio models available: {len(models)}")
|
||||
|
||||
if models:
|
||||
logger.info(f" First model: {models[0].get('id', 'unknown')}")
|
||||
except Exception as e:
|
||||
pytest.skip(f"LM Studio API error: {e}")
|
||||
|
||||
@pytest.mark.skipif(not check_lmstudio_available(), reason="LM Studio service not available")
|
||||
def test_lmstudio_sdk_context_length_detection(self):
|
||||
"""Test context length detection via LM Studio SDK bridge (requires Node.js + SDK)."""
|
||||
model_name = get_lmstudio_first_model()
|
||||
if not model_name:
|
||||
pytest.skip("No models loaded in LM Studio")
|
||||
|
||||
try:
|
||||
from leann.embedding_compute import _query_lmstudio_context_limit
|
||||
|
||||
# SDK requires WebSocket URL (ws://)
|
||||
context_length = _query_lmstudio_context_limit(
|
||||
model_name=model_name, base_url="ws://localhost:1234"
|
||||
)
|
||||
|
||||
if context_length is None:
|
||||
logger.warning(
|
||||
"⚠ LM Studio SDK bridge returned None (Node.js or SDK may not be available)"
|
||||
)
|
||||
pytest.skip("Node.js or @lmstudio/sdk not available - SDK bridge unavailable")
|
||||
else:
|
||||
assert context_length > 0
|
||||
logger.info(
|
||||
f"✓ LM Studio context length detected via SDK: {context_length} for {model_name}"
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
pytest.skip("_query_lmstudio_context_limit not implemented yet")
|
||||
except Exception as e:
|
||||
logger.error(f"LM Studio SDK test error: {e}")
|
||||
raise
|
||||
|
||||
|
||||
class TestOllamaTokenLimit:
|
||||
"""End-to-end tests for Ollama token limit discovery."""
|
||||
|
||||
@pytest.mark.skipif(not check_ollama_available(), reason="Ollama service not available")
|
||||
def test_ollama_token_limit_detection(self):
|
||||
"""Test dynamic token limit detection from Ollama /api/show endpoint."""
|
||||
# Get any available embedding model
|
||||
try:
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=2.0)
|
||||
models = response.json().get("models", [])
|
||||
|
||||
embedding_models = []
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
base_name = name.split(":")[0]
|
||||
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5", "nomic"]):
|
||||
embedding_models.append(name)
|
||||
|
||||
if not embedding_models:
|
||||
pytest.skip("No embedding models available in Ollama")
|
||||
|
||||
test_model = embedding_models[0]
|
||||
|
||||
# Test token limit detection
|
||||
limit = get_model_token_limit(model_name=test_model, base_url="http://localhost:11434")
|
||||
|
||||
assert limit > 0
|
||||
logger.info(f"✓ Ollama token limit detected: {limit} for {test_model}")
|
||||
|
||||
except Exception as e:
|
||||
pytest.skip(f"Could not test Ollama token detection: {e}")
|
||||
|
||||
|
||||
class TestHybridTokenLimit:
|
||||
"""End-to-end tests for hybrid token limit discovery mechanism."""
|
||||
|
||||
def test_hybrid_discovery_registry_fallback(self):
|
||||
"""Test fallback to static registry for known OpenAI models."""
|
||||
# Use a known OpenAI model (should be in registry)
|
||||
limit = get_model_token_limit(
|
||||
model_name="text-embedding-3-small",
|
||||
base_url="http://fake-server:9999", # Fake URL to force registry lookup
|
||||
)
|
||||
|
||||
# text-embedding-3-small should have 8192 in registry
|
||||
assert limit == 8192
|
||||
logger.info(f"✓ Hybrid discovery (registry fallback): {limit} tokens")
|
||||
|
||||
def test_hybrid_discovery_default_fallback(self):
|
||||
"""Test fallback to safe default for completely unknown models."""
|
||||
limit = get_model_token_limit(
|
||||
model_name="completely-unknown-model-xyz-12345",
|
||||
base_url="http://fake-server:9999",
|
||||
default=512,
|
||||
)
|
||||
|
||||
# Should get the specified default
|
||||
assert limit == 512
|
||||
logger.info(f"✓ Hybrid discovery (default fallback): {limit} tokens")
|
||||
|
||||
@pytest.mark.skipif(not check_ollama_available(), reason="Ollama service not available")
|
||||
def test_hybrid_discovery_ollama_dynamic_first(self):
|
||||
"""Test that Ollama models use dynamic discovery first."""
|
||||
# Get any available embedding model
|
||||
try:
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=2.0)
|
||||
models = response.json().get("models", [])
|
||||
|
||||
embedding_models = []
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
base_name = name.split(":")[0]
|
||||
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5", "nomic"]):
|
||||
embedding_models.append(name)
|
||||
|
||||
if not embedding_models:
|
||||
pytest.skip("No embedding models available in Ollama")
|
||||
|
||||
test_model = embedding_models[0]
|
||||
|
||||
# Should query Ollama /api/show dynamically
|
||||
limit = get_model_token_limit(model_name=test_model, base_url="http://localhost:11434")
|
||||
|
||||
assert limit > 0
|
||||
logger.info(f"✓ Hybrid discovery (Ollama dynamic): {limit} tokens for {test_model}")
|
||||
|
||||
except Exception as e:
|
||||
pytest.skip(f"Could not test hybrid Ollama discovery: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("\n" + "=" * 70)
|
||||
print("INTEGRATION TEST SUITE - Real Service Testing")
|
||||
print("=" * 70)
|
||||
print("\nThese tests require live services:")
|
||||
print(" • LM Studio: http://localhost:1234 (with embedding model loaded)")
|
||||
print(" • [Optional] Ollama: http://localhost:11434")
|
||||
print(" • [Optional] Node.js + @lmstudio/sdk for SDK bridge tests")
|
||||
print("\nRun with: pytest tests/test_prompt_template_e2e.py -v -s")
|
||||
print("=" * 70 + "\n")
|
||||
@@ -1,808 +0,0 @@
|
||||
"""
|
||||
Integration tests for prompt template metadata persistence and reuse.
|
||||
|
||||
These tests verify the complete lifecycle of prompt template persistence:
|
||||
1. Template is saved to .meta.json during index build
|
||||
2. Template is automatically loaded during search operations
|
||||
3. Template can be overridden with explicit flag during search
|
||||
4. Template is reused during chat/ask operations
|
||||
|
||||
These are integration tests that:
|
||||
- Use real file system with temporary directories
|
||||
- Run actual build and search operations
|
||||
- Inspect .meta.json file contents directly
|
||||
- Mock embedding servers to avoid external dependencies
|
||||
- Use small test codebases for fast execution
|
||||
|
||||
Expected to FAIL in Red Phase because metadata persistence verification is not yet implemented.
|
||||
"""
|
||||
|
||||
import json
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
|
||||
class TestPromptTemplateMetadataPersistence:
|
||||
"""Tests for prompt template storage in .meta.json during build."""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_index_dir(self):
|
||||
"""Create temporary directory for test indexes."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
yield Path(tmpdir)
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embeddings(self):
|
||||
"""Mock compute_embeddings to return dummy embeddings."""
|
||||
with patch("leann.api.compute_embeddings") as mock_compute:
|
||||
# Return dummy embeddings as numpy array
|
||||
mock_compute.return_value = np.array([[0.1, 0.2, 0.3]], dtype=np.float32)
|
||||
yield mock_compute
|
||||
|
||||
def test_prompt_template_saved_to_metadata(self, temp_index_dir, mock_embeddings):
|
||||
"""
|
||||
Verify that when build is run with embedding_options containing prompt_template,
|
||||
the template value is saved to .meta.json file.
|
||||
|
||||
This is the core persistence requirement - templates must be saved to allow
|
||||
reuse in subsequent search operations without re-specifying the flag.
|
||||
|
||||
Expected failure: .meta.json exists but doesn't contain embedding_options
|
||||
with prompt_template, or the value is not persisted correctly.
|
||||
"""
|
||||
# Setup test data
|
||||
index_path = temp_index_dir / "test_index.leann"
|
||||
template = "search_document: "
|
||||
|
||||
# Build index with prompt template in embedding_options
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
embedding_options={"prompt_template": template},
|
||||
)
|
||||
|
||||
# Add a simple document
|
||||
builder.add_text("This is a test document for indexing")
|
||||
|
||||
# Build the index
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Verify .meta.json was created and contains the template
|
||||
meta_path = temp_index_dir / "test_index.leann.meta.json"
|
||||
assert meta_path.exists(), ".meta.json file should be created during build"
|
||||
|
||||
# Read and parse metadata
|
||||
with open(meta_path, encoding="utf-8") as f:
|
||||
meta_data = json.load(f)
|
||||
|
||||
# Verify embedding_options exists in metadata
|
||||
assert "embedding_options" in meta_data, (
|
||||
"embedding_options should be saved to .meta.json when provided"
|
||||
)
|
||||
|
||||
# Verify prompt_template is in embedding_options
|
||||
embedding_options = meta_data["embedding_options"]
|
||||
assert "prompt_template" in embedding_options, (
|
||||
"prompt_template should be saved within embedding_options"
|
||||
)
|
||||
|
||||
# Verify the template value matches what we provided
|
||||
assert embedding_options["prompt_template"] == template, (
|
||||
f"Template should be '{template}', got '{embedding_options.get('prompt_template')}'"
|
||||
)
|
||||
|
||||
def test_prompt_template_absent_when_not_provided(self, temp_index_dir, mock_embeddings):
|
||||
"""
|
||||
Verify that when no prompt template is provided during build,
|
||||
.meta.json either doesn't have embedding_options or prompt_template key.
|
||||
|
||||
This ensures clean metadata without unnecessary keys when features aren't used.
|
||||
|
||||
Expected behavior: Build succeeds, .meta.json doesn't contain prompt_template.
|
||||
"""
|
||||
index_path = temp_index_dir / "test_no_template.leann"
|
||||
|
||||
# Build index WITHOUT prompt template
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
# No embedding_options provided
|
||||
)
|
||||
|
||||
builder.add_text("Document without template")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Verify metadata
|
||||
meta_path = temp_index_dir / "test_no_template.leann.meta.json"
|
||||
assert meta_path.exists()
|
||||
|
||||
with open(meta_path, encoding="utf-8") as f:
|
||||
meta_data = json.load(f)
|
||||
|
||||
# If embedding_options exists, it should not contain prompt_template
|
||||
if "embedding_options" in meta_data:
|
||||
embedding_options = meta_data["embedding_options"]
|
||||
assert "prompt_template" not in embedding_options, (
|
||||
"prompt_template should not be in metadata when not provided"
|
||||
)
|
||||
|
||||
|
||||
class TestPromptTemplateAutoLoadOnSearch:
|
||||
"""Tests for automatic loading of prompt template during search operations.
|
||||
|
||||
NOTE: Over-mocked test removed (test_prompt_template_auto_loaded_on_search).
|
||||
This functionality is now comprehensively tested by TestQueryPromptTemplateAutoLoad
|
||||
which uses simpler mocking and doesn't hang.
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_index_dir(self):
|
||||
"""Create temporary directory for test indexes."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
yield Path(tmpdir)
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embeddings(self):
|
||||
"""Mock compute_embeddings to capture calls and return dummy embeddings."""
|
||||
with patch("leann.api.compute_embeddings") as mock_compute:
|
||||
mock_compute.return_value = np.array([[0.1, 0.2, 0.3]], dtype=np.float32)
|
||||
yield mock_compute
|
||||
|
||||
def test_search_without_template_in_metadata(self, temp_index_dir, mock_embeddings):
|
||||
"""
|
||||
Verify that searching an index built WITHOUT a prompt template
|
||||
works correctly (backward compatibility).
|
||||
|
||||
The searcher should handle missing prompt_template gracefully.
|
||||
|
||||
Expected behavior: Search succeeds, no template is used.
|
||||
"""
|
||||
# Build index without template
|
||||
index_path = temp_index_dir / "no_template.leann"
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
)
|
||||
builder.add_text("Document without template")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Reset mocks
|
||||
mock_embeddings.reset_mock()
|
||||
|
||||
# Create searcher and search
|
||||
searcher = LeannSearcher(index_path=str(index_path))
|
||||
|
||||
# Verify no template in embedding_options
|
||||
assert "prompt_template" not in searcher.embedding_options, (
|
||||
"Searcher should not have prompt_template when not in metadata"
|
||||
)
|
||||
|
||||
|
||||
class TestQueryPromptTemplateAutoLoad:
|
||||
"""Tests for automatic loading of separate query_prompt_template during search (R2).
|
||||
|
||||
These tests verify the new two-template system where:
|
||||
- build_prompt_template: Applied during index building
|
||||
- query_prompt_template: Applied during search operations
|
||||
|
||||
Expected to FAIL in Red Phase (R2) because query template extraction
|
||||
and application is not yet implemented in LeannSearcher.search().
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_index_dir(self):
|
||||
"""Create temporary directory for test indexes."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
yield Path(tmpdir)
|
||||
|
||||
@pytest.fixture
|
||||
def mock_compute_embeddings(self):
|
||||
"""Mock compute_embeddings to capture calls and return dummy embeddings."""
|
||||
with patch("leann.embedding_compute.compute_embeddings") as mock_compute:
|
||||
mock_compute.return_value = np.array([[0.1, 0.2, 0.3]], dtype=np.float32)
|
||||
yield mock_compute
|
||||
|
||||
def test_search_auto_loads_query_template(self, temp_index_dir, mock_compute_embeddings):
|
||||
"""
|
||||
Verify that search() automatically loads and applies query_prompt_template from .meta.json.
|
||||
|
||||
Given: Index built with separate build_prompt_template and query_prompt_template
|
||||
When: LeannSearcher.search("my query") is called
|
||||
Then: Query embedding is computed with "query: my query" (query template applied)
|
||||
|
||||
This is the core R2 requirement - query templates must be auto-loaded and applied
|
||||
during search without user intervention.
|
||||
|
||||
Expected failure: compute_embeddings called with raw "my query" instead of
|
||||
"query: my query" because query template extraction is not implemented.
|
||||
"""
|
||||
# Setup: Build index with separate templates in new format
|
||||
index_path = temp_index_dir / "query_template.leann"
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
embedding_options={
|
||||
"build_prompt_template": "doc: ",
|
||||
"query_prompt_template": "query: ",
|
||||
},
|
||||
)
|
||||
builder.add_text("Test document")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Reset mock to ignore build calls
|
||||
mock_compute_embeddings.reset_mock()
|
||||
|
||||
# Act: Search with query
|
||||
searcher = LeannSearcher(index_path=str(index_path))
|
||||
|
||||
# Mock the backend search to avoid actual search
|
||||
with patch.object(searcher.backend_impl, "search") as mock_backend_search:
|
||||
mock_backend_search.return_value = {
|
||||
"labels": [["test_id_0"]], # IDs (nested list for batch support)
|
||||
"distances": [[0.9]], # Distances (nested list for batch support)
|
||||
}
|
||||
|
||||
searcher.search("my query", top_k=1, recompute_embeddings=False)
|
||||
|
||||
# Assert: compute_embeddings was called with query template applied
|
||||
assert mock_compute_embeddings.called, "compute_embeddings should be called during search"
|
||||
|
||||
# Get the actual text passed to compute_embeddings
|
||||
call_args = mock_compute_embeddings.call_args
|
||||
texts_arg = call_args[0][0] # First positional arg (list of texts)
|
||||
|
||||
assert len(texts_arg) == 1, "Should compute embedding for one query"
|
||||
assert texts_arg[0] == "query: my query", (
|
||||
f"Query template should be applied: expected 'query: my query', got '{texts_arg[0]}'"
|
||||
)
|
||||
|
||||
def test_search_backward_compat_single_template(self, temp_index_dir, mock_compute_embeddings):
|
||||
"""
|
||||
Verify backward compatibility with old single prompt_template format.
|
||||
|
||||
Given: Index with old format (single prompt_template, no query_prompt_template)
|
||||
When: LeannSearcher.search("my query") is called
|
||||
Then: Query embedding computed with "doc: my query" (old template applied)
|
||||
|
||||
This ensures indexes built with the old single-template system continue
|
||||
to work correctly with the new search implementation.
|
||||
|
||||
Expected failure: Old template not recognized/applied because backward
|
||||
compatibility logic is not implemented.
|
||||
"""
|
||||
# Setup: Build index with old single-template format
|
||||
index_path = temp_index_dir / "old_template.leann"
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
embedding_options={"prompt_template": "doc: "}, # Old format
|
||||
)
|
||||
builder.add_text("Test document")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Reset mock
|
||||
mock_compute_embeddings.reset_mock()
|
||||
|
||||
# Act: Search
|
||||
searcher = LeannSearcher(index_path=str(index_path))
|
||||
|
||||
with patch.object(searcher.backend_impl, "search") as mock_backend_search:
|
||||
mock_backend_search.return_value = {"labels": [["test_id_0"]], "distances": [[0.9]]}
|
||||
|
||||
searcher.search("my query", top_k=1, recompute_embeddings=False)
|
||||
|
||||
# Assert: Old template was applied
|
||||
call_args = mock_compute_embeddings.call_args
|
||||
texts_arg = call_args[0][0]
|
||||
|
||||
assert texts_arg[0] == "doc: my query", (
|
||||
f"Old prompt_template should be applied for backward compatibility: "
|
||||
f"expected 'doc: my query', got '{texts_arg[0]}'"
|
||||
)
|
||||
|
||||
def test_search_backward_compat_no_template(self, temp_index_dir, mock_compute_embeddings):
|
||||
"""
|
||||
Verify backward compatibility when no template is present in .meta.json.
|
||||
|
||||
Given: Index with no template in .meta.json (very old indexes)
|
||||
When: LeannSearcher.search("my query") is called
|
||||
Then: Query embedding computed with "my query" (no template, raw query)
|
||||
|
||||
This ensures the most basic backward compatibility - indexes without
|
||||
any template support continue to work as before.
|
||||
|
||||
Expected failure: May fail if default template is incorrectly applied,
|
||||
or if missing template causes error.
|
||||
"""
|
||||
# Setup: Build index without any template
|
||||
index_path = temp_index_dir / "no_template.leann"
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
# No embedding_options at all
|
||||
)
|
||||
builder.add_text("Test document")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Reset mock
|
||||
mock_compute_embeddings.reset_mock()
|
||||
|
||||
# Act: Search
|
||||
searcher = LeannSearcher(index_path=str(index_path))
|
||||
|
||||
with patch.object(searcher.backend_impl, "search") as mock_backend_search:
|
||||
mock_backend_search.return_value = {"labels": [["test_id_0"]], "distances": [[0.9]]}
|
||||
|
||||
searcher.search("my query", top_k=1, recompute_embeddings=False)
|
||||
|
||||
# Assert: No template applied (raw query)
|
||||
call_args = mock_compute_embeddings.call_args
|
||||
texts_arg = call_args[0][0]
|
||||
|
||||
assert texts_arg[0] == "my query", (
|
||||
f"No template should be applied when missing from metadata: "
|
||||
f"expected 'my query', got '{texts_arg[0]}'"
|
||||
)
|
||||
|
||||
def test_search_override_via_provider_options(self, temp_index_dir, mock_compute_embeddings):
|
||||
"""
|
||||
Verify that explicit provider_options can override stored query template.
|
||||
|
||||
Given: Index with query_prompt_template: "query: "
|
||||
When: search() called with provider_options={"prompt_template": "override: "}
|
||||
Then: Query embedding computed with "override: test" (override takes precedence)
|
||||
|
||||
This enables users to experiment with different query templates without
|
||||
rebuilding the index, or to handle special query types differently.
|
||||
|
||||
Expected failure: provider_options parameter is accepted via **kwargs but
|
||||
not used. Query embedding computed with raw "test" instead of "override: test"
|
||||
because override logic is not implemented.
|
||||
"""
|
||||
# Setup: Build index with query template
|
||||
index_path = temp_index_dir / "override_template.leann"
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
embedding_options={
|
||||
"build_prompt_template": "doc: ",
|
||||
"query_prompt_template": "query: ",
|
||||
},
|
||||
)
|
||||
builder.add_text("Test document")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Reset mock
|
||||
mock_compute_embeddings.reset_mock()
|
||||
|
||||
# Act: Search with override
|
||||
searcher = LeannSearcher(index_path=str(index_path))
|
||||
|
||||
with patch.object(searcher.backend_impl, "search") as mock_backend_search:
|
||||
mock_backend_search.return_value = {"labels": [["test_id_0"]], "distances": [[0.9]]}
|
||||
|
||||
# This should accept provider_options parameter
|
||||
searcher.search(
|
||||
"test",
|
||||
top_k=1,
|
||||
recompute_embeddings=False,
|
||||
provider_options={"prompt_template": "override: "},
|
||||
)
|
||||
|
||||
# Assert: Override template was applied
|
||||
call_args = mock_compute_embeddings.call_args
|
||||
texts_arg = call_args[0][0]
|
||||
|
||||
assert texts_arg[0] == "override: test", (
|
||||
f"Override template should take precedence: "
|
||||
f"expected 'override: test', got '{texts_arg[0]}'"
|
||||
)
|
||||
|
||||
|
||||
class TestPromptTemplateReuseInChat:
|
||||
"""Tests for prompt template reuse in chat/ask operations."""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_index_dir(self):
|
||||
"""Create temporary directory for test indexes."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
yield Path(tmpdir)
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embeddings(self):
|
||||
"""Mock compute_embeddings to return dummy embeddings."""
|
||||
with patch("leann.api.compute_embeddings") as mock_compute:
|
||||
mock_compute.return_value = np.array([[0.1, 0.2, 0.3]], dtype=np.float32)
|
||||
yield mock_compute
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embedding_server_manager(self):
|
||||
"""Mock EmbeddingServerManager for chat tests."""
|
||||
with patch("leann.searcher_base.EmbeddingServerManager") as mock_manager_class:
|
||||
mock_manager = Mock()
|
||||
mock_manager.start_server.return_value = (True, 5557)
|
||||
mock_manager_class.return_value = mock_manager
|
||||
yield mock_manager
|
||||
|
||||
@pytest.fixture
|
||||
def index_with_template(self, temp_index_dir, mock_embeddings):
|
||||
"""Build an index with a prompt template."""
|
||||
index_path = temp_index_dir / "chat_template_index.leann"
|
||||
template = "document_query: "
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
embedding_options={"prompt_template": template},
|
||||
)
|
||||
|
||||
builder.add_text("Test document for chat")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
return str(index_path), template
|
||||
|
||||
|
||||
class TestPromptTemplateIntegrationWithEmbeddingModes:
|
||||
"""Tests for prompt template compatibility with different embedding modes."""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_index_dir(self):
|
||||
"""Create temporary directory for test indexes."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
yield Path(tmpdir)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"mode,model,template,filename_prefix",
|
||||
[
|
||||
(
|
||||
"openai",
|
||||
"text-embedding-3-small",
|
||||
"Represent this for searching: ",
|
||||
"openai_template",
|
||||
),
|
||||
("ollama", "nomic-embed-text", "search_query: ", "ollama_template"),
|
||||
("sentence-transformers", "facebook/contriever", "query: ", "st_template"),
|
||||
],
|
||||
)
|
||||
def test_prompt_template_metadata_with_embedding_modes(
|
||||
self, temp_index_dir, mode, model, template, filename_prefix
|
||||
):
|
||||
"""Verify prompt template is saved correctly across different embedding modes.
|
||||
|
||||
Tests that prompt templates are persisted to .meta.json for:
|
||||
- OpenAI mode (primary use case)
|
||||
- Ollama mode (also supports templates)
|
||||
- Sentence-transformers mode (saved for forward compatibility)
|
||||
|
||||
Expected behavior: Template is saved to .meta.json regardless of mode.
|
||||
"""
|
||||
with patch("leann.api.compute_embeddings") as mock_compute:
|
||||
mock_compute.return_value = np.array([[0.1, 0.2, 0.3]], dtype=np.float32)
|
||||
|
||||
index_path = temp_index_dir / f"{filename_prefix}.leann"
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=model,
|
||||
embedding_mode=mode,
|
||||
embedding_options={"prompt_template": template},
|
||||
)
|
||||
|
||||
builder.add_text(f"{mode.capitalize()} test document")
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
# Verify metadata
|
||||
meta_path = temp_index_dir / f"{filename_prefix}.leann.meta.json"
|
||||
with open(meta_path, encoding="utf-8") as f:
|
||||
meta_data = json.load(f)
|
||||
|
||||
assert meta_data["embedding_mode"] == mode
|
||||
# Template should be saved for all modes (even if not used by some)
|
||||
if "embedding_options" in meta_data:
|
||||
assert meta_data["embedding_options"]["prompt_template"] == template
|
||||
|
||||
|
||||
class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
"""Tests for query template application in compute_query_embedding() (Bug Fix).
|
||||
|
||||
These tests verify that query templates are applied consistently in BOTH
|
||||
code paths (server and fallback) when computing query embeddings.
|
||||
|
||||
This addresses the bug where query templates were only applied in the
|
||||
fallback path, not when using the embedding server (the default path).
|
||||
|
||||
Bug Context:
|
||||
- Issue: Query templates were stored in metadata but only applied during
|
||||
fallback (direct) computation, not when using embedding server
|
||||
- Fix: Move template application to BEFORE any computation path in
|
||||
compute_query_embedding() (searcher_base.py:107-110)
|
||||
- Impact: Critical for models like EmbeddingGemma that require task-specific
|
||||
templates for optimal performance
|
||||
|
||||
These tests ensure the fix works correctly and prevent regression.
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_index_with_template(self):
|
||||
"""Create a temporary index with query template in metadata"""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
index_dir = Path(tmpdir)
|
||||
index_file = index_dir / "test.leann"
|
||||
meta_file = index_dir / "test.leann.meta.json"
|
||||
|
||||
# Create minimal metadata with query template
|
||||
metadata = {
|
||||
"version": "1.0",
|
||||
"backend_name": "hnsw",
|
||||
"embedding_model": "text-embedding-embeddinggemma-300m-qat",
|
||||
"dimensions": 768,
|
||||
"embedding_mode": "openai",
|
||||
"backend_kwargs": {
|
||||
"graph_degree": 32,
|
||||
"complexity": 64,
|
||||
"distance_metric": "cosine",
|
||||
},
|
||||
"embedding_options": {
|
||||
"base_url": "http://localhost:1234/v1",
|
||||
"api_key": "test-key",
|
||||
"build_prompt_template": "title: none | text: ",
|
||||
"query_prompt_template": "task: search result | query: ",
|
||||
},
|
||||
}
|
||||
|
||||
meta_file.write_text(json.dumps(metadata, indent=2))
|
||||
|
||||
# Create minimal HNSW index file (empty is okay for this test)
|
||||
index_file.write_bytes(b"")
|
||||
|
||||
yield str(index_file)
|
||||
|
||||
def test_query_template_applied_in_fallback_path(self, temp_index_with_template):
|
||||
"""Test that query template is applied when using fallback (direct) path"""
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
# Create a concrete implementation for testing
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
searcher.index_path = Path(temp_index_with_template)
|
||||
searcher.index_dir = searcher.index_path.parent
|
||||
|
||||
# Load metadata
|
||||
meta_file = searcher.index_dir / f"{searcher.index_path.name}.meta.json"
|
||||
with open(meta_file) as f:
|
||||
searcher.meta = json.load(f)
|
||||
|
||||
searcher.embedding_model = searcher.meta["embedding_model"]
|
||||
searcher.embedding_mode = searcher.meta.get("embedding_mode", "sentence-transformers")
|
||||
searcher.embedding_options = searcher.meta.get("embedding_options", {})
|
||||
|
||||
# Mock compute_embeddings to capture the query text
|
||||
captured_queries = []
|
||||
|
||||
def mock_compute_embeddings(texts, model, mode, provider_options=None):
|
||||
captured_queries.extend(texts)
|
||||
return np.random.rand(len(texts), 768).astype(np.float32)
|
||||
|
||||
with patch(
|
||||
"leann.embedding_compute.compute_embeddings", side_effect=mock_compute_embeddings
|
||||
):
|
||||
# Call compute_query_embedding with template (fallback path)
|
||||
result = searcher.compute_query_embedding(
|
||||
query="vector database",
|
||||
use_server_if_available=False, # Force fallback path
|
||||
query_template="task: search result | query: ",
|
||||
)
|
||||
|
||||
# Verify template was applied
|
||||
assert len(captured_queries) == 1
|
||||
assert captured_queries[0] == "task: search result | query: vector database"
|
||||
assert result.shape == (1, 768)
|
||||
|
||||
def test_query_template_applied_in_server_path(self, temp_index_with_template):
|
||||
"""Test that query template is applied when using server path"""
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
# Create a concrete implementation for testing
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
searcher.index_path = Path(temp_index_with_template)
|
||||
searcher.index_dir = searcher.index_path.parent
|
||||
|
||||
# Load metadata
|
||||
meta_file = searcher.index_dir / f"{searcher.index_path.name}.meta.json"
|
||||
with open(meta_file) as f:
|
||||
searcher.meta = json.load(f)
|
||||
|
||||
searcher.embedding_model = searcher.meta["embedding_model"]
|
||||
searcher.embedding_mode = searcher.meta.get("embedding_mode", "sentence-transformers")
|
||||
searcher.embedding_options = searcher.meta.get("embedding_options", {})
|
||||
|
||||
# Mock the server methods to capture the query text
|
||||
captured_queries = []
|
||||
|
||||
def mock_ensure_server_running(passages_file, port):
|
||||
return port
|
||||
|
||||
def mock_compute_embedding_via_server(chunks, port):
|
||||
captured_queries.extend(chunks)
|
||||
return np.random.rand(len(chunks), 768).astype(np.float32)
|
||||
|
||||
searcher._ensure_server_running = mock_ensure_server_running
|
||||
searcher._compute_embedding_via_server = mock_compute_embedding_via_server
|
||||
|
||||
# Call compute_query_embedding with template (server path)
|
||||
result = searcher.compute_query_embedding(
|
||||
query="vector database",
|
||||
use_server_if_available=True, # Use server path
|
||||
query_template="task: search result | query: ",
|
||||
)
|
||||
|
||||
# Verify template was applied BEFORE calling server
|
||||
assert len(captured_queries) == 1
|
||||
assert captured_queries[0] == "task: search result | query: vector database"
|
||||
assert result.shape == (1, 768)
|
||||
|
||||
def test_query_template_without_template_parameter(self, temp_index_with_template):
|
||||
"""Test that query is unchanged when no template is provided"""
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
searcher.index_path = Path(temp_index_with_template)
|
||||
searcher.index_dir = searcher.index_path.parent
|
||||
|
||||
meta_file = searcher.index_dir / f"{searcher.index_path.name}.meta.json"
|
||||
with open(meta_file) as f:
|
||||
searcher.meta = json.load(f)
|
||||
|
||||
searcher.embedding_model = searcher.meta["embedding_model"]
|
||||
searcher.embedding_mode = searcher.meta.get("embedding_mode", "sentence-transformers")
|
||||
searcher.embedding_options = searcher.meta.get("embedding_options", {})
|
||||
|
||||
captured_queries = []
|
||||
|
||||
def mock_compute_embeddings(texts, model, mode, provider_options=None):
|
||||
captured_queries.extend(texts)
|
||||
return np.random.rand(len(texts), 768).astype(np.float32)
|
||||
|
||||
with patch(
|
||||
"leann.embedding_compute.compute_embeddings", side_effect=mock_compute_embeddings
|
||||
):
|
||||
searcher.compute_query_embedding(
|
||||
query="vector database",
|
||||
use_server_if_available=False,
|
||||
query_template=None, # No template
|
||||
)
|
||||
|
||||
# Verify query is unchanged
|
||||
assert len(captured_queries) == 1
|
||||
assert captured_queries[0] == "vector database"
|
||||
|
||||
def test_query_template_consistency_between_paths(self, temp_index_with_template):
|
||||
"""Test that both paths apply template identically"""
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
searcher.index_path = Path(temp_index_with_template)
|
||||
searcher.index_dir = searcher.index_path.parent
|
||||
|
||||
meta_file = searcher.index_dir / f"{searcher.index_path.name}.meta.json"
|
||||
with open(meta_file) as f:
|
||||
searcher.meta = json.load(f)
|
||||
|
||||
searcher.embedding_model = searcher.meta["embedding_model"]
|
||||
searcher.embedding_mode = searcher.meta.get("embedding_mode", "sentence-transformers")
|
||||
searcher.embedding_options = searcher.meta.get("embedding_options", {})
|
||||
|
||||
query_template = "task: search result | query: "
|
||||
original_query = "vector database"
|
||||
|
||||
# Capture queries from fallback path
|
||||
fallback_queries = []
|
||||
|
||||
def mock_compute_embeddings(texts, model, mode, provider_options=None):
|
||||
fallback_queries.extend(texts)
|
||||
return np.random.rand(len(texts), 768).astype(np.float32)
|
||||
|
||||
with patch(
|
||||
"leann.embedding_compute.compute_embeddings", side_effect=mock_compute_embeddings
|
||||
):
|
||||
searcher.compute_query_embedding(
|
||||
query=original_query,
|
||||
use_server_if_available=False,
|
||||
query_template=query_template,
|
||||
)
|
||||
|
||||
# Capture queries from server path
|
||||
server_queries = []
|
||||
|
||||
def mock_ensure_server_running(passages_file, port):
|
||||
return port
|
||||
|
||||
def mock_compute_embedding_via_server(chunks, port):
|
||||
server_queries.extend(chunks)
|
||||
return np.random.rand(len(chunks), 768).astype(np.float32)
|
||||
|
||||
searcher._ensure_server_running = mock_ensure_server_running
|
||||
searcher._compute_embedding_via_server = mock_compute_embedding_via_server
|
||||
|
||||
searcher.compute_query_embedding(
|
||||
query=original_query,
|
||||
use_server_if_available=True,
|
||||
query_template=query_template,
|
||||
)
|
||||
|
||||
# Verify both paths produced identical templated queries
|
||||
assert len(fallback_queries) == 1
|
||||
assert len(server_queries) == 1
|
||||
assert fallback_queries[0] == server_queries[0]
|
||||
assert fallback_queries[0] == f"{query_template}{original_query}"
|
||||
|
||||
def test_query_template_with_empty_string(self, temp_index_with_template):
|
||||
"""Test behavior with empty template string"""
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
searcher.index_path = Path(temp_index_with_template)
|
||||
searcher.index_dir = searcher.index_path.parent
|
||||
|
||||
meta_file = searcher.index_dir / f"{searcher.index_path.name}.meta.json"
|
||||
with open(meta_file) as f:
|
||||
searcher.meta = json.load(f)
|
||||
|
||||
searcher.embedding_model = searcher.meta["embedding_model"]
|
||||
searcher.embedding_mode = searcher.meta.get("embedding_mode", "sentence-transformers")
|
||||
searcher.embedding_options = searcher.meta.get("embedding_options", {})
|
||||
|
||||
captured_queries = []
|
||||
|
||||
def mock_compute_embeddings(texts, model, mode, provider_options=None):
|
||||
captured_queries.extend(texts)
|
||||
return np.random.rand(len(texts), 768).astype(np.float32)
|
||||
|
||||
with patch(
|
||||
"leann.embedding_compute.compute_embeddings", side_effect=mock_compute_embeddings
|
||||
):
|
||||
searcher.compute_query_embedding(
|
||||
query="vector database",
|
||||
use_server_if_available=False,
|
||||
query_template="", # Empty string
|
||||
)
|
||||
|
||||
# Empty string is falsy, so no template should be applied
|
||||
assert captured_queries[0] == "vector database"
|
||||
@@ -1,643 +0,0 @@
|
||||
"""Unit tests for token-aware truncation functionality.
|
||||
|
||||
This test suite defines the contract for token truncation functions that prevent
|
||||
500 errors from Ollama when text exceeds model token limits. These tests verify:
|
||||
|
||||
1. Model token limit retrieval (known and unknown models)
|
||||
2. Text truncation behavior for single and multiple texts
|
||||
3. Token counting and truncation accuracy using tiktoken
|
||||
|
||||
All tests are written in Red Phase - they should FAIL initially because the
|
||||
implementation does not exist yet.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import tiktoken
|
||||
from leann.embedding_compute import (
|
||||
EMBEDDING_MODEL_LIMITS,
|
||||
get_model_token_limit,
|
||||
truncate_to_token_limit,
|
||||
)
|
||||
|
||||
|
||||
class TestModelTokenLimits:
|
||||
"""Tests for retrieving model-specific token limits."""
|
||||
|
||||
def test_get_model_token_limit_known_model(self):
|
||||
"""Verify correct token limit is returned for known models.
|
||||
|
||||
Known models should return their specific token limits from
|
||||
EMBEDDING_MODEL_LIMITS dictionary.
|
||||
"""
|
||||
# Test nomic-embed-text (2048 tokens)
|
||||
limit = get_model_token_limit("nomic-embed-text")
|
||||
assert limit == 2048, "nomic-embed-text should have 2048 token limit"
|
||||
|
||||
# Test nomic-embed-text-v1.5 (2048 tokens)
|
||||
limit = get_model_token_limit("nomic-embed-text-v1.5")
|
||||
assert limit == 2048, "nomic-embed-text-v1.5 should have 2048 token limit"
|
||||
|
||||
# Test nomic-embed-text-v2 (512 tokens)
|
||||
limit = get_model_token_limit("nomic-embed-text-v2")
|
||||
assert limit == 512, "nomic-embed-text-v2 should have 512 token limit"
|
||||
|
||||
# Test OpenAI models (8192 tokens)
|
||||
limit = get_model_token_limit("text-embedding-3-small")
|
||||
assert limit == 8192, "text-embedding-3-small should have 8192 token limit"
|
||||
|
||||
def test_get_model_token_limit_unknown_model(self):
|
||||
"""Verify default token limit is returned for unknown models.
|
||||
|
||||
Unknown models should return the default limit (2048) to allow
|
||||
operation with reasonable safety margin.
|
||||
"""
|
||||
# Test with completely unknown model
|
||||
limit = get_model_token_limit("unknown-model-xyz")
|
||||
assert limit == 2048, "Unknown models should return default 2048"
|
||||
|
||||
# Test with empty string
|
||||
limit = get_model_token_limit("")
|
||||
assert limit == 2048, "Empty model name should return default 2048"
|
||||
|
||||
def test_get_model_token_limit_custom_default(self):
|
||||
"""Verify custom default can be specified for unknown models.
|
||||
|
||||
Allow callers to specify their own default token limit when
|
||||
model is not in the known models dictionary.
|
||||
"""
|
||||
limit = get_model_token_limit("unknown-model", default=4096)
|
||||
assert limit == 4096, "Should return custom default for unknown models"
|
||||
|
||||
# Known model should ignore custom default
|
||||
limit = get_model_token_limit("nomic-embed-text", default=4096)
|
||||
assert limit == 2048, "Known model should ignore custom default"
|
||||
|
||||
def test_embedding_model_limits_dictionary_exists(self):
|
||||
"""Verify EMBEDDING_MODEL_LIMITS dictionary contains expected models.
|
||||
|
||||
The dictionary should be importable and contain at least the
|
||||
known nomic models with correct token limits.
|
||||
"""
|
||||
assert isinstance(EMBEDDING_MODEL_LIMITS, dict), "Should be a dictionary"
|
||||
assert "nomic-embed-text" in EMBEDDING_MODEL_LIMITS, "Should contain nomic-embed-text"
|
||||
assert "nomic-embed-text-v1.5" in EMBEDDING_MODEL_LIMITS, (
|
||||
"Should contain nomic-embed-text-v1.5"
|
||||
)
|
||||
assert EMBEDDING_MODEL_LIMITS["nomic-embed-text"] == 2048
|
||||
assert EMBEDDING_MODEL_LIMITS["nomic-embed-text-v1.5"] == 2048
|
||||
assert EMBEDDING_MODEL_LIMITS["nomic-embed-text-v2"] == 512
|
||||
# OpenAI models
|
||||
assert EMBEDDING_MODEL_LIMITS["text-embedding-3-small"] == 8192
|
||||
|
||||
|
||||
class TestTokenTruncation:
|
||||
"""Tests for truncating texts to token limits."""
|
||||
|
||||
@pytest.fixture
|
||||
def tokenizer(self):
|
||||
"""Provide tiktoken tokenizer for token counting verification."""
|
||||
return tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
def test_truncate_single_text_under_limit(self, tokenizer):
|
||||
"""Verify text under token limit remains unchanged.
|
||||
|
||||
When text is already within the token limit, it should be
|
||||
returned unchanged with no truncation.
|
||||
"""
|
||||
text = "This is a short text that is well under the token limit."
|
||||
token_count = len(tokenizer.encode(text))
|
||||
assert token_count < 100, f"Test setup: text should be short (has {token_count} tokens)"
|
||||
|
||||
# Truncate with generous limit
|
||||
result = truncate_to_token_limit([text], token_limit=512)
|
||||
|
||||
assert len(result) == 1, "Should return same number of texts"
|
||||
assert result[0] == text, "Text under limit should be unchanged"
|
||||
|
||||
def test_truncate_single_text_over_limit(self, tokenizer):
|
||||
"""Verify text over token limit is truncated correctly.
|
||||
|
||||
When text exceeds the token limit, it should be truncated to
|
||||
fit within the limit while maintaining valid token boundaries.
|
||||
"""
|
||||
# Create a text that definitely exceeds limit
|
||||
text = "word " * 200 # ~200 tokens (each "word " is typically 1-2 tokens)
|
||||
original_token_count = len(tokenizer.encode(text))
|
||||
assert original_token_count > 50, (
|
||||
f"Test setup: text should be long (has {original_token_count} tokens)"
|
||||
)
|
||||
|
||||
# Truncate to 50 tokens
|
||||
result = truncate_to_token_limit([text], token_limit=50)
|
||||
|
||||
assert len(result) == 1, "Should return same number of texts"
|
||||
assert result[0] != text, "Text over limit should be truncated"
|
||||
assert len(result[0]) < len(text), "Truncated text should be shorter"
|
||||
|
||||
# Verify truncated text is within token limit
|
||||
truncated_token_count = len(tokenizer.encode(result[0]))
|
||||
assert truncated_token_count <= 50, (
|
||||
f"Truncated text should be ≤50 tokens, got {truncated_token_count}"
|
||||
)
|
||||
|
||||
def test_truncate_multiple_texts_mixed_lengths(self, tokenizer):
|
||||
"""Verify multiple texts with mixed lengths are handled correctly.
|
||||
|
||||
When processing multiple texts:
|
||||
- Texts under limit should remain unchanged
|
||||
- Texts over limit should be truncated independently
|
||||
- Output list should maintain same order and length
|
||||
"""
|
||||
texts = [
|
||||
"Short text.", # Under limit
|
||||
"word " * 200, # Over limit
|
||||
"Another short one.", # Under limit
|
||||
"token " * 150, # Over limit
|
||||
]
|
||||
|
||||
# Verify test setup
|
||||
for i, text in enumerate(texts):
|
||||
token_count = len(tokenizer.encode(text))
|
||||
if i in [1, 3]:
|
||||
assert token_count > 50, f"Text {i} should be over limit (has {token_count} tokens)"
|
||||
else:
|
||||
assert token_count < 50, (
|
||||
f"Text {i} should be under limit (has {token_count} tokens)"
|
||||
)
|
||||
|
||||
# Truncate with 50 token limit
|
||||
result = truncate_to_token_limit(texts, token_limit=50)
|
||||
|
||||
assert len(result) == len(texts), "Should return same number of texts"
|
||||
|
||||
# Verify each text individually
|
||||
for i, (original, truncated) in enumerate(zip(texts, result)):
|
||||
token_count = len(tokenizer.encode(truncated))
|
||||
assert token_count <= 50, f"Text {i} should be ≤50 tokens, got {token_count}"
|
||||
|
||||
# Short texts should be unchanged
|
||||
if i in [0, 2]:
|
||||
assert truncated == original, f"Short text {i} should be unchanged"
|
||||
# Long texts should be truncated
|
||||
else:
|
||||
assert len(truncated) < len(original), f"Long text {i} should be truncated"
|
||||
|
||||
def test_truncate_empty_list(self):
|
||||
"""Verify empty input list returns empty output list.
|
||||
|
||||
Edge case: empty list should return empty list without errors.
|
||||
"""
|
||||
result = truncate_to_token_limit([], token_limit=512)
|
||||
assert result == [], "Empty input should return empty output"
|
||||
|
||||
def test_truncate_preserves_order(self, tokenizer):
|
||||
"""Verify truncation preserves original text order.
|
||||
|
||||
Output list should maintain the same order as input list,
|
||||
regardless of which texts were truncated.
|
||||
"""
|
||||
texts = [
|
||||
"First text " * 50, # Will be truncated
|
||||
"Second text.", # Won't be truncated
|
||||
"Third text " * 50, # Will be truncated
|
||||
]
|
||||
|
||||
result = truncate_to_token_limit(texts, token_limit=20)
|
||||
|
||||
assert len(result) == 3, "Should preserve list length"
|
||||
# Check that order is maintained by looking for distinctive words
|
||||
assert "First" in result[0], "First text should remain in first position"
|
||||
assert "Second" in result[1], "Second text should remain in second position"
|
||||
assert "Third" in result[2], "Third text should remain in third position"
|
||||
|
||||
def test_truncate_extremely_long_text(self, tokenizer):
|
||||
"""Verify extremely long texts are truncated efficiently.
|
||||
|
||||
Test with text that far exceeds token limit to ensure
|
||||
truncation handles extreme cases without performance issues.
|
||||
"""
|
||||
# Create very long text (simulate real-world scenario)
|
||||
text = "token " * 5000 # ~5000+ tokens
|
||||
original_token_count = len(tokenizer.encode(text))
|
||||
assert original_token_count > 1000, "Test setup: text should be very long"
|
||||
|
||||
# Truncate to small limit
|
||||
result = truncate_to_token_limit([text], token_limit=100)
|
||||
|
||||
assert len(result) == 1
|
||||
truncated_token_count = len(tokenizer.encode(result[0]))
|
||||
assert truncated_token_count <= 100, (
|
||||
f"Should truncate to ≤100 tokens, got {truncated_token_count}"
|
||||
)
|
||||
assert len(result[0]) < len(text) // 10, "Should significantly reduce text length"
|
||||
|
||||
def test_truncate_exact_token_limit(self, tokenizer):
|
||||
"""Verify text at exactly token limit is handled correctly.
|
||||
|
||||
Edge case: text with exactly the token limit should either
|
||||
remain unchanged or be safely truncated by 1 token.
|
||||
"""
|
||||
# Create text with approximately 50 tokens
|
||||
# We'll adjust to get exactly 50
|
||||
target_tokens = 50
|
||||
text = "word " * 50
|
||||
tokens = tokenizer.encode(text)
|
||||
|
||||
# Adjust to get exactly target_tokens
|
||||
if len(tokens) > target_tokens:
|
||||
tokens = tokens[:target_tokens]
|
||||
text = tokenizer.decode(tokens)
|
||||
elif len(tokens) < target_tokens:
|
||||
# Add more words
|
||||
while len(tokenizer.encode(text)) < target_tokens:
|
||||
text += "word "
|
||||
tokens = tokenizer.encode(text)[:target_tokens]
|
||||
text = tokenizer.decode(tokens)
|
||||
|
||||
# Verify we have exactly target_tokens
|
||||
assert len(tokenizer.encode(text)) == target_tokens, (
|
||||
"Test setup: should have exactly 50 tokens"
|
||||
)
|
||||
|
||||
result = truncate_to_token_limit([text], token_limit=target_tokens)
|
||||
|
||||
assert len(result) == 1
|
||||
result_tokens = len(tokenizer.encode(result[0]))
|
||||
assert result_tokens <= target_tokens, (
|
||||
f"Should be ≤{target_tokens} tokens, got {result_tokens}"
|
||||
)
|
||||
|
||||
|
||||
class TestLMStudioHybridDiscovery:
|
||||
"""Tests for LM Studio integration in get_model_token_limit() hybrid discovery.
|
||||
|
||||
These tests verify that get_model_token_limit() properly integrates with
|
||||
the LM Studio SDK bridge for dynamic token limit discovery. The integration
|
||||
should:
|
||||
|
||||
1. Detect LM Studio URLs (port 1234 or 'lmstudio'/'lm.studio' in URL)
|
||||
2. Convert HTTP URLs to WebSocket format for SDK queries
|
||||
3. Query LM Studio SDK and use discovered limit
|
||||
4. Fall back to registry when SDK returns None
|
||||
5. Execute AFTER Ollama detection but BEFORE registry fallback
|
||||
|
||||
All tests are written in Red Phase - they should FAIL initially because the
|
||||
LM Studio detection and integration logic does not exist yet in get_model_token_limit().
|
||||
"""
|
||||
|
||||
def test_get_model_token_limit_lmstudio_success(self, monkeypatch):
|
||||
"""Verify LM Studio SDK query succeeds and returns detected limit.
|
||||
|
||||
When a LM Studio base_url is detected and the SDK query succeeds,
|
||||
get_model_token_limit() should return the dynamically discovered
|
||||
context length without falling back to the registry.
|
||||
"""
|
||||
|
||||
# Mock _query_lmstudio_context_limit to return successful SDK query
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
# Verify WebSocket URL was passed (not HTTP)
|
||||
assert base_url.startswith("ws://"), (
|
||||
f"Should convert HTTP to WebSocket format, got: {base_url}"
|
||||
)
|
||||
return 8192 # Successful SDK query
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
# Test with HTTP URL that should be converted to WebSocket
|
||||
limit = get_model_token_limit(
|
||||
model_name="custom-model", base_url="http://localhost:1234/v1"
|
||||
)
|
||||
|
||||
assert limit == 8192, "Should return limit from LM Studio SDK query"
|
||||
|
||||
def test_get_model_token_limit_lmstudio_fallback_to_registry(self, monkeypatch):
|
||||
"""Verify fallback to registry when LM Studio SDK returns None.
|
||||
|
||||
When LM Studio SDK query fails (returns None), get_model_token_limit()
|
||||
should fall back to the EMBEDDING_MODEL_LIMITS registry.
|
||||
"""
|
||||
|
||||
# Mock _query_lmstudio_context_limit to return None (SDK failure)
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
return None # SDK query failed
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
# Test with known model that exists in registry
|
||||
limit = get_model_token_limit(
|
||||
model_name="nomic-embed-text", base_url="http://localhost:1234/v1"
|
||||
)
|
||||
|
||||
# Should fall back to registry value
|
||||
assert limit == 2048, "Should fall back to registry when SDK returns None"
|
||||
|
||||
def test_get_model_token_limit_lmstudio_port_detection(self, monkeypatch):
|
||||
"""Verify detection of LM Studio via port 1234.
|
||||
|
||||
get_model_token_limit() should recognize port 1234 as a LM Studio
|
||||
server and attempt SDK query, regardless of hostname.
|
||||
"""
|
||||
query_called = False
|
||||
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
nonlocal query_called
|
||||
query_called = True
|
||||
return 4096
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
# Test with port 1234 (default LM Studio port)
|
||||
limit = get_model_token_limit(model_name="test-model", base_url="http://127.0.0.1:1234/v1")
|
||||
|
||||
assert query_called, "Should detect port 1234 and call LM Studio SDK query"
|
||||
assert limit == 4096, "Should return SDK query result"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_url,expected_limit,keyword",
|
||||
[
|
||||
("http://lmstudio.local:8080/v1", 16384, "lmstudio"),
|
||||
("http://api.lm.studio:5000/v1", 32768, "lm.studio"),
|
||||
],
|
||||
)
|
||||
def test_get_model_token_limit_lmstudio_url_keyword_detection(
|
||||
self, monkeypatch, test_url, expected_limit, keyword
|
||||
):
|
||||
"""Verify detection of LM Studio via keywords in URL.
|
||||
|
||||
get_model_token_limit() should recognize 'lmstudio' or 'lm.studio'
|
||||
in the URL as indicating a LM Studio server.
|
||||
"""
|
||||
query_called = False
|
||||
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
nonlocal query_called
|
||||
query_called = True
|
||||
return expected_limit
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
limit = get_model_token_limit(model_name="test-model", base_url=test_url)
|
||||
|
||||
assert query_called, f"Should detect '{keyword}' keyword and call SDK query"
|
||||
assert limit == expected_limit, f"Should return SDK query result for {keyword}"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_url,expected_protocol,expected_host",
|
||||
[
|
||||
("http://localhost:1234/v1", "ws://", "localhost:1234"),
|
||||
("https://lmstudio.example.com:1234/v1", "wss://", "lmstudio.example.com:1234"),
|
||||
],
|
||||
)
|
||||
def test_get_model_token_limit_protocol_conversion(
|
||||
self, monkeypatch, input_url, expected_protocol, expected_host
|
||||
):
|
||||
"""Verify HTTP/HTTPS URL is converted to WebSocket format for SDK query.
|
||||
|
||||
LM Studio SDK requires WebSocket URLs. get_model_token_limit() should:
|
||||
1. Convert 'http://' to 'ws://'
|
||||
2. Convert 'https://' to 'wss://'
|
||||
3. Remove '/v1' or other path suffixes (SDK expects base URL)
|
||||
4. Preserve host and port
|
||||
"""
|
||||
conversions_tested = []
|
||||
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
conversions_tested.append(base_url)
|
||||
return 8192
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
get_model_token_limit(model_name="test-model", base_url=input_url)
|
||||
|
||||
# Verify conversion happened
|
||||
assert len(conversions_tested) == 1, "Should have called SDK query once"
|
||||
assert conversions_tested[0].startswith(expected_protocol), (
|
||||
f"Should convert to {expected_protocol}"
|
||||
)
|
||||
assert expected_host in conversions_tested[0], (
|
||||
f"Should preserve host and port: {expected_host}"
|
||||
)
|
||||
|
||||
def test_get_model_token_limit_lmstudio_executes_after_ollama(self, monkeypatch):
|
||||
"""Verify LM Studio detection happens AFTER Ollama detection.
|
||||
|
||||
The hybrid discovery order should be:
|
||||
1. Ollama dynamic discovery (port 11434 or 'ollama' in URL)
|
||||
2. LM Studio dynamic discovery (port 1234 or 'lmstudio' in URL)
|
||||
3. Registry fallback
|
||||
|
||||
If both Ollama and LM Studio patterns match, Ollama should take precedence.
|
||||
This test verifies that LM Studio is checked but doesn't interfere with Ollama.
|
||||
"""
|
||||
ollama_called = False
|
||||
lmstudio_called = False
|
||||
|
||||
def mock_query_ollama(model_name, base_url):
|
||||
nonlocal ollama_called
|
||||
ollama_called = True
|
||||
return 2048 # Ollama query succeeds
|
||||
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
nonlocal lmstudio_called
|
||||
lmstudio_called = True
|
||||
return None # Should not be reached if Ollama succeeds
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_ollama_context_limit",
|
||||
mock_query_ollama,
|
||||
)
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
# Test with Ollama URL
|
||||
limit = get_model_token_limit(
|
||||
model_name="test-model", base_url="http://localhost:11434/api"
|
||||
)
|
||||
|
||||
assert ollama_called, "Should attempt Ollama query first"
|
||||
assert not lmstudio_called, "Should not attempt LM Studio query when Ollama succeeds"
|
||||
assert limit == 2048, "Should return Ollama result"
|
||||
|
||||
def test_get_model_token_limit_lmstudio_not_detected_for_non_lmstudio_urls(self, monkeypatch):
|
||||
"""Verify LM Studio SDK query is NOT called for non-LM Studio URLs.
|
||||
|
||||
Only URLs with port 1234 or 'lmstudio'/'lm.studio' keywords should
|
||||
trigger LM Studio SDK queries. Other URLs should skip to registry fallback.
|
||||
"""
|
||||
lmstudio_called = False
|
||||
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
nonlocal lmstudio_called
|
||||
lmstudio_called = True
|
||||
return 8192
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
# Test with non-LM Studio URLs
|
||||
test_cases = [
|
||||
"http://localhost:8080/v1", # Different port
|
||||
"http://openai.example.com/v1", # Different service
|
||||
"http://localhost:3000/v1", # Another port
|
||||
]
|
||||
|
||||
for base_url in test_cases:
|
||||
lmstudio_called = False # Reset for each test
|
||||
get_model_token_limit(model_name="nomic-embed-text", base_url=base_url)
|
||||
assert not lmstudio_called, f"Should NOT call LM Studio SDK for URL: {base_url}"
|
||||
|
||||
def test_get_model_token_limit_lmstudio_case_insensitive_detection(self, monkeypatch):
|
||||
"""Verify LM Studio detection is case-insensitive for keywords.
|
||||
|
||||
Keywords 'lmstudio' and 'lm.studio' should be detected regardless
|
||||
of case (LMStudio, LMSTUDIO, LmStudio, etc.).
|
||||
"""
|
||||
query_called = False
|
||||
|
||||
def mock_query_lmstudio(model_name, base_url):
|
||||
nonlocal query_called
|
||||
query_called = True
|
||||
return 8192
|
||||
|
||||
monkeypatch.setattr(
|
||||
"leann.embedding_compute._query_lmstudio_context_limit",
|
||||
mock_query_lmstudio,
|
||||
)
|
||||
|
||||
# Test various case variations
|
||||
test_cases = [
|
||||
"http://LMStudio.local:8080/v1",
|
||||
"http://LMSTUDIO.example.com/v1",
|
||||
"http://LmStudio.local/v1",
|
||||
"http://api.LM.STUDIO:5000/v1",
|
||||
]
|
||||
|
||||
for base_url in test_cases:
|
||||
query_called = False # Reset for each test
|
||||
limit = get_model_token_limit(model_name="test-model", base_url=base_url)
|
||||
assert query_called, f"Should detect LM Studio in URL: {base_url}"
|
||||
assert limit == 8192, f"Should return SDK result for URL: {base_url}"
|
||||
|
||||
|
||||
class TestTokenLimitCaching:
|
||||
"""Tests for token limit caching to prevent repeated SDK/API calls.
|
||||
|
||||
Caching prevents duplicate SDK/API calls within the same Python process,
|
||||
which is important because:
|
||||
1. LM Studio SDK load() can load duplicate model instances
|
||||
2. Ollama /api/show queries add latency
|
||||
3. Registry lookups are pure overhead
|
||||
|
||||
Cache is process-scoped and resets between leann build invocations.
|
||||
"""
|
||||
|
||||
def setup_method(self):
|
||||
"""Clear cache before each test."""
|
||||
from leann.embedding_compute import _token_limit_cache
|
||||
|
||||
_token_limit_cache.clear()
|
||||
|
||||
def test_registry_lookup_is_cached(self):
|
||||
"""Verify that registry lookups are cached."""
|
||||
from leann.embedding_compute import _token_limit_cache
|
||||
|
||||
# First call
|
||||
limit1 = get_model_token_limit("text-embedding-3-small")
|
||||
assert limit1 == 8192
|
||||
|
||||
# Verify it's in cache
|
||||
cache_key = ("text-embedding-3-small", "")
|
||||
assert cache_key in _token_limit_cache
|
||||
assert _token_limit_cache[cache_key] == 8192
|
||||
|
||||
# Second call should use cache
|
||||
limit2 = get_model_token_limit("text-embedding-3-small")
|
||||
assert limit2 == 8192
|
||||
|
||||
def test_default_fallback_is_cached(self):
|
||||
"""Verify that default fallbacks are cached."""
|
||||
from leann.embedding_compute import _token_limit_cache
|
||||
|
||||
# First call with unknown model
|
||||
limit1 = get_model_token_limit("unknown-model-xyz", default=512)
|
||||
assert limit1 == 512
|
||||
|
||||
# Verify it's in cache
|
||||
cache_key = ("unknown-model-xyz", "")
|
||||
assert cache_key in _token_limit_cache
|
||||
assert _token_limit_cache[cache_key] == 512
|
||||
|
||||
# Second call should use cache
|
||||
limit2 = get_model_token_limit("unknown-model-xyz", default=512)
|
||||
assert limit2 == 512
|
||||
|
||||
def test_different_urls_create_separate_cache_entries(self):
|
||||
"""Verify that different base_urls create separate cache entries."""
|
||||
from leann.embedding_compute import _token_limit_cache
|
||||
|
||||
# Same model, different URLs
|
||||
limit1 = get_model_token_limit("nomic-embed-text", base_url="http://localhost:11434")
|
||||
limit2 = get_model_token_limit("nomic-embed-text", base_url="http://localhost:1234/v1")
|
||||
|
||||
# Both should find the model in registry (2048)
|
||||
assert limit1 == 2048
|
||||
assert limit2 == 2048
|
||||
|
||||
# But they should be separate cache entries
|
||||
cache_key1 = ("nomic-embed-text", "http://localhost:11434")
|
||||
cache_key2 = ("nomic-embed-text", "http://localhost:1234/v1")
|
||||
|
||||
assert cache_key1 in _token_limit_cache
|
||||
assert cache_key2 in _token_limit_cache
|
||||
assert len(_token_limit_cache) == 2
|
||||
|
||||
def test_cache_prevents_repeated_lookups(self):
|
||||
"""Verify that cache prevents repeated registry/API lookups."""
|
||||
from leann.embedding_compute import _token_limit_cache
|
||||
|
||||
model_name = "text-embedding-ada-002"
|
||||
|
||||
# First call - should add to cache
|
||||
assert len(_token_limit_cache) == 0
|
||||
limit1 = get_model_token_limit(model_name)
|
||||
|
||||
cache_size_after_first = len(_token_limit_cache)
|
||||
assert cache_size_after_first == 1
|
||||
|
||||
# Multiple subsequent calls - cache size should not change
|
||||
for _ in range(5):
|
||||
limit = get_model_token_limit(model_name)
|
||||
assert limit == limit1
|
||||
assert len(_token_limit_cache) == cache_size_after_first
|
||||
|
||||
def test_versioned_model_names_cached_correctly(self):
|
||||
"""Verify that versioned model names (e.g., model:tag) are cached."""
|
||||
from leann.embedding_compute import _token_limit_cache
|
||||
|
||||
# Model with version tag
|
||||
limit = get_model_token_limit("nomic-embed-text:latest", base_url="http://localhost:11434")
|
||||
assert limit == 2048
|
||||
|
||||
# Should be cached with full name including version
|
||||
cache_key = ("nomic-embed-text:latest", "http://localhost:11434")
|
||||
assert cache_key in _token_limit_cache
|
||||
assert _token_limit_cache[cache_key] == 2048
|
||||
Reference in New Issue
Block a user