Compare commits
20 Commits
docs/updat
...
fix/claude
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fe942329d6 | ||
|
|
9801aa581b | ||
|
|
5e97916608 | ||
|
|
8b9c2be8c9 | ||
|
|
3ff5aac8e0 | ||
|
|
67fef60466 | ||
|
|
b6ab6f1993 | ||
|
|
9f2e82a838 | ||
|
|
0b2b799d5a | ||
|
|
0f790fbbd9 | ||
|
|
387ae21eba | ||
|
|
3cc329c3e7 | ||
|
|
5567302316 | ||
|
|
075d4bd167 | ||
|
|
e4bcc76f88 | ||
|
|
710e83b1fd | ||
|
|
c96d653072 | ||
|
|
8b22d2b5d3 | ||
|
|
4cb544ee38 | ||
|
|
f94ce63d51 |
44
README.md
44
README.md
@@ -6,6 +6,7 @@
|
|||||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
||||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
||||||
|
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||||
@@ -16,7 +17,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
|
|||||||
|
|
||||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||||
|
|
||||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||||
|
|
||||||
|
|
||||||
|
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -26,7 +30,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
|||||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||||
|
|
||||||
|
|
||||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||||
@@ -166,7 +170,7 @@ ollama pull llama3.2:1b
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### Flexible Configuration
|
### ⭐ Flexible Configuration
|
||||||
|
|
||||||
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
||||||
|
|
||||||
@@ -185,12 +189,13 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
|
|||||||
--force-rebuild # Force rebuild index even if it exists
|
--force-rebuild # Force rebuild index even if it exists
|
||||||
|
|
||||||
# Embedding Parameters
|
# Embedding Parameters
|
||||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small or mlx-community/multilingual-e5-base-mlx
|
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
|
||||||
--embedding-mode MODE # sentence-transformers, openai, or mlx
|
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||||
|
|
||||||
# LLM Parameters (Text generation models)
|
# LLM Parameters (Text generation models)
|
||||||
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
||||||
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
|
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
|
||||||
|
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
|
||||||
|
|
||||||
# Search Parameters
|
# Search Parameters
|
||||||
--top-k N # Number of results to retrieve (default: 20)
|
--top-k N # Number of results to retrieve (default: 20)
|
||||||
@@ -218,7 +223,7 @@ Ask questions directly about your personal PDFs, documents, and any directory co
|
|||||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
|
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
source .venv/bin/activate # Don't forget to activate the virtual environment
|
source .venv/bin/activate # Don't forget to activate the virtual environment
|
||||||
@@ -413,7 +418,26 @@ Once the index is built, you can ask questions like:
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||||
|
|
||||||
|
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||||
|
|
||||||
|
**Key features:**
|
||||||
|
- 🔍 **Semantic code search** across your entire project
|
||||||
|
- 📚 **Context-aware assistance** for debugging and development
|
||||||
|
- 🚀 **Zero-config setup** with automatic language detection
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install LEANN globally for MCP integration
|
||||||
|
uv tool install leann-core
|
||||||
|
|
||||||
|
# Setup is automatic - just start using Claude Code!
|
||||||
|
```
|
||||||
|
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
## 🖥️ Command Line Interface
|
## 🖥️ Command Line Interface
|
||||||
|
|
||||||
@@ -427,7 +451,7 @@ source .venv/bin/activate
|
|||||||
leann --help
|
leann --help
|
||||||
```
|
```
|
||||||
|
|
||||||
**To make it globally available (recommended for daily use):**
|
**To make it globally available:**
|
||||||
```bash
|
```bash
|
||||||
# Install the LEANN CLI globally using uv tool
|
# Install the LEANN CLI globally using uv tool
|
||||||
uv tool install leann
|
uv tool install leann
|
||||||
@@ -436,13 +460,15 @@ uv tool install leann
|
|||||||
leann --help
|
leann --help
|
||||||
```
|
```
|
||||||
|
|
||||||
|
> **Note**: Global installation is required for Claude Code integration. The `leann_mcp` server depends on the globally available `leann` command.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Usage Examples
|
### Usage Examples
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Build an index from documents
|
# build from a specific directory, and my_docs is the index name
|
||||||
leann build my-docs --docs ./documents
|
leann build my-docs --docs ./your_documents
|
||||||
|
|
||||||
# Search your documents
|
# Search your documents
|
||||||
leann search my-docs "machine learning concepts"
|
leann search my-docs "machine learning concepts"
|
||||||
|
|||||||
@@ -75,7 +75,7 @@ class BaseRAGExample(ABC):
|
|||||||
"--embedding-mode",
|
"--embedding-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="sentence-transformers",
|
default="sentence-transformers",
|
||||||
choices=["sentence-transformers", "openai", "mlx"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode (default: sentence-transformers)",
|
help="Embedding backend mode (default: sentence-transformers)",
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -85,7 +85,7 @@ class BaseRAGExample(ABC):
|
|||||||
"--llm",
|
"--llm",
|
||||||
type=str,
|
type=str,
|
||||||
default="openai",
|
default="openai",
|
||||||
choices=["openai", "ollama", "hf"],
|
choices=["openai", "ollama", "hf", "simulated"],
|
||||||
help="LLM backend to use (default: openai)",
|
help="LLM backend to use (default: openai)",
|
||||||
)
|
)
|
||||||
llm_group.add_argument(
|
llm_group.add_argument(
|
||||||
@@ -100,6 +100,13 @@ class BaseRAGExample(ABC):
|
|||||||
default="http://localhost:11434",
|
default="http://localhost:11434",
|
||||||
help="Host for Ollama API (default: http://localhost:11434)",
|
help="Host for Ollama API (default: http://localhost:11434)",
|
||||||
)
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--thinking-budget",
|
||||||
|
type=str,
|
||||||
|
choices=["low", "medium", "high"],
|
||||||
|
default=None,
|
||||||
|
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||||
|
)
|
||||||
|
|
||||||
# Search parameters
|
# Search parameters
|
||||||
search_group = parser.add_argument_group("Search Parameters")
|
search_group = parser.add_argument_group("Search Parameters")
|
||||||
@@ -228,7 +235,17 @@ class BaseRAGExample(ABC):
|
|||||||
if not query:
|
if not query:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
response = chat.ask(query, top_k=args.top_k, complexity=args.search_complexity)
|
# Prepare LLM kwargs with thinking budget if specified
|
||||||
|
llm_kwargs = {}
|
||||||
|
if hasattr(args, "thinking_budget") and args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
|
response = chat.ask(
|
||||||
|
query,
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.search_complexity,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
)
|
||||||
print(f"\nAssistant: {response}\n")
|
print(f"\nAssistant: {response}\n")
|
||||||
|
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
@@ -247,7 +264,15 @@ class BaseRAGExample(ABC):
|
|||||||
)
|
)
|
||||||
|
|
||||||
print(f"\n[Query]: \033[36m{query}\033[0m")
|
print(f"\n[Query]: \033[36m{query}\033[0m")
|
||||||
response = chat.ask(query, top_k=args.top_k, complexity=args.search_complexity)
|
|
||||||
|
# Prepare LLM kwargs with thinking budget if specified
|
||||||
|
llm_kwargs = {}
|
||||||
|
if hasattr(args, "thinking_budget") and args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
|
response = chat.ask(
|
||||||
|
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
|
||||||
|
)
|
||||||
print(f"\n[Response]: \033[36m{response}\033[0m")
|
print(f"\n[Response]: \033[36m{response}\033[0m")
|
||||||
|
|
||||||
async def run(self):
|
async def run(self):
|
||||||
|
|||||||
BIN
assets/claude_code_leann.png
Normal file
BIN
assets/claude_code_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 73 KiB |
BIN
assets/mcp_leann.png
Normal file
BIN
assets/mcp_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 224 KiB |
123
docs/THINKING_BUDGET_FEATURE.md
Normal file
123
docs/THINKING_BUDGET_FEATURE.md
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
# Thinking Budget Feature Implementation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
This document describes the implementation of the **thinking budget** feature for LEANN, which allows users to control the computational effort for reasoning models like GPT-Oss:20b.
|
||||||
|
|
||||||
|
## Feature Description
|
||||||
|
|
||||||
|
The thinking budget feature provides three levels of computational effort for reasoning models:
|
||||||
|
- **`low`**: Fast responses, basic reasoning (default for simple queries)
|
||||||
|
- **`medium`**: Balanced speed and reasoning depth
|
||||||
|
- **`high`**: Maximum reasoning effort, best for complex analytical questions
|
||||||
|
|
||||||
|
## Implementation Details
|
||||||
|
|
||||||
|
### 1. Command Line Interface
|
||||||
|
|
||||||
|
Added `--thinking-budget` parameter to both CLI and RAG examples:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# LEANN CLI
|
||||||
|
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
|
||||||
|
|
||||||
|
# RAG Examples
|
||||||
|
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||||
|
python apps/document_rag.py --llm openai --llm-model o3 --thinking-budget medium
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. LLM Backend Support
|
||||||
|
|
||||||
|
#### Ollama Backend (`packages/leann-core/src/leann/chat.py`)
|
||||||
|
|
||||||
|
```python
|
||||||
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
|
# Handle thinking budget for reasoning models
|
||||||
|
options = kwargs.copy()
|
||||||
|
thinking_budget = kwargs.get("thinking_budget")
|
||||||
|
if thinking_budget:
|
||||||
|
options.pop("thinking_budget", None)
|
||||||
|
if thinking_budget in ["low", "medium", "high"]:
|
||||||
|
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
|
||||||
|
```
|
||||||
|
|
||||||
|
**API Format**: Uses Ollama's `reasoning` parameter with `effort` and `exclude` fields.
|
||||||
|
|
||||||
|
#### OpenAI Backend (`packages/leann-core/src/leann/chat.py`)
|
||||||
|
|
||||||
|
```python
|
||||||
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
|
# Handle thinking budget for reasoning models
|
||||||
|
thinking_budget = kwargs.get("thinking_budget")
|
||||||
|
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
|
||||||
|
# Check if this is an o-series model
|
||||||
|
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
|
||||||
|
if any(model in self.model for model in o_series_models):
|
||||||
|
params["reasoning_effort"] = thinking_budget
|
||||||
|
```
|
||||||
|
|
||||||
|
**API Format**: Uses OpenAI's `reasoning_effort` parameter for o-series models.
|
||||||
|
|
||||||
|
### 3. Parameter Propagation
|
||||||
|
|
||||||
|
The thinking budget parameter is properly propagated through the LEANN architecture:
|
||||||
|
|
||||||
|
1. **CLI** (`packages/leann-core/src/leann/cli.py`): Captures `--thinking-budget` argument
|
||||||
|
2. **Base RAG** (`apps/base_rag_example.py`): Adds parameter to argument parser
|
||||||
|
3. **LeannChat** (`packages/leann-core/src/leann/api.py`): Passes `llm_kwargs` to LLM
|
||||||
|
4. **LLM Interface**: Handles the parameter in backend-specific implementations
|
||||||
|
|
||||||
|
## Files Modified
|
||||||
|
|
||||||
|
### Core Implementation
|
||||||
|
- `packages/leann-core/src/leann/chat.py`: Added thinking budget support to OllamaChat and OpenAIChat
|
||||||
|
- `packages/leann-core/src/leann/cli.py`: Added `--thinking-budget` argument
|
||||||
|
- `apps/base_rag_example.py`: Added thinking budget parameter to RAG examples
|
||||||
|
|
||||||
|
### Documentation
|
||||||
|
- `README.md`: Added thinking budget parameter to usage examples
|
||||||
|
- `docs/configuration-guide.md`: Added detailed documentation and usage guidelines
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
- `examples/thinking_budget_demo.py`: Comprehensive demo script with usage examples
|
||||||
|
|
||||||
|
## Usage Examples
|
||||||
|
|
||||||
|
### Basic Usage
|
||||||
|
```bash
|
||||||
|
# High reasoning effort for complex questions
|
||||||
|
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
|
||||||
|
|
||||||
|
# Medium reasoning for balanced performance
|
||||||
|
leann ask my-index --llm openai --model gpt-4o --thinking-budget medium
|
||||||
|
|
||||||
|
# Low reasoning for fast responses
|
||||||
|
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget low
|
||||||
|
```
|
||||||
|
|
||||||
|
### RAG Examples
|
||||||
|
```bash
|
||||||
|
# Email RAG with high reasoning
|
||||||
|
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||||
|
|
||||||
|
# Document RAG with medium reasoning
|
||||||
|
python apps/document_rag.py --llm openai --llm-model gpt-4o --thinking-budget medium
|
||||||
|
```
|
||||||
|
|
||||||
|
## Supported Models
|
||||||
|
|
||||||
|
### Ollama Models
|
||||||
|
- **GPT-Oss:20b**: Primary target model with reasoning capabilities
|
||||||
|
- **Other reasoning models**: Any Ollama model that supports the `reasoning` parameter
|
||||||
|
|
||||||
|
### OpenAI Models
|
||||||
|
- **o3, o3-mini, o4-mini, o1**: o-series reasoning models with `reasoning_effort` parameter
|
||||||
|
- **GPT-OSS models**: Models that support reasoning capabilities
|
||||||
|
|
||||||
|
## Testing
|
||||||
|
|
||||||
|
The implementation includes comprehensive testing:
|
||||||
|
- Parameter handling verification
|
||||||
|
- Backend-specific API format validation
|
||||||
|
- CLI argument parsing tests
|
||||||
|
- Integration with existing LEANN architecture
|
||||||
@@ -49,14 +49,25 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
|||||||
- **Cons**: Slower inference, longer index build times
|
- **Cons**: Slower inference, longer index build times
|
||||||
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
||||||
|
|
||||||
### Quick Start: OpenAI Embeddings (Fastest Setup)
|
### Quick Start: Cloud and Local Embedding Options
|
||||||
|
|
||||||
|
**OpenAI Embeddings (Fastest Setup)**
|
||||||
For immediate testing without local model downloads:
|
For immediate testing without local model downloads:
|
||||||
```bash
|
```bash
|
||||||
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
||||||
--embedding-mode openai --embedding-model text-embedding-3-small
|
--embedding-mode openai --embedding-model text-embedding-3-small
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**Ollama Embeddings (Privacy-Focused)**
|
||||||
|
For local embeddings with complete privacy:
|
||||||
|
```bash
|
||||||
|
# First, pull an embedding model
|
||||||
|
ollama pull nomic-embed-text
|
||||||
|
|
||||||
|
# Use Ollama embeddings
|
||||||
|
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||||
|
```
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
||||||
|
|
||||||
@@ -103,13 +114,15 @@ For immediate testing without local model downloads:
|
|||||||
**OpenAI** (`--llm openai`)
|
**OpenAI** (`--llm openai`)
|
||||||
- **Pros**: Best quality, consistent performance, no local resources needed
|
- **Pros**: Best quality, consistent performance, no local resources needed
|
||||||
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
|
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
|
||||||
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3-mini` (reasoning, not so expensive)
|
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
|
||||||
|
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
|
||||||
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
|
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
|
||||||
|
|
||||||
**Ollama** (`--llm ollama`)
|
**Ollama** (`--llm ollama`)
|
||||||
- **Pros**: Fully local, free, privacy-preserving, good model variety
|
- **Pros**: Fully local, free, privacy-preserving, good model variety
|
||||||
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
|
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
|
||||||
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
|
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
|
||||||
|
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
|
||||||
|
|
||||||
**HuggingFace** (`--llm hf`)
|
**HuggingFace** (`--llm hf`)
|
||||||
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
|
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
|
||||||
@@ -151,6 +164,36 @@ For immediate testing without local model downloads:
|
|||||||
- LLM processing time ∝ top_k × chunk_size
|
- LLM processing time ∝ top_k × chunk_size
|
||||||
- Total context = top_k × chunk_size tokens
|
- Total context = top_k × chunk_size tokens
|
||||||
|
|
||||||
|
### Thinking Budget for Reasoning Models
|
||||||
|
|
||||||
|
**`--thinking-budget`** (reasoning effort level)
|
||||||
|
- Controls the computational effort for reasoning models
|
||||||
|
- Options: `low`, `medium`, `high`
|
||||||
|
- Guidelines:
|
||||||
|
- `low`: Fast responses, basic reasoning (default for simple queries)
|
||||||
|
- `medium`: Balanced speed and reasoning depth
|
||||||
|
- `high`: Maximum reasoning effort, best for complex analytical questions
|
||||||
|
- **Supported Models**:
|
||||||
|
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
|
||||||
|
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
|
||||||
|
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
|
||||||
|
- **Example**: `--thinking-budget high` for complex analytical questions
|
||||||
|
|
||||||
|
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
|
||||||
|
|
||||||
|
**💡 Quick Examples:**
|
||||||
|
```bash
|
||||||
|
# OpenAI o-series reasoning model
|
||||||
|
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
|
||||||
|
--index-dir hnswbuild --backend hnsw \
|
||||||
|
--llm openai --llm-model o3 --thinking-budget medium
|
||||||
|
|
||||||
|
# Ollama reasoning model
|
||||||
|
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
|
||||||
|
--index-dir hnswbuild --backend hnsw \
|
||||||
|
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||||
|
```
|
||||||
|
|
||||||
### Graph Degree (HNSW/DiskANN)
|
### Graph Degree (HNSW/DiskANN)
|
||||||
|
|
||||||
**`--graph-degree`**
|
**`--graph-degree`**
|
||||||
@@ -179,9 +222,15 @@ For immediate testing without local model downloads:
|
|||||||
|
|
||||||
3. **Use MLX on Apple Silicon** (optional optimization):
|
3. **Use MLX on Apple Silicon** (optional optimization):
|
||||||
```bash
|
```bash
|
||||||
--embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
|
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
|
||||||
```
|
```
|
||||||
|
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
|
||||||
|
|
||||||
|
4. **Use Ollama**
|
||||||
|
```bash
|
||||||
|
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||||
|
```
|
||||||
|
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
|
||||||
### If Search Quality is Poor
|
### If Search Quality is Poor
|
||||||
|
|
||||||
1. **Increase retrieval count**:
|
1. **Increase retrieval count**:
|
||||||
|
|||||||
@@ -261,7 +261,7 @@ if __name__ == "__main__":
|
|||||||
"--embedding-mode",
|
"--embedding-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="sentence-transformers",
|
default="sentence-transformers",
|
||||||
choices=["sentence-transformers", "openai", "mlx"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode",
|
help="Embedding backend mode",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
|||||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-diskann"
|
name = "leann-backend-diskann"
|
||||||
version = "0.2.1"
|
version = "0.2.6"
|
||||||
dependencies = ["leann-core==0.2.1", "numpy", "protobuf>=3.19.0"]
|
dependencies = ["leann-core==0.2.6", "numpy", "protobuf>=3.19.0"]
|
||||||
|
|
||||||
[tool.scikit-build]
|
[tool.scikit-build]
|
||||||
# Key: simplified CMake path
|
# Key: simplified CMake path
|
||||||
|
|||||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: 67a2611ad1...b2dc4ea2c7
@@ -295,7 +295,7 @@ if __name__ == "__main__":
|
|||||||
"--embedding-mode",
|
"--embedding-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="sentence-transformers",
|
default="sentence-transformers",
|
||||||
choices=["sentence-transformers", "openai", "mlx"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode",
|
help="Embedding backend mode",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-hnsw"
|
name = "leann-backend-hnsw"
|
||||||
version = "0.2.1"
|
version = "0.2.6"
|
||||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"leann-core==0.2.1",
|
"leann-core==0.2.6",
|
||||||
"numpy",
|
"numpy",
|
||||||
"pyzmq>=23.0.0",
|
"pyzmq>=23.0.0",
|
||||||
"msgpack>=1.0.0",
|
"msgpack>=1.0.0",
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-core"
|
name = "leann-core"
|
||||||
version = "0.2.1"
|
version = "0.2.6"
|
||||||
description = "Core API and plugin system for LEANN"
|
description = "Core API and plugin system for LEANN"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
@@ -31,6 +31,8 @@ dependencies = [
|
|||||||
"PyPDF2>=3.0.0",
|
"PyPDF2>=3.0.0",
|
||||||
"pymupdf>=1.23.0",
|
"pymupdf>=1.23.0",
|
||||||
"pdfplumber>=0.10.0",
|
"pdfplumber>=0.10.0",
|
||||||
|
"nbconvert>=7.0.0", # For .ipynb file support
|
||||||
|
"gitignore-parser>=0.1.12", # For proper .gitignore handling
|
||||||
"mlx>=0.26.3; sys_platform == 'darwin'",
|
"mlx>=0.26.3; sys_platform == 'darwin'",
|
||||||
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
||||||
]
|
]
|
||||||
@@ -44,6 +46,7 @@ colab = [
|
|||||||
|
|
||||||
[project.scripts]
|
[project.scripts]
|
||||||
leann = "leann.cli:main"
|
leann = "leann.cli:main"
|
||||||
|
leann_mcp = "leann.mcp:main"
|
||||||
|
|
||||||
[tool.setuptools.packages.find]
|
[tool.setuptools.packages.find]
|
||||||
where = ["src"]
|
where = ["src"]
|
||||||
|
|||||||
@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def check_ollama_models() -> list[str]:
|
def check_ollama_models(host: str) -> list[str]:
|
||||||
"""Check available Ollama models and return a list"""
|
"""Check available Ollama models and return a list"""
|
||||||
try:
|
try:
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||||
if response.status_code == 200:
|
if response.status_code == 200:
|
||||||
data = response.json()
|
data = response.json()
|
||||||
return [model["name"] for model in data.get("models", [])]
|
return [model["name"] for model in data.get("models", [])]
|
||||||
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
|||||||
return search_hf_models_fuzzy(query, limit)
|
return search_hf_models_fuzzy(query, limit)
|
||||||
|
|
||||||
|
|
||||||
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
|
def validate_model_and_suggest(
|
||||||
|
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
||||||
|
) -> str | None:
|
||||||
"""Validate model name and provide suggestions if invalid"""
|
"""Validate model name and provide suggestions if invalid"""
|
||||||
if llm_type == "ollama":
|
if llm_type == "ollama":
|
||||||
available_models = check_ollama_models()
|
available_models = check_ollama_models(host)
|
||||||
if available_models and model_name not in available_models:
|
if available_models and model_name not in available_models:
|
||||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||||
|
|
||||||
@@ -469,7 +471,7 @@ class OllamaChat(LLMInterface):
|
|||||||
requests.get(host)
|
requests.get(host)
|
||||||
|
|
||||||
# Pre-check model availability with helpful suggestions
|
# Pre-check model availability with helpful suggestions
|
||||||
model_error = validate_model_and_suggest(model, "ollama")
|
model_error = validate_model_and_suggest(model, "ollama", host)
|
||||||
if model_error:
|
if model_error:
|
||||||
raise ValueError(model_error)
|
raise ValueError(model_error)
|
||||||
|
|
||||||
@@ -489,11 +491,35 @@ class OllamaChat(LLMInterface):
|
|||||||
import requests
|
import requests
|
||||||
|
|
||||||
full_url = f"{self.host}/api/generate"
|
full_url = f"{self.host}/api/generate"
|
||||||
|
|
||||||
|
# Handle thinking budget for reasoning models
|
||||||
|
options = kwargs.copy()
|
||||||
|
thinking_budget = kwargs.get("thinking_budget")
|
||||||
|
if thinking_budget:
|
||||||
|
# Remove thinking_budget from options as it's not a standard Ollama option
|
||||||
|
options.pop("thinking_budget", None)
|
||||||
|
# Only apply reasoning parameters to models that support it
|
||||||
|
reasoning_supported_models = [
|
||||||
|
"gpt-oss:20b",
|
||||||
|
"gpt-oss:120b",
|
||||||
|
"deepseek-r1",
|
||||||
|
"deepseek-coder",
|
||||||
|
]
|
||||||
|
|
||||||
|
if thinking_budget in ["low", "medium", "high"]:
|
||||||
|
if any(model in self.model.lower() for model in reasoning_supported_models):
|
||||||
|
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
|
||||||
|
logger.info(f"Applied reasoning effort={thinking_budget} to model {self.model}")
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
|
||||||
|
)
|
||||||
|
|
||||||
payload = {
|
payload = {
|
||||||
"model": self.model,
|
"model": self.model,
|
||||||
"prompt": prompt,
|
"prompt": prompt,
|
||||||
"stream": False, # Keep it simple for now
|
"stream": False, # Keep it simple for now
|
||||||
"options": kwargs,
|
"options": options,
|
||||||
}
|
}
|
||||||
logger.debug(f"Sending request to Ollama: {payload}")
|
logger.debug(f"Sending request to Ollama: {payload}")
|
||||||
try:
|
try:
|
||||||
@@ -684,11 +710,38 @@ class OpenAIChat(LLMInterface):
|
|||||||
params = {
|
params = {
|
||||||
"model": self.model,
|
"model": self.model,
|
||||||
"messages": [{"role": "user", "content": prompt}],
|
"messages": [{"role": "user", "content": prompt}],
|
||||||
"max_tokens": kwargs.get("max_tokens", 1000),
|
|
||||||
"temperature": kwargs.get("temperature", 0.7),
|
"temperature": kwargs.get("temperature", 0.7),
|
||||||
**{k: v for k, v in kwargs.items() if k not in ["max_tokens", "temperature"]},
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Handle max_tokens vs max_completion_tokens based on model
|
||||||
|
max_tokens = kwargs.get("max_tokens", 1000)
|
||||||
|
if "o3" in self.model or "o4" in self.model or "o1" in self.model:
|
||||||
|
# o-series models use max_completion_tokens
|
||||||
|
params["max_completion_tokens"] = max_tokens
|
||||||
|
params["temperature"] = 1.0
|
||||||
|
else:
|
||||||
|
# Other models use max_tokens
|
||||||
|
params["max_tokens"] = max_tokens
|
||||||
|
|
||||||
|
# Handle thinking budget for reasoning models
|
||||||
|
thinking_budget = kwargs.get("thinking_budget")
|
||||||
|
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
|
||||||
|
# Check if this is an o-series model (partial match for model names)
|
||||||
|
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
|
||||||
|
if any(model in self.model for model in o_series_models):
|
||||||
|
# Use the correct OpenAI reasoning parameter format
|
||||||
|
params["reasoning_effort"] = thinking_budget
|
||||||
|
logger.info(f"Applied reasoning_effort={thinking_budget} to model {self.model}")
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add other kwargs (excluding thinking_budget as it's handled above)
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
if k not in ["max_tokens", "temperature", "thinking_budget"]:
|
||||||
|
params[k] = v
|
||||||
|
|
||||||
logger.info(f"Sending request to OpenAI with model {self.model}")
|
logger.info(f"Sending request to OpenAI with model {self.model}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|||||||
@@ -41,13 +41,23 @@ def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
|
|||||||
|
|
||||||
class LeannCLI:
|
class LeannCLI:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.indexes_dir = Path.home() / ".leann" / "indexes"
|
# Always use project-local .leann directory (like .git)
|
||||||
|
self.indexes_dir = Path.cwd() / ".leann" / "indexes"
|
||||||
self.indexes_dir.mkdir(parents=True, exist_ok=True)
|
self.indexes_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Default parser for documents
|
||||||
self.node_parser = SentenceSplitter(
|
self.node_parser = SentenceSplitter(
|
||||||
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Code-optimized parser
|
||||||
|
self.code_parser = SentenceSplitter(
|
||||||
|
chunk_size=512, # Larger chunks for code context
|
||||||
|
chunk_overlap=50, # Less overlap to preserve function boundaries
|
||||||
|
separator="\n", # Split by lines for code
|
||||||
|
paragraph_separator="\n\n", # Preserve logical code blocks
|
||||||
|
)
|
||||||
|
|
||||||
def get_index_path(self, index_name: str) -> str:
|
def get_index_path(self, index_name: str) -> str:
|
||||||
index_dir = self.indexes_dir / index_name
|
index_dir = self.indexes_dir / index_name
|
||||||
return str(index_dir / "documents.leann")
|
return str(index_dir / "documents.leann")
|
||||||
@@ -64,10 +74,11 @@ class LeannCLI:
|
|||||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||||
epilog="""
|
epilog="""
|
||||||
Examples:
|
Examples:
|
||||||
leann build my-docs --docs ./documents # Build index named my-docs
|
leann build my-docs --docs ./documents # Build index named my-docs
|
||||||
leann search my-docs "query" # Search in my-docs index
|
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
|
||||||
leann ask my-docs "question" # Ask my-docs index
|
leann search my-docs "query" # Search in my-docs index
|
||||||
leann list # List all stored indexes
|
leann ask my-docs "question" # Ask my-docs index
|
||||||
|
leann list # List all stored indexes
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -75,18 +86,34 @@ Examples:
|
|||||||
|
|
||||||
# Build command
|
# Build command
|
||||||
build_parser = subparsers.add_parser("build", help="Build document index")
|
build_parser = subparsers.add_parser("build", help="Build document index")
|
||||||
build_parser.add_argument("index_name", help="Index name")
|
build_parser.add_argument(
|
||||||
build_parser.add_argument("--docs", type=str, required=True, help="Documents directory")
|
"index_name", nargs="?", help="Index name (default: current directory name)"
|
||||||
|
)
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--docs", type=str, default=".", help="Documents directory (default: current directory)"
|
||||||
|
)
|
||||||
build_parser.add_argument(
|
build_parser.add_argument(
|
||||||
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
||||||
)
|
)
|
||||||
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode (default: sentence-transformers)",
|
||||||
|
)
|
||||||
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
||||||
build_parser.add_argument("--graph-degree", type=int, default=32)
|
build_parser.add_argument("--graph-degree", type=int, default=32)
|
||||||
build_parser.add_argument("--complexity", type=int, default=64)
|
build_parser.add_argument("--complexity", type=int, default=64)
|
||||||
build_parser.add_argument("--num-threads", type=int, default=1)
|
build_parser.add_argument("--num-threads", type=int, default=1)
|
||||||
build_parser.add_argument("--compact", action="store_true", default=True)
|
build_parser.add_argument("--compact", action="store_true", default=True)
|
||||||
build_parser.add_argument("--recompute", action="store_true", default=True)
|
build_parser.add_argument("--recompute", action="store_true", default=True)
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--file-types",
|
||||||
|
type=str,
|
||||||
|
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
|
||||||
|
)
|
||||||
|
|
||||||
# Search command
|
# Search command
|
||||||
search_parser = subparsers.add_parser("search", help="Search documents")
|
search_parser = subparsers.add_parser("search", help="Search documents")
|
||||||
@@ -96,7 +123,12 @@ Examples:
|
|||||||
search_parser.add_argument("--complexity", type=int, default=64)
|
search_parser.add_argument("--complexity", type=int, default=64)
|
||||||
search_parser.add_argument("--beam-width", type=int, default=1)
|
search_parser.add_argument("--beam-width", type=int, default=1)
|
||||||
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
||||||
search_parser.add_argument("--recompute-embeddings", action="store_true")
|
search_parser.add_argument(
|
||||||
|
"--recompute-embeddings",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Recompute embeddings (default: True)",
|
||||||
|
)
|
||||||
search_parser.add_argument(
|
search_parser.add_argument(
|
||||||
"--pruning-strategy",
|
"--pruning-strategy",
|
||||||
choices=["global", "local", "proportional"],
|
choices=["global", "local", "proportional"],
|
||||||
@@ -119,94 +151,370 @@ Examples:
|
|||||||
ask_parser.add_argument("--complexity", type=int, default=32)
|
ask_parser.add_argument("--complexity", type=int, default=32)
|
||||||
ask_parser.add_argument("--beam-width", type=int, default=1)
|
ask_parser.add_argument("--beam-width", type=int, default=1)
|
||||||
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
||||||
ask_parser.add_argument("--recompute-embeddings", action="store_true")
|
ask_parser.add_argument(
|
||||||
|
"--recompute-embeddings",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Recompute embeddings (default: True)",
|
||||||
|
)
|
||||||
ask_parser.add_argument(
|
ask_parser.add_argument(
|
||||||
"--pruning-strategy",
|
"--pruning-strategy",
|
||||||
choices=["global", "local", "proportional"],
|
choices=["global", "local", "proportional"],
|
||||||
default="global",
|
default="global",
|
||||||
)
|
)
|
||||||
|
ask_parser.add_argument(
|
||||||
|
"--thinking-budget",
|
||||||
|
type=str,
|
||||||
|
choices=["low", "medium", "high"],
|
||||||
|
default=None,
|
||||||
|
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||||
|
)
|
||||||
|
|
||||||
# List command
|
# List command
|
||||||
subparsers.add_parser("list", help="List all indexes")
|
subparsers.add_parser("list", help="List all indexes")
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
def register_project_dir(self):
|
||||||
|
"""Register current project directory in global registry"""
|
||||||
|
global_registry = Path.home() / ".leann" / "projects.json"
|
||||||
|
global_registry.parent.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
current_dir = str(Path.cwd())
|
||||||
|
|
||||||
|
# Load existing registry
|
||||||
|
projects = []
|
||||||
|
if global_registry.exists():
|
||||||
|
try:
|
||||||
|
import json
|
||||||
|
|
||||||
|
with open(global_registry) as f:
|
||||||
|
projects = json.load(f)
|
||||||
|
except Exception:
|
||||||
|
projects = []
|
||||||
|
|
||||||
|
# Add current directory if not already present
|
||||||
|
if current_dir not in projects:
|
||||||
|
projects.append(current_dir)
|
||||||
|
|
||||||
|
# Save registry
|
||||||
|
import json
|
||||||
|
|
||||||
|
with open(global_registry, "w") as f:
|
||||||
|
json.dump(projects, f, indent=2)
|
||||||
|
|
||||||
|
def _build_gitignore_parser(self, docs_dir: str):
|
||||||
|
"""Build gitignore parser using gitignore-parser library."""
|
||||||
|
from gitignore_parser import parse_gitignore
|
||||||
|
|
||||||
|
# Try to parse the root .gitignore
|
||||||
|
gitignore_path = Path(docs_dir) / ".gitignore"
|
||||||
|
|
||||||
|
if gitignore_path.exists():
|
||||||
|
try:
|
||||||
|
# gitignore-parser automatically handles all subdirectory .gitignore files!
|
||||||
|
matches = parse_gitignore(str(gitignore_path))
|
||||||
|
print(f"📋 Loaded .gitignore from {docs_dir} (includes all subdirectories)")
|
||||||
|
return matches
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warning: Could not parse .gitignore: {e}")
|
||||||
|
else:
|
||||||
|
print("📋 No .gitignore found")
|
||||||
|
|
||||||
|
# Fallback: basic pattern matching for essential files
|
||||||
|
essential_patterns = {".git", ".DS_Store", "__pycache__", "node_modules", ".venv", "venv"}
|
||||||
|
|
||||||
|
def basic_matches(file_path):
|
||||||
|
path_parts = Path(file_path).parts
|
||||||
|
return any(part in essential_patterns for part in path_parts)
|
||||||
|
|
||||||
|
return basic_matches
|
||||||
|
|
||||||
|
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
|
||||||
|
"""Check if a file should be excluded using gitignore parser."""
|
||||||
|
return gitignore_matches(str(relative_path))
|
||||||
|
|
||||||
def list_indexes(self):
|
def list_indexes(self):
|
||||||
print("Stored LEANN indexes:")
|
print("Stored LEANN indexes:")
|
||||||
|
|
||||||
if not self.indexes_dir.exists():
|
# Get all project directories with .leann
|
||||||
|
global_registry = Path.home() / ".leann" / "projects.json"
|
||||||
|
all_projects = []
|
||||||
|
|
||||||
|
if global_registry.exists():
|
||||||
|
try:
|
||||||
|
import json
|
||||||
|
|
||||||
|
with open(global_registry) as f:
|
||||||
|
all_projects = json.load(f)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Filter to only existing directories with .leann
|
||||||
|
valid_projects = []
|
||||||
|
for project_dir in all_projects:
|
||||||
|
project_path = Path(project_dir)
|
||||||
|
if project_path.exists() and (project_path / ".leann" / "indexes").exists():
|
||||||
|
valid_projects.append(project_path)
|
||||||
|
|
||||||
|
# Add current project if it has .leann but not in registry
|
||||||
|
current_path = Path.cwd()
|
||||||
|
if (current_path / ".leann" / "indexes").exists() and current_path not in valid_projects:
|
||||||
|
valid_projects.append(current_path)
|
||||||
|
|
||||||
|
if not valid_projects:
|
||||||
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
||||||
return
|
return
|
||||||
|
|
||||||
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
|
total_indexes = 0
|
||||||
|
current_dir = Path.cwd()
|
||||||
|
|
||||||
if not index_dirs:
|
for project_path in valid_projects:
|
||||||
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
indexes_dir = project_path / ".leann" / "indexes"
|
||||||
return
|
if not indexes_dir.exists():
|
||||||
|
continue
|
||||||
|
|
||||||
print(f"Found {len(index_dirs)} indexes:")
|
index_dirs = [d for d in indexes_dir.iterdir() if d.is_dir()]
|
||||||
for i, index_dir in enumerate(index_dirs, 1):
|
if not index_dirs:
|
||||||
index_name = index_dir.name
|
continue
|
||||||
status = "✓" if self.index_exists(index_name) else "✗"
|
|
||||||
|
|
||||||
print(f" {i}. {index_name} [{status}]")
|
# Show project header
|
||||||
if self.index_exists(index_name):
|
if project_path == current_dir:
|
||||||
index_dir / "documents.leann.meta.json"
|
print(f"\n📁 Current project ({project_path}):")
|
||||||
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
|
else:
|
||||||
1024 * 1024
|
print(f"\n📂 {project_path}:")
|
||||||
)
|
|
||||||
print(f" Size: {size_mb:.1f} MB")
|
|
||||||
|
|
||||||
if index_dirs:
|
for index_dir in index_dirs:
|
||||||
example_name = index_dirs[0].name
|
total_indexes += 1
|
||||||
print("\nUsage:")
|
index_name = index_dir.name
|
||||||
print(f' leann search {example_name} "your query"')
|
meta_file = index_dir / "documents.leann.meta.json"
|
||||||
print(f" leann ask {example_name} --interactive")
|
status = "✓" if meta_file.exists() else "✗"
|
||||||
|
|
||||||
def load_documents(self, docs_dir: str):
|
print(f" {total_indexes}. {index_name} [{status}]")
|
||||||
|
if status == "✓":
|
||||||
|
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
|
||||||
|
1024 * 1024
|
||||||
|
)
|
||||||
|
print(f" Size: {size_mb:.1f} MB")
|
||||||
|
|
||||||
|
if total_indexes > 0:
|
||||||
|
print(f"\nTotal: {total_indexes} indexes across {len(valid_projects)} projects")
|
||||||
|
print("\nUsage (current project only):")
|
||||||
|
|
||||||
|
# Show example from current project
|
||||||
|
current_indexes_dir = current_dir / ".leann" / "indexes"
|
||||||
|
if current_indexes_dir.exists():
|
||||||
|
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
|
||||||
|
if current_index_dirs:
|
||||||
|
example_name = current_index_dirs[0].name
|
||||||
|
print(f' leann search {example_name} "your query"')
|
||||||
|
print(f" leann ask {example_name} --interactive")
|
||||||
|
|
||||||
|
def load_documents(self, docs_dir: str, custom_file_types: str | None = None):
|
||||||
print(f"Loading documents from {docs_dir}...")
|
print(f"Loading documents from {docs_dir}...")
|
||||||
|
if custom_file_types:
|
||||||
|
print(f"Using custom file types: {custom_file_types}")
|
||||||
|
|
||||||
# Try to use better PDF parsers first
|
# Build gitignore parser
|
||||||
|
gitignore_matches = self._build_gitignore_parser(docs_dir)
|
||||||
|
|
||||||
|
# Try to use better PDF parsers first, but only if PDFs are requested
|
||||||
documents = []
|
documents = []
|
||||||
docs_path = Path(docs_dir)
|
docs_path = Path(docs_dir)
|
||||||
|
|
||||||
for file_path in docs_path.rglob("*.pdf"):
|
# Check if we should process PDFs
|
||||||
print(f"Processing PDF: {file_path}")
|
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
|
||||||
|
|
||||||
# Try PyMuPDF first (best quality)
|
if should_process_pdfs:
|
||||||
text = extract_pdf_text_with_pymupdf(str(file_path))
|
for file_path in docs_path.rglob("*.pdf"):
|
||||||
if text is None:
|
# Check if file matches any exclude pattern
|
||||||
# Try pdfplumber
|
relative_path = file_path.relative_to(docs_path)
|
||||||
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
if self._should_exclude_file(relative_path, gitignore_matches):
|
||||||
|
continue
|
||||||
|
|
||||||
if text:
|
print(f"Processing PDF: {file_path}")
|
||||||
# Create a simple document structure
|
|
||||||
from llama_index.core import Document
|
|
||||||
|
|
||||||
doc = Document(text=text, metadata={"source": str(file_path)})
|
# Try PyMuPDF first (best quality)
|
||||||
documents.append(doc)
|
text = extract_pdf_text_with_pymupdf(str(file_path))
|
||||||
else:
|
if text is None:
|
||||||
# Fallback to default reader
|
# Try pdfplumber
|
||||||
print(f"Using default reader for {file_path}")
|
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
||||||
default_docs = SimpleDirectoryReader(
|
|
||||||
str(file_path.parent),
|
if text:
|
||||||
filename_as_id=True,
|
# Create a simple document structure
|
||||||
required_exts=[file_path.suffix],
|
from llama_index.core import Document
|
||||||
).load_data()
|
|
||||||
documents.extend(default_docs)
|
doc = Document(text=text, metadata={"source": str(file_path)})
|
||||||
|
documents.append(doc)
|
||||||
|
else:
|
||||||
|
# Fallback to default reader
|
||||||
|
print(f"Using default reader for {file_path}")
|
||||||
|
try:
|
||||||
|
default_docs = SimpleDirectoryReader(
|
||||||
|
str(file_path.parent),
|
||||||
|
filename_as_id=True,
|
||||||
|
required_exts=[file_path.suffix],
|
||||||
|
).load_data()
|
||||||
|
documents.extend(default_docs)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warning: Could not process {file_path}: {e}")
|
||||||
|
|
||||||
# Load other file types with default reader
|
# Load other file types with default reader
|
||||||
other_docs = SimpleDirectoryReader(
|
if custom_file_types:
|
||||||
docs_dir,
|
# Parse custom file types from comma-separated string
|
||||||
recursive=True,
|
code_extensions = [ext.strip() for ext in custom_file_types.split(",") if ext.strip()]
|
||||||
encoding="utf-8",
|
# Ensure extensions start with a dot
|
||||||
required_exts=[".txt", ".md", ".docx"],
|
code_extensions = [ext if ext.startswith(".") else f".{ext}" for ext in code_extensions]
|
||||||
).load_data(show_progress=True)
|
else:
|
||||||
documents.extend(other_docs)
|
# Use default supported file types
|
||||||
|
code_extensions = [
|
||||||
|
# Original document types
|
||||||
|
".txt",
|
||||||
|
".md",
|
||||||
|
".docx",
|
||||||
|
".pptx",
|
||||||
|
# Code files for Claude Code integration
|
||||||
|
".py",
|
||||||
|
".js",
|
||||||
|
".ts",
|
||||||
|
".jsx",
|
||||||
|
".tsx",
|
||||||
|
".java",
|
||||||
|
".cpp",
|
||||||
|
".c",
|
||||||
|
".h",
|
||||||
|
".hpp",
|
||||||
|
".cs",
|
||||||
|
".go",
|
||||||
|
".rs",
|
||||||
|
".rb",
|
||||||
|
".php",
|
||||||
|
".swift",
|
||||||
|
".kt",
|
||||||
|
".scala",
|
||||||
|
".r",
|
||||||
|
".sql",
|
||||||
|
".sh",
|
||||||
|
".bash",
|
||||||
|
".zsh",
|
||||||
|
".fish",
|
||||||
|
".ps1",
|
||||||
|
".bat",
|
||||||
|
# Config and markup files
|
||||||
|
".json",
|
||||||
|
".yaml",
|
||||||
|
".yml",
|
||||||
|
".xml",
|
||||||
|
".toml",
|
||||||
|
".ini",
|
||||||
|
".cfg",
|
||||||
|
".conf",
|
||||||
|
".html",
|
||||||
|
".css",
|
||||||
|
".scss",
|
||||||
|
".less",
|
||||||
|
".vue",
|
||||||
|
".svelte",
|
||||||
|
# Data science
|
||||||
|
".ipynb",
|
||||||
|
".R",
|
||||||
|
".py",
|
||||||
|
".jl",
|
||||||
|
]
|
||||||
|
# Try to load other file types, but don't fail if none are found
|
||||||
|
try:
|
||||||
|
# Create a custom file filter function using our PathSpec
|
||||||
|
def file_filter(file_path: str) -> bool:
|
||||||
|
"""Return True if file should be included (not excluded)"""
|
||||||
|
try:
|
||||||
|
docs_path_obj = Path(docs_dir)
|
||||||
|
file_path_obj = Path(file_path)
|
||||||
|
relative_path = file_path_obj.relative_to(docs_path_obj)
|
||||||
|
return not self._should_exclude_file(relative_path, gitignore_matches)
|
||||||
|
except (ValueError, OSError):
|
||||||
|
return True # Include files that can't be processed
|
||||||
|
|
||||||
|
other_docs = SimpleDirectoryReader(
|
||||||
|
docs_dir,
|
||||||
|
recursive=True,
|
||||||
|
encoding="utf-8",
|
||||||
|
required_exts=code_extensions,
|
||||||
|
file_extractor={}, # Use default extractors
|
||||||
|
filename_as_id=True,
|
||||||
|
).load_data(show_progress=True)
|
||||||
|
|
||||||
|
# Filter documents after loading based on gitignore rules
|
||||||
|
filtered_docs = []
|
||||||
|
for doc in other_docs:
|
||||||
|
file_path = doc.metadata.get("file_path", "")
|
||||||
|
if file_filter(file_path):
|
||||||
|
filtered_docs.append(doc)
|
||||||
|
|
||||||
|
documents.extend(filtered_docs)
|
||||||
|
except ValueError as e:
|
||||||
|
if "No files found" in str(e):
|
||||||
|
print("No additional files found for other supported types.")
|
||||||
|
else:
|
||||||
|
raise e
|
||||||
|
|
||||||
all_texts = []
|
all_texts = []
|
||||||
|
|
||||||
|
# Define code file extensions for intelligent chunking
|
||||||
|
code_file_exts = {
|
||||||
|
".py",
|
||||||
|
".js",
|
||||||
|
".ts",
|
||||||
|
".jsx",
|
||||||
|
".tsx",
|
||||||
|
".java",
|
||||||
|
".cpp",
|
||||||
|
".c",
|
||||||
|
".h",
|
||||||
|
".hpp",
|
||||||
|
".cs",
|
||||||
|
".go",
|
||||||
|
".rs",
|
||||||
|
".rb",
|
||||||
|
".php",
|
||||||
|
".swift",
|
||||||
|
".kt",
|
||||||
|
".scala",
|
||||||
|
".r",
|
||||||
|
".sql",
|
||||||
|
".sh",
|
||||||
|
".bash",
|
||||||
|
".zsh",
|
||||||
|
".fish",
|
||||||
|
".ps1",
|
||||||
|
".bat",
|
||||||
|
".json",
|
||||||
|
".yaml",
|
||||||
|
".yml",
|
||||||
|
".xml",
|
||||||
|
".toml",
|
||||||
|
".ini",
|
||||||
|
".cfg",
|
||||||
|
".conf",
|
||||||
|
".html",
|
||||||
|
".css",
|
||||||
|
".scss",
|
||||||
|
".less",
|
||||||
|
".vue",
|
||||||
|
".svelte",
|
||||||
|
".ipynb",
|
||||||
|
".R",
|
||||||
|
".jl",
|
||||||
|
}
|
||||||
|
|
||||||
for doc in documents:
|
for doc in documents:
|
||||||
nodes = self.node_parser.get_nodes_from_documents([doc])
|
# Check if this is a code file based on source path
|
||||||
|
source_path = doc.metadata.get("source", "")
|
||||||
|
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
|
||||||
|
|
||||||
|
# Use appropriate parser based on file type
|
||||||
|
parser = self.code_parser if is_code_file else self.node_parser
|
||||||
|
nodes = parser.get_nodes_from_documents([doc])
|
||||||
|
|
||||||
for node in nodes:
|
for node in nodes:
|
||||||
all_texts.append(node.get_content())
|
all_texts.append(node.get_content())
|
||||||
|
|
||||||
@@ -215,15 +523,23 @@ Examples:
|
|||||||
|
|
||||||
async def build_index(self, args):
|
async def build_index(self, args):
|
||||||
docs_dir = args.docs
|
docs_dir = args.docs
|
||||||
index_name = args.index_name
|
# Use current directory name if index_name not provided
|
||||||
|
if args.index_name:
|
||||||
|
index_name = args.index_name
|
||||||
|
else:
|
||||||
|
index_name = Path.cwd().name
|
||||||
|
print(f"Using current directory name as index: '{index_name}'")
|
||||||
|
|
||||||
index_dir = self.indexes_dir / index_name
|
index_dir = self.indexes_dir / index_name
|
||||||
index_path = self.get_index_path(index_name)
|
index_path = self.get_index_path(index_name)
|
||||||
|
|
||||||
|
print(f"📂 Indexing: {Path(docs_dir).resolve()}")
|
||||||
|
|
||||||
if index_dir.exists() and not args.force:
|
if index_dir.exists() and not args.force:
|
||||||
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
|
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
|
||||||
return
|
return
|
||||||
|
|
||||||
all_texts = self.load_documents(docs_dir)
|
all_texts = self.load_documents(docs_dir, args.file_types)
|
||||||
if not all_texts:
|
if not all_texts:
|
||||||
print("No documents found")
|
print("No documents found")
|
||||||
return
|
return
|
||||||
@@ -235,6 +551,7 @@ Examples:
|
|||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name=args.backend,
|
backend_name=args.backend,
|
||||||
embedding_model=args.embedding_model,
|
embedding_model=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
graph_degree=args.graph_degree,
|
graph_degree=args.graph_degree,
|
||||||
complexity=args.complexity,
|
complexity=args.complexity,
|
||||||
is_compact=args.compact,
|
is_compact=args.compact,
|
||||||
@@ -248,6 +565,9 @@ Examples:
|
|||||||
builder.build_index(index_path)
|
builder.build_index(index_path)
|
||||||
print(f"Index built at {index_path}")
|
print(f"Index built at {index_path}")
|
||||||
|
|
||||||
|
# Register this project directory in global registry
|
||||||
|
self.register_project_dir()
|
||||||
|
|
||||||
async def search_documents(self, args):
|
async def search_documents(self, args):
|
||||||
index_name = args.index_name
|
index_name = args.index_name
|
||||||
query = args.query
|
query = args.query
|
||||||
@@ -308,6 +628,11 @@ Examples:
|
|||||||
if not user_input:
|
if not user_input:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
# Prepare LLM kwargs with thinking budget if specified
|
||||||
|
llm_kwargs = {}
|
||||||
|
if args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
response = chat.ask(
|
response = chat.ask(
|
||||||
user_input,
|
user_input,
|
||||||
top_k=args.top_k,
|
top_k=args.top_k,
|
||||||
@@ -316,11 +641,17 @@ Examples:
|
|||||||
prune_ratio=args.prune_ratio,
|
prune_ratio=args.prune_ratio,
|
||||||
recompute_embeddings=args.recompute_embeddings,
|
recompute_embeddings=args.recompute_embeddings,
|
||||||
pruning_strategy=args.pruning_strategy,
|
pruning_strategy=args.pruning_strategy,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
)
|
)
|
||||||
print(f"LEANN: {response}")
|
print(f"LEANN: {response}")
|
||||||
else:
|
else:
|
||||||
query = input("Enter your question: ").strip()
|
query = input("Enter your question: ").strip()
|
||||||
if query:
|
if query:
|
||||||
|
# Prepare LLM kwargs with thinking budget if specified
|
||||||
|
llm_kwargs = {}
|
||||||
|
if args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
response = chat.ask(
|
response = chat.ask(
|
||||||
query,
|
query,
|
||||||
top_k=args.top_k,
|
top_k=args.top_k,
|
||||||
@@ -329,6 +660,7 @@ Examples:
|
|||||||
prune_ratio=args.prune_ratio,
|
prune_ratio=args.prune_ratio,
|
||||||
recompute_embeddings=args.recompute_embeddings,
|
recompute_embeddings=args.recompute_embeddings,
|
||||||
pruning_strategy=args.pruning_strategy,
|
pruning_strategy=args.pruning_strategy,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
)
|
)
|
||||||
print(f"LEANN: {response}")
|
print(f"LEANN: {response}")
|
||||||
|
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ Preserves all optimization parameters to ensure performance
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -35,7 +36,7 @@ def compute_embeddings(
|
|||||||
Args:
|
Args:
|
||||||
texts: List of texts to compute embeddings for
|
texts: List of texts to compute embeddings for
|
||||||
model_name: Model name
|
model_name: Model name
|
||||||
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
|
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
|
||||||
is_build: Whether this is a build operation (shows progress bar)
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
batch_size: Batch size for processing
|
batch_size: Batch size for processing
|
||||||
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
||||||
@@ -55,6 +56,8 @@ def compute_embeddings(
|
|||||||
return compute_embeddings_openai(texts, model_name)
|
return compute_embeddings_openai(texts, model_name)
|
||||||
elif mode == "mlx":
|
elif mode == "mlx":
|
||||||
return compute_embeddings_mlx(texts, model_name)
|
return compute_embeddings_mlx(texts, model_name)
|
||||||
|
elif mode == "ollama":
|
||||||
|
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported embedding mode: {mode}")
|
raise ValueError(f"Unsupported embedding mode: {mode}")
|
||||||
|
|
||||||
@@ -365,3 +368,262 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
|
|||||||
|
|
||||||
# Stack numpy arrays
|
# Stack numpy arrays
|
||||||
return np.stack(all_embeddings)
|
return np.stack(all_embeddings)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_embeddings_ollama(
|
||||||
|
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Compute embeddings using Ollama API.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: List of texts to compute embeddings for
|
||||||
|
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||||
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
|
host: Ollama host URL (default: http://localhost:11434)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
import requests
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not texts:
|
||||||
|
raise ValueError("Cannot compute embeddings for empty text list")
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check if Ollama is running
|
||||||
|
try:
|
||||||
|
response = requests.get(f"{host}/api/version", timeout=5)
|
||||||
|
response.raise_for_status()
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
error_msg = (
|
||||||
|
f"❌ Could not connect to Ollama at {host}.\n\n"
|
||||||
|
"Please ensure Ollama is running:\n"
|
||||||
|
" • macOS/Linux: ollama serve\n"
|
||||||
|
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
||||||
|
"Installation: https://ollama.com/download"
|
||||||
|
)
|
||||||
|
raise RuntimeError(error_msg)
|
||||||
|
except Exception as e:
|
||||||
|
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
|
||||||
|
|
||||||
|
# Check if model exists and provide helpful suggestions
|
||||||
|
try:
|
||||||
|
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||||
|
response.raise_for_status()
|
||||||
|
models = response.json()
|
||||||
|
model_names = [model["name"] for model in models.get("models", [])]
|
||||||
|
|
||||||
|
# Filter for embedding models (models that support embeddings)
|
||||||
|
embedding_models = []
|
||||||
|
suggested_embedding_models = [
|
||||||
|
"nomic-embed-text",
|
||||||
|
"mxbai-embed-large",
|
||||||
|
"bge-m3",
|
||||||
|
"all-minilm",
|
||||||
|
"snowflake-arctic-embed",
|
||||||
|
]
|
||||||
|
|
||||||
|
for model in model_names:
|
||||||
|
# Check if it's an embedding model (by name patterns or known models)
|
||||||
|
base_name = model.split(":")[0]
|
||||||
|
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
|
||||||
|
embedding_models.append(model)
|
||||||
|
|
||||||
|
# Check if model exists (handle versioned names)
|
||||||
|
model_found = any(
|
||||||
|
model_name == name.split(":")[0] or model_name == name for name in model_names
|
||||||
|
)
|
||||||
|
|
||||||
|
if not model_found:
|
||||||
|
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
|
||||||
|
|
||||||
|
# Suggest pulling the model
|
||||||
|
error_msg += "📦 To install this embedding model:\n"
|
||||||
|
error_msg += f" ollama pull {model_name}\n\n"
|
||||||
|
|
||||||
|
# Show available embedding models
|
||||||
|
if embedding_models:
|
||||||
|
error_msg += "✅ Available embedding models:\n"
|
||||||
|
for model in embedding_models[:5]:
|
||||||
|
error_msg += f" • {model}\n"
|
||||||
|
if len(embedding_models) > 5:
|
||||||
|
error_msg += f" ... and {len(embedding_models) - 5} more\n"
|
||||||
|
else:
|
||||||
|
error_msg += "💡 Popular embedding models to install:\n"
|
||||||
|
for model in suggested_embedding_models[:3]:
|
||||||
|
error_msg += f" • ollama pull {model}\n"
|
||||||
|
|
||||||
|
error_msg += "\n📚 Browse more: https://ollama.com/library"
|
||||||
|
raise ValueError(error_msg)
|
||||||
|
|
||||||
|
# Verify the model supports embeddings by testing it
|
||||||
|
try:
|
||||||
|
test_response = requests.post(
|
||||||
|
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
|
||||||
|
)
|
||||||
|
if test_response.status_code != 200:
|
||||||
|
error_msg = (
|
||||||
|
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
|
||||||
|
f"Please use an embedding model like:\n"
|
||||||
|
)
|
||||||
|
for model in suggested_embedding_models[:3]:
|
||||||
|
error_msg += f" • {model}\n"
|
||||||
|
raise ValueError(error_msg)
|
||||||
|
except requests.exceptions.RequestException:
|
||||||
|
# If test fails, continue anyway - model might still work
|
||||||
|
pass
|
||||||
|
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
logger.warning(f"Could not verify model existence: {e}")
|
||||||
|
|
||||||
|
# Process embeddings with optimized concurrent processing
|
||||||
|
import requests
|
||||||
|
|
||||||
|
def get_single_embedding(text_idx_tuple):
|
||||||
|
"""Helper function to get embedding for a single text."""
|
||||||
|
text, idx = text_idx_tuple
|
||||||
|
max_retries = 3
|
||||||
|
retry_count = 0
|
||||||
|
|
||||||
|
# Truncate very long texts to avoid API issues
|
||||||
|
truncated_text = text[:8000] if len(text) > 8000 else text
|
||||||
|
|
||||||
|
while retry_count < max_retries:
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{host}/api/embeddings",
|
||||||
|
json={"model": model_name, "prompt": truncated_text},
|
||||||
|
timeout=30,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
result = response.json()
|
||||||
|
embedding = result.get("embedding")
|
||||||
|
|
||||||
|
if embedding is None:
|
||||||
|
raise ValueError(f"No embedding returned for text {idx}")
|
||||||
|
|
||||||
|
return idx, embedding
|
||||||
|
|
||||||
|
except requests.exceptions.Timeout:
|
||||||
|
retry_count += 1
|
||||||
|
if retry_count >= max_retries:
|
||||||
|
logger.warning(f"Timeout for text {idx} after {max_retries} retries")
|
||||||
|
return idx, None
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
if retry_count >= max_retries - 1:
|
||||||
|
logger.error(f"Failed to get embedding for text {idx}: {e}")
|
||||||
|
return idx, None
|
||||||
|
retry_count += 1
|
||||||
|
|
||||||
|
return idx, None
|
||||||
|
|
||||||
|
# Determine if we should use concurrent processing
|
||||||
|
use_concurrent = (
|
||||||
|
len(texts) > 5 and not is_build
|
||||||
|
) # Don't use concurrent in build mode to avoid overwhelming
|
||||||
|
max_workers = min(4, len(texts)) # Limit concurrent requests to avoid overwhelming Ollama
|
||||||
|
|
||||||
|
all_embeddings = [None] * len(texts) # Pre-allocate list to maintain order
|
||||||
|
failed_indices = []
|
||||||
|
|
||||||
|
if use_concurrent:
|
||||||
|
logger.info(
|
||||||
|
f"Using concurrent processing with {max_workers} workers for {len(texts)} texts"
|
||||||
|
)
|
||||||
|
|
||||||
|
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||||
|
# Submit all tasks
|
||||||
|
future_to_idx = {
|
||||||
|
executor.submit(get_single_embedding, (text, idx)): idx
|
||||||
|
for idx, text in enumerate(texts)
|
||||||
|
}
|
||||||
|
|
||||||
|
# Add progress bar for concurrent processing
|
||||||
|
try:
|
||||||
|
if is_build or len(texts) > 10:
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
futures_iterator = tqdm(
|
||||||
|
as_completed(future_to_idx),
|
||||||
|
total=len(texts),
|
||||||
|
desc="Computing Ollama embeddings",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
futures_iterator = as_completed(future_to_idx)
|
||||||
|
except ImportError:
|
||||||
|
futures_iterator = as_completed(future_to_idx)
|
||||||
|
|
||||||
|
# Collect results as they complete
|
||||||
|
for future in futures_iterator:
|
||||||
|
try:
|
||||||
|
idx, embedding = future.result()
|
||||||
|
if embedding is not None:
|
||||||
|
all_embeddings[idx] = embedding
|
||||||
|
else:
|
||||||
|
failed_indices.append(idx)
|
||||||
|
except Exception as e:
|
||||||
|
idx = future_to_idx[future]
|
||||||
|
logger.error(f"Exception for text {idx}: {e}")
|
||||||
|
failed_indices.append(idx)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Sequential processing with progress bar
|
||||||
|
show_progress = is_build or len(texts) > 10
|
||||||
|
|
||||||
|
try:
|
||||||
|
if show_progress:
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
iterator = tqdm(
|
||||||
|
enumerate(texts), total=len(texts), desc="Computing Ollama embeddings"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
iterator = enumerate(texts)
|
||||||
|
except ImportError:
|
||||||
|
iterator = enumerate(texts)
|
||||||
|
|
||||||
|
for idx, text in iterator:
|
||||||
|
result_idx, embedding = get_single_embedding((text, idx))
|
||||||
|
if embedding is not None:
|
||||||
|
all_embeddings[idx] = embedding
|
||||||
|
else:
|
||||||
|
failed_indices.append(idx)
|
||||||
|
|
||||||
|
# Handle failed embeddings
|
||||||
|
if failed_indices:
|
||||||
|
if len(failed_indices) == len(texts):
|
||||||
|
raise RuntimeError("Failed to compute any embeddings")
|
||||||
|
|
||||||
|
logger.warning(f"Failed to compute embeddings for {len(failed_indices)}/{len(texts)} texts")
|
||||||
|
|
||||||
|
# Use zero embeddings as fallback for failed ones
|
||||||
|
valid_embedding = next((e for e in all_embeddings if e is not None), None)
|
||||||
|
if valid_embedding:
|
||||||
|
embedding_dim = len(valid_embedding)
|
||||||
|
for idx in failed_indices:
|
||||||
|
all_embeddings[idx] = [0.0] * embedding_dim
|
||||||
|
|
||||||
|
# Remove None values and convert to numpy array
|
||||||
|
all_embeddings = [e for e in all_embeddings if e is not None]
|
||||||
|
|
||||||
|
# Convert to numpy array and normalize
|
||||||
|
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||||
|
|
||||||
|
# Normalize embeddings (L2 normalization)
|
||||||
|
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||||
|
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
|
||||||
|
|
||||||
|
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||||
|
|
||||||
|
return embeddings
|
||||||
|
|||||||
176
packages/leann-core/src/leann/mcp.py
Executable file
176
packages/leann-core/src/leann/mcp.py
Executable file
@@ -0,0 +1,176 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import json
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
def handle_request(request):
|
||||||
|
if request.get("method") == "initialize":
|
||||||
|
return {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": request.get("id"),
|
||||||
|
"result": {
|
||||||
|
"capabilities": {"tools": {}},
|
||||||
|
"protocolVersion": "2024-11-05",
|
||||||
|
"serverInfo": {"name": "leann-mcp", "version": "1.0.0"},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
elif request.get("method") == "tools/list":
|
||||||
|
return {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": request.get("id"),
|
||||||
|
"result": {
|
||||||
|
"tools": [
|
||||||
|
{
|
||||||
|
"name": "leann_search",
|
||||||
|
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
|
||||||
|
|
||||||
|
🎯 **Perfect for**:
|
||||||
|
- "How does authentication work?" → finds auth-related code
|
||||||
|
- "Error handling patterns" → locates try-catch blocks and error logic
|
||||||
|
- "Database connection setup" → finds DB initialization code
|
||||||
|
- "API endpoint definitions" → locates route handlers
|
||||||
|
- "Configuration management" → finds config files and usage
|
||||||
|
|
||||||
|
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
|
||||||
|
"inputSchema": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"index_name": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
|
||||||
|
},
|
||||||
|
"query": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
|
||||||
|
},
|
||||||
|
"top_k": {
|
||||||
|
"type": "integer",
|
||||||
|
"default": 5,
|
||||||
|
"minimum": 1,
|
||||||
|
"maximum": 20,
|
||||||
|
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
|
||||||
|
},
|
||||||
|
"complexity": {
|
||||||
|
"type": "integer",
|
||||||
|
"default": 32,
|
||||||
|
"minimum": 16,
|
||||||
|
"maximum": 128,
|
||||||
|
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
"required": ["index_name", "query"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "leann_status",
|
||||||
|
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
|
||||||
|
"inputSchema": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"index_name": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "leann_list",
|
||||||
|
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
||||||
|
"inputSchema": {"type": "object", "properties": {}},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
elif request.get("method") == "tools/call":
|
||||||
|
tool_name = request["params"]["name"]
|
||||||
|
args = request["params"].get("arguments", {})
|
||||||
|
|
||||||
|
try:
|
||||||
|
if tool_name == "leann_search":
|
||||||
|
# Validate required parameters
|
||||||
|
if not args.get("index_name") or not args.get("query"):
|
||||||
|
return {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": request.get("id"),
|
||||||
|
"result": {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": "Error: Both index_name and query are required",
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# Build simplified command
|
||||||
|
cmd = [
|
||||||
|
"leann",
|
||||||
|
"search",
|
||||||
|
args["index_name"],
|
||||||
|
args["query"],
|
||||||
|
f"--top-k={args.get('top_k', 5)}",
|
||||||
|
f"--complexity={args.get('complexity', 32)}",
|
||||||
|
]
|
||||||
|
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||||
|
|
||||||
|
elif tool_name == "leann_status":
|
||||||
|
if args.get("index_name"):
|
||||||
|
# Check specific index status - for now, we'll use leann list and filter
|
||||||
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
|
# We could enhance this to show more detailed status per index
|
||||||
|
else:
|
||||||
|
# Show all indexes status
|
||||||
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
|
|
||||||
|
elif tool_name == "leann_list":
|
||||||
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": request.get("id"),
|
||||||
|
"result": {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": result.stdout
|
||||||
|
if result.returncode == 0
|
||||||
|
else f"Error: {result.stderr}",
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": request.get("id"),
|
||||||
|
"error": {"code": -1, "message": str(e)},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
for line in sys.stdin:
|
||||||
|
try:
|
||||||
|
request = json.loads(line.strip())
|
||||||
|
response = handle_request(request)
|
||||||
|
if response:
|
||||||
|
print(json.dumps(response))
|
||||||
|
sys.stdout.flush()
|
||||||
|
except Exception as e:
|
||||||
|
error_response = {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": None,
|
||||||
|
"error": {"code": -1, "message": str(e)},
|
||||||
|
}
|
||||||
|
print(json.dumps(error_response))
|
||||||
|
sys.stdout.flush()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
91
packages/leann-mcp/README.md
Normal file
91
packages/leann-mcp/README.md
Normal file
@@ -0,0 +1,91 @@
|
|||||||
|
# 🔥 LEANN Claude Code Integration
|
||||||
|
|
||||||
|
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
**Step 1:** First, complete the basic LEANN installation following the [📦 Installation guide](../../README.md#installation) in the root README:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate
|
||||||
|
uv pip install leann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Step 2:** Install LEANN globally for MCP integration:
|
||||||
|
```bash
|
||||||
|
uv tool install leann-core
|
||||||
|
```
|
||||||
|
|
||||||
|
This makes the `leann` command available system-wide, which `leann_mcp` requires.
|
||||||
|
|
||||||
|
## 🚀 Quick Setup
|
||||||
|
|
||||||
|
Add the LEANN MCP server to Claude Code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
claude mcp add leann-server -- leann_mcp
|
||||||
|
```
|
||||||
|
|
||||||
|
## 🛠️ Available Tools
|
||||||
|
|
||||||
|
Once connected, you'll have access to these powerful semantic search tools in Claude Code:
|
||||||
|
|
||||||
|
- **`leann_list`** - List all available indexes across your projects
|
||||||
|
- **`leann_search`** - Perform semantic searches across code and documents
|
||||||
|
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
|
||||||
|
|
||||||
|
## 🎯 Quick Start Example
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build an index for your project (change to your actual path)
|
||||||
|
leann build my-project --docs ./
|
||||||
|
|
||||||
|
# Start Claude Code
|
||||||
|
claude
|
||||||
|
```
|
||||||
|
|
||||||
|
**Try this in Claude Code:**
|
||||||
|
```
|
||||||
|
Help me understand this codebase. List available indexes and search for authentication patterns.
|
||||||
|
```
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
## 🧠 How It Works
|
||||||
|
|
||||||
|
The integration consists of three key components working seamlessly together:
|
||||||
|
|
||||||
|
- **`leann`** - Core CLI tool for indexing and searching (installed globally via `uv tool install`)
|
||||||
|
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
|
||||||
|
- **Claude Code** - Calls `leann_mcp`, which executes `leann` commands and returns intelligent results
|
||||||
|
|
||||||
|
## 📁 File Support
|
||||||
|
|
||||||
|
LEANN understands **30+ file types** including:
|
||||||
|
- **Programming**: Python, JavaScript, TypeScript, Java, Go, Rust, C++, C#
|
||||||
|
- **Data**: SQL, YAML, JSON, CSV, XML
|
||||||
|
- **Documentation**: Markdown, TXT, PDF
|
||||||
|
- **And many more!**
|
||||||
|
|
||||||
|
## 💾 Storage & Organization
|
||||||
|
|
||||||
|
- **Project indexes**: Stored in `.leann/` directory (just like `.git`)
|
||||||
|
- **Global registry**: Project tracking at `~/.leann/projects.json`
|
||||||
|
- **Multi-project support**: Switch between different codebases seamlessly
|
||||||
|
- **Portable**: Transfer indexes between machines with minimal overhead
|
||||||
|
|
||||||
|
## 🗑️ Uninstalling
|
||||||
|
|
||||||
|
To remove the LEANN MCP server from Claude Code:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
claude mcp remove leann-server
|
||||||
|
```
|
||||||
|
To remove LEANN
|
||||||
|
```
|
||||||
|
uv pip uninstall leann leann-backend-hnsw leann-core
|
||||||
|
```
|
||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann"
|
name = "leann"
|
||||||
version = "0.2.1"
|
version = "0.2.6"
|
||||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
|
|||||||
@@ -32,7 +32,7 @@ dependencies = [
|
|||||||
"pypdfium2>=4.30.0",
|
"pypdfium2>=4.30.0",
|
||||||
# LlamaIndex core and readers - updated versions
|
# LlamaIndex core and readers - updated versions
|
||||||
"llama-index>=0.12.44",
|
"llama-index>=0.12.44",
|
||||||
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
|
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
|
||||||
# "llama-index-readers-docling", # Requires Python >= 3.10
|
# "llama-index-readers-docling", # Requires Python >= 3.10
|
||||||
# "llama-index-node-parser-docling", # Requires Python >= 3.10
|
# "llama-index-node-parser-docling", # Requires Python >= 3.10
|
||||||
"llama-index-vector-stores-faiss>=0.4.0",
|
"llama-index-vector-stores-faiss>=0.4.0",
|
||||||
@@ -43,6 +43,9 @@ dependencies = [
|
|||||||
"mlx>=0.26.3; sys_platform == 'darwin'",
|
"mlx>=0.26.3; sys_platform == 'darwin'",
|
||||||
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
||||||
"psutil>=5.8.0",
|
"psutil>=5.8.0",
|
||||||
|
"pathspec>=0.12.1",
|
||||||
|
"nbconvert>=7.16.6",
|
||||||
|
"gitignore-parser>=0.1.12",
|
||||||
]
|
]
|
||||||
|
|
||||||
[project.optional-dependencies]
|
[project.optional-dependencies]
|
||||||
|
|||||||
Reference in New Issue
Block a user