Compare commits
24 Commits
feature/en
...
feature/sk
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3de0a94efc | ||
|
|
58c12e3eed | ||
|
|
92739c7899 | ||
|
|
6709afe38b | ||
|
|
ded0701504 | ||
|
|
e3518a31ed | ||
|
|
d5f6ca61ed | ||
|
|
b13b52e78c | ||
|
|
79ca32e87b | ||
|
|
16f4572fe7 | ||
|
|
2bd557d1cf | ||
|
|
3e162fb177 | ||
|
|
b988f0ab5b | ||
|
|
43cb500ed8 | ||
|
|
0361725323 | ||
|
|
3f81861cba | ||
|
|
fa2a775867 | ||
|
|
737dfc960c | ||
|
|
c994635af6 | ||
|
|
23b80647c5 | ||
|
|
50121972ee | ||
|
|
07e5f10204 | ||
|
|
58711bff7e | ||
|
|
a69464eb16 |
50
README.md
50
README.md
@@ -5,7 +5,7 @@
|
||||
<p align="center">
|
||||
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
|
||||
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
|
||||
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
|
||||
</p>
|
||||
@@ -31,7 +31,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||
</p>
|
||||
|
||||
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
|
||||
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
|
||||
|
||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||
@@ -70,8 +70,8 @@ uv venv
|
||||
source .venv/bin/activate
|
||||
uv pip install leann
|
||||
```
|
||||
<!--
|
||||
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
|
||||
|
||||
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups).
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
@@ -94,9 +94,7 @@ CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
||||
|
||||
**Linux:**
|
||||
```bash
|
||||
# Ubuntu/Debian (For Arch Linux: sudo pacman -S blas lapack openblas libaio boost protobuf abseil-cpp zeromq)
|
||||
sudo apt-get update && sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||
|
||||
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||
uv sync
|
||||
```
|
||||
|
||||
@@ -428,21 +426,21 @@ Once the index is built, you can ask questions like:
|
||||
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||
|
||||
**Key features:**
|
||||
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
|
||||
- 🔍 **Semantic code search** across your entire project
|
||||
- 📚 **Context-aware assistance** for debugging and development
|
||||
- 🚀 **Zero-config setup** with automatic language detection
|
||||
|
||||
```bash
|
||||
# Install LEANN globally for MCP integration
|
||||
uv tool install leann-core --with leann
|
||||
claude mcp add --scope user leann-server -- leann_mcp
|
||||
uv tool install leann-core
|
||||
|
||||
# Setup is automatic - just start using Claude Code!
|
||||
```
|
||||
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||
|
||||

|
||||
|
||||
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||
|
||||
## 🖥️ Command Line Interface
|
||||
|
||||
@@ -459,8 +457,7 @@ leann --help
|
||||
**To make it globally available:**
|
||||
```bash
|
||||
# Install the LEANN CLI globally using uv tool
|
||||
uv tool install leann-core --with leann
|
||||
|
||||
uv tool install leann-core
|
||||
|
||||
# Now you can use leann from anywhere without activating venv
|
||||
leann --help
|
||||
@@ -484,9 +481,6 @@ leann ask my-docs --interactive
|
||||
|
||||
# List all your indexes
|
||||
leann list
|
||||
|
||||
# Remove an index
|
||||
leann remove my-docs
|
||||
```
|
||||
|
||||
**Key CLI features:**
|
||||
@@ -499,7 +493,7 @@ leann remove my-docs
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
|
||||
|
||||
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help`, `leann list --help`, `leann remove --help` to get the complete CLI reference.
|
||||
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help` to get the complete CLI reference.
|
||||
|
||||
**Build Command:**
|
||||
```bash
|
||||
@@ -537,28 +531,6 @@ Options:
|
||||
--top-k N Retrieval count (default: 20)
|
||||
```
|
||||
|
||||
**List Command:**
|
||||
```bash
|
||||
leann list
|
||||
|
||||
# Lists all indexes across all projects with status indicators:
|
||||
# ✓ - Index is complete and ready to use
|
||||
# ✗ - Index is incomplete or corrupted
|
||||
```
|
||||
|
||||
**Remove Command:**
|
||||
```bash
|
||||
leann remove INDEX_NAME [OPTIONS]
|
||||
|
||||
Options:
|
||||
--force, -f Force removal without confirmation
|
||||
|
||||
# Smart removal: automatically finds and safely removes indexes
|
||||
# - Shows all matching indexes across projects
|
||||
# - Requires confirmation for cross-project removal
|
||||
# - Interactive selection when multiple matches found
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 🏗️ Architecture & How It Works
|
||||
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.3.0"
|
||||
dependencies = ["leann-core==0.3.0", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.2.9"
|
||||
dependencies = ["leann-core==0.2.9", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.3.0"
|
||||
version = "0.2.9"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.3.0",
|
||||
"leann-core==0.2.9",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.3.0"
|
||||
version = "0.2.9"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -46,7 +46,6 @@ def compute_embeddings(
|
||||
- "sentence-transformers": Use sentence-transformers library (default)
|
||||
- "mlx": Use MLX backend for Apple Silicon
|
||||
- "openai": Use OpenAI embedding API
|
||||
- "gemini": Use Google Gemini embedding API
|
||||
use_server: Whether to use embedding server (True for search, False for build)
|
||||
|
||||
Returns:
|
||||
@@ -307,23 +306,6 @@ class LeannBuilder:
|
||||
def build_index(self, index_path: str):
|
||||
if not self.chunks:
|
||||
raise ValueError("No chunks added.")
|
||||
|
||||
# Filter out invalid/empty text chunks early to keep passage and embedding counts aligned
|
||||
valid_chunks: list[dict[str, Any]] = []
|
||||
skipped = 0
|
||||
for chunk in self.chunks:
|
||||
text = chunk.get("text", "")
|
||||
if isinstance(text, str) and text.strip():
|
||||
valid_chunks.append(chunk)
|
||||
else:
|
||||
skipped += 1
|
||||
if skipped > 0:
|
||||
print(
|
||||
f"Warning: Skipping {skipped} empty/invalid text chunk(s). Processing {len(valid_chunks)} valid chunks"
|
||||
)
|
||||
self.chunks = valid_chunks
|
||||
if not self.chunks:
|
||||
raise ValueError("All provided chunks are empty or invalid. Nothing to index.")
|
||||
if self.dimensions is None:
|
||||
self.dimensions = len(
|
||||
compute_embeddings(
|
||||
|
||||
@@ -680,52 +680,6 @@ class HFChat(LLMInterface):
|
||||
return response.strip()
|
||||
|
||||
|
||||
class GeminiChat(LLMInterface):
|
||||
"""LLM interface for Google Gemini models."""
|
||||
|
||||
def __init__(self, model: str = "gemini-2.5-flash", api_key: Optional[str] = None):
|
||||
self.model = model
|
||||
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
||||
|
||||
if not self.api_key:
|
||||
raise ValueError(
|
||||
"Gemini API key is required. Set GEMINI_API_KEY environment variable or pass api_key parameter."
|
||||
)
|
||||
|
||||
logger.info(f"Initializing Gemini Chat with model='{model}'")
|
||||
|
||||
try:
|
||||
import google.genai as genai
|
||||
|
||||
self.client = genai.Client(api_key=self.api_key)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The 'google-genai' library is required for Gemini models. Please install it with 'uv pip install google-genai'."
|
||||
)
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
logger.info(f"Sending request to Gemini with model {self.model}")
|
||||
|
||||
try:
|
||||
# Set generation configuration
|
||||
generation_config = {
|
||||
"temperature": kwargs.get("temperature", 0.7),
|
||||
"max_output_tokens": kwargs.get("max_tokens", 1000),
|
||||
}
|
||||
|
||||
# Handle top_p parameter
|
||||
if "top_p" in kwargs:
|
||||
generation_config["top_p"] = kwargs["top_p"]
|
||||
|
||||
response = self.client.models.generate_content(
|
||||
model=self.model, contents=prompt, config=generation_config
|
||||
)
|
||||
return response.text.strip()
|
||||
except Exception as e:
|
||||
logger.error(f"Error communicating with Gemini: {e}")
|
||||
return f"Error: Could not get a response from Gemini. Details: {e}"
|
||||
|
||||
|
||||
class OpenAIChat(LLMInterface):
|
||||
"""LLM interface for OpenAI models."""
|
||||
|
||||
@@ -839,8 +793,6 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
|
||||
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
||||
elif llm_type == "openai":
|
||||
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
|
||||
elif llm_type == "gemini":
|
||||
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
|
||||
elif llm_type == "simulated":
|
||||
return SimulatedChat()
|
||||
else:
|
||||
|
||||
@@ -84,7 +84,6 @@ Examples:
|
||||
leann search my-docs "query" # Search in my-docs index
|
||||
leann ask my-docs "question" # Ask my-docs index
|
||||
leann list # List all stored indexes
|
||||
leann remove my-docs # Remove an index (local first, then global)
|
||||
""",
|
||||
)
|
||||
|
||||
@@ -149,36 +148,6 @@ Examples:
|
||||
type=str,
|
||||
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--include-hidden",
|
||||
action=argparse.BooleanOptionalAction,
|
||||
default=False,
|
||||
help="Include hidden files and directories (paths starting with '.') during indexing (default: false)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--doc-chunk-size",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Document chunk size in tokens/characters (default: 256)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--doc-chunk-overlap",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Document chunk overlap (default: 128)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--code-chunk-size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Code chunk size in tokens/lines (default: 512)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--code-chunk-overlap",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Code chunk overlap (default: 50)",
|
||||
)
|
||||
|
||||
# Search command
|
||||
search_parser = subparsers.add_parser("search", help="Search documents")
|
||||
@@ -252,13 +221,6 @@ Examples:
|
||||
# List command
|
||||
subparsers.add_parser("list", help="List all indexes")
|
||||
|
||||
# Remove command
|
||||
remove_parser = subparsers.add_parser("remove", help="Remove an index")
|
||||
remove_parser.add_argument("index_name", help="Index name to remove")
|
||||
remove_parser.add_argument(
|
||||
"--force", "-f", action="store_true", help="Force removal without confirmation"
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
def register_project_dir(self):
|
||||
@@ -347,6 +309,8 @@ Examples:
|
||||
return False
|
||||
|
||||
def list_indexes(self):
|
||||
print("Stored LEANN indexes:")
|
||||
|
||||
# Get all project directories with .leann
|
||||
global_registry = Path.home() / ".leann" / "projects.json"
|
||||
all_projects = []
|
||||
@@ -372,293 +336,58 @@ Examples:
|
||||
if (current_path / ".leann" / "indexes").exists() and current_path not in valid_projects:
|
||||
valid_projects.append(current_path)
|
||||
|
||||
# Separate current and other projects
|
||||
current_project = None
|
||||
other_projects = []
|
||||
|
||||
for project_path in valid_projects:
|
||||
if project_path == current_path:
|
||||
current_project = project_path
|
||||
else:
|
||||
other_projects.append(project_path)
|
||||
|
||||
print("📚 LEANN Indexes")
|
||||
print("=" * 50)
|
||||
if not valid_projects:
|
||||
print(
|
||||
"No indexes found. Use 'leann build <name> --docs <dir> [<dir2> ...]' to create one."
|
||||
)
|
||||
return
|
||||
|
||||
total_indexes = 0
|
||||
current_indexes_count = 0
|
||||
current_dir = Path.cwd()
|
||||
|
||||
# Show current project first (most important)
|
||||
if current_project:
|
||||
current_indexes_dir = current_project / ".leann" / "indexes"
|
||||
if current_indexes_dir.exists():
|
||||
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
|
||||
|
||||
print("\n🏠 Current Project")
|
||||
print(f" {current_project}")
|
||||
print(" " + "─" * 45)
|
||||
|
||||
if current_index_dirs:
|
||||
for index_dir in current_index_dirs:
|
||||
total_indexes += 1
|
||||
current_indexes_count += 1
|
||||
index_name = index_dir.name
|
||||
meta_file = index_dir / "documents.leann.meta.json"
|
||||
status = "✅" if meta_file.exists() else "❌"
|
||||
|
||||
print(f" {current_indexes_count}. {index_name} {status}")
|
||||
if meta_file.exists():
|
||||
size_mb = sum(
|
||||
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
print(f" 📦 Size: {size_mb:.1f} MB")
|
||||
else:
|
||||
print(" 📭 No indexes in current project")
|
||||
else:
|
||||
print("\n🏠 Current Project")
|
||||
print(f" {current_path}")
|
||||
print(" " + "─" * 45)
|
||||
print(" 📭 No indexes in current project")
|
||||
|
||||
# Show other projects (reference information)
|
||||
if other_projects:
|
||||
print("\n\n🗂️ Other Projects")
|
||||
print(" " + "─" * 45)
|
||||
|
||||
for project_path in other_projects:
|
||||
indexes_dir = project_path / ".leann" / "indexes"
|
||||
if not indexes_dir.exists():
|
||||
continue
|
||||
|
||||
index_dirs = [d for d in indexes_dir.iterdir() if d.is_dir()]
|
||||
if not index_dirs:
|
||||
continue
|
||||
|
||||
print(f"\n 📂 {project_path.name}")
|
||||
print(f" {project_path}")
|
||||
|
||||
for index_dir in index_dirs:
|
||||
total_indexes += 1
|
||||
index_name = index_dir.name
|
||||
meta_file = index_dir / "documents.leann.meta.json"
|
||||
status = "✅" if meta_file.exists() else "❌"
|
||||
|
||||
print(f" • {index_name} {status}")
|
||||
if meta_file.exists():
|
||||
size_mb = sum(
|
||||
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
print(f" 📦 {size_mb:.1f} MB")
|
||||
|
||||
# Summary and usage info
|
||||
print("\n" + "=" * 50)
|
||||
if total_indexes == 0:
|
||||
print("💡 Get started:")
|
||||
print(" leann build my-docs --docs ./documents")
|
||||
else:
|
||||
projects_count = len(
|
||||
[
|
||||
p
|
||||
for p in valid_projects
|
||||
if (p / ".leann" / "indexes").exists()
|
||||
and list((p / ".leann" / "indexes").iterdir())
|
||||
]
|
||||
)
|
||||
print(f"📊 Total: {total_indexes} indexes across {projects_count} projects")
|
||||
|
||||
if current_indexes_count > 0:
|
||||
print("\n💫 Quick start (current project):")
|
||||
# Get first index from current project for example
|
||||
current_indexes_dir = current_path / ".leann" / "indexes"
|
||||
if current_indexes_dir.exists():
|
||||
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
|
||||
if current_index_dirs:
|
||||
example_name = current_index_dirs[0].name
|
||||
print(f' leann search {example_name} "your query"')
|
||||
print(f" leann ask {example_name} --interactive")
|
||||
else:
|
||||
print("\n💡 Create your first index:")
|
||||
print(" leann build my-docs --docs ./documents")
|
||||
|
||||
def remove_index(self, index_name: str, force: bool = False):
|
||||
"""Safely remove an index - always show all matches for transparency"""
|
||||
|
||||
# Always do a comprehensive search for safety
|
||||
print(f"🔍 Searching for all indexes named '{index_name}'...")
|
||||
all_matches = self._find_all_matching_indexes(index_name)
|
||||
|
||||
if not all_matches:
|
||||
print(f"❌ Index '{index_name}' not found in any project.")
|
||||
return False
|
||||
|
||||
if len(all_matches) == 1:
|
||||
return self._remove_single_match(all_matches[0], index_name, force)
|
||||
else:
|
||||
return self._remove_from_multiple_matches(all_matches, index_name, force)
|
||||
|
||||
def _find_all_matching_indexes(self, index_name: str):
|
||||
"""Find all indexes with the given name across all projects"""
|
||||
matches = []
|
||||
|
||||
# Get all registered projects
|
||||
global_registry = Path.home() / ".leann" / "projects.json"
|
||||
all_projects = []
|
||||
|
||||
if global_registry.exists():
|
||||
try:
|
||||
import json
|
||||
|
||||
with open(global_registry) as f:
|
||||
all_projects = json.load(f)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Always include current project
|
||||
current_path = Path.cwd()
|
||||
if str(current_path) not in all_projects:
|
||||
all_projects.append(str(current_path))
|
||||
|
||||
# Search across all projects
|
||||
for project_dir in all_projects:
|
||||
project_path = Path(project_dir)
|
||||
if not project_path.exists():
|
||||
for project_path in valid_projects:
|
||||
indexes_dir = project_path / ".leann" / "indexes"
|
||||
if not indexes_dir.exists():
|
||||
continue
|
||||
|
||||
index_dir = project_path / ".leann" / "indexes" / index_name
|
||||
if index_dir.exists():
|
||||
is_current = project_path == current_path
|
||||
matches.append(
|
||||
{"project_path": project_path, "index_dir": index_dir, "is_current": is_current}
|
||||
)
|
||||
index_dirs = [d for d in indexes_dir.iterdir() if d.is_dir()]
|
||||
if not index_dirs:
|
||||
continue
|
||||
|
||||
# Sort: current project first, then by project name
|
||||
matches.sort(key=lambda x: (not x["is_current"], x["project_path"].name))
|
||||
return matches
|
||||
|
||||
def _remove_single_match(self, match, index_name: str, force: bool):
|
||||
"""Handle removal when only one match is found"""
|
||||
project_path = match["project_path"]
|
||||
index_dir = match["index_dir"]
|
||||
is_current = match["is_current"]
|
||||
|
||||
if is_current:
|
||||
location_info = "current project"
|
||||
emoji = "🏠"
|
||||
else:
|
||||
location_info = f"other project '{project_path.name}'"
|
||||
emoji = "📂"
|
||||
|
||||
print(f"✅ Found 1 index named '{index_name}':")
|
||||
print(f" {emoji} Location: {location_info}")
|
||||
print(f" 📍 Path: {project_path}")
|
||||
|
||||
if not force:
|
||||
if not is_current:
|
||||
print("\n⚠️ CROSS-PROJECT REMOVAL!")
|
||||
print(" This will delete the index from another project.")
|
||||
|
||||
response = input(f" ❓ Confirm removal from {location_info}? (y/N): ").strip().lower()
|
||||
if response not in ["y", "yes"]:
|
||||
print(" ❌ Removal cancelled.")
|
||||
return False
|
||||
|
||||
return self._delete_index_directory(
|
||||
index_dir, index_name, project_path if not is_current else None
|
||||
)
|
||||
|
||||
def _remove_from_multiple_matches(self, matches, index_name: str, force: bool):
|
||||
"""Handle removal when multiple matches are found"""
|
||||
|
||||
print(f"⚠️ Found {len(matches)} indexes named '{index_name}':")
|
||||
print(" " + "─" * 50)
|
||||
|
||||
for i, match in enumerate(matches, 1):
|
||||
project_path = match["project_path"]
|
||||
is_current = match["is_current"]
|
||||
|
||||
if is_current:
|
||||
print(f" {i}. 🏠 Current project")
|
||||
print(f" 📍 {project_path}")
|
||||
# Show project header
|
||||
if project_path == current_dir:
|
||||
print(f"\n📁 Current project ({project_path}):")
|
||||
else:
|
||||
print(f" {i}. 📂 {project_path.name}")
|
||||
print(f" 📍 {project_path}")
|
||||
print(f"\n📂 {project_path}:")
|
||||
|
||||
# Show size info
|
||||
try:
|
||||
size_mb = sum(
|
||||
f.stat().st_size for f in match["index_dir"].iterdir() if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
print(f" 📦 Size: {size_mb:.1f} MB")
|
||||
except (OSError, PermissionError):
|
||||
pass
|
||||
for index_dir in index_dirs:
|
||||
total_indexes += 1
|
||||
index_name = index_dir.name
|
||||
meta_file = index_dir / "documents.leann.meta.json"
|
||||
status = "✓" if meta_file.exists() else "✗"
|
||||
|
||||
print(" " + "─" * 50)
|
||||
print(f" {total_indexes}. {index_name} [{status}]")
|
||||
if status == "✓":
|
||||
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
|
||||
1024 * 1024
|
||||
)
|
||||
print(f" Size: {size_mb:.1f} MB")
|
||||
|
||||
if force:
|
||||
print(" ❌ Multiple matches found, but --force specified.")
|
||||
print(" Please run without --force to choose which one to remove.")
|
||||
return False
|
||||
if total_indexes > 0:
|
||||
print(f"\nTotal: {total_indexes} indexes across {len(valid_projects)} projects")
|
||||
print("\nUsage (current project only):")
|
||||
|
||||
try:
|
||||
choice = input(
|
||||
f" ❓ Which one to remove? (1-{len(matches)}, or 'c' to cancel): "
|
||||
).strip()
|
||||
if choice.lower() == "c":
|
||||
print(" ❌ Removal cancelled.")
|
||||
return False
|
||||
|
||||
choice_idx = int(choice) - 1
|
||||
if 0 <= choice_idx < len(matches):
|
||||
selected_match = matches[choice_idx]
|
||||
project_path = selected_match["project_path"]
|
||||
index_dir = selected_match["index_dir"]
|
||||
is_current = selected_match["is_current"]
|
||||
|
||||
location = "current project" if is_current else f"'{project_path.name}' project"
|
||||
print(f" 🎯 Selected: Remove from {location}")
|
||||
|
||||
# Final confirmation for safety
|
||||
confirm = input(
|
||||
f" ❓ FINAL CONFIRMATION - Type '{index_name}' to proceed: "
|
||||
).strip()
|
||||
if confirm != index_name:
|
||||
print(" ❌ Confirmation failed. Removal cancelled.")
|
||||
return False
|
||||
|
||||
return self._delete_index_directory(
|
||||
index_dir, index_name, project_path if not is_current else None
|
||||
)
|
||||
else:
|
||||
print(" ❌ Invalid choice. Removal cancelled.")
|
||||
return False
|
||||
|
||||
except (ValueError, KeyboardInterrupt):
|
||||
print("\n ❌ Invalid input. Removal cancelled.")
|
||||
return False
|
||||
|
||||
def _delete_index_directory(
|
||||
self, index_dir: Path, index_name: str, project_path: Path | None = None
|
||||
):
|
||||
"""Actually delete the index directory"""
|
||||
try:
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(index_dir)
|
||||
|
||||
if project_path:
|
||||
print(f"✅ Index '{index_name}' removed from {project_path.name}")
|
||||
else:
|
||||
print(f"✅ Index '{index_name}' removed successfully")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"❌ Error removing index '{index_name}': {e}")
|
||||
return False
|
||||
# Show example from current project
|
||||
current_indexes_dir = current_dir / ".leann" / "indexes"
|
||||
if current_indexes_dir.exists():
|
||||
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
|
||||
if current_index_dirs:
|
||||
example_name = current_index_dirs[0].name
|
||||
print(f' leann search {example_name} "your query"')
|
||||
print(f" leann ask {example_name} --interactive")
|
||||
|
||||
def load_documents(
|
||||
self,
|
||||
docs_paths: Union[str, list],
|
||||
custom_file_types: Union[str, None] = None,
|
||||
include_hidden: bool = False,
|
||||
self, docs_paths: Union[str, list], custom_file_types: Union[str, None] = None
|
||||
):
|
||||
# Handle both single path (string) and multiple paths (list) for backward compatibility
|
||||
if isinstance(docs_paths, str):
|
||||
@@ -702,10 +431,6 @@ Examples:
|
||||
|
||||
all_documents = []
|
||||
|
||||
# Helper to detect hidden path components
|
||||
def _path_has_hidden_segment(p: Path) -> bool:
|
||||
return any(part.startswith(".") and part not in [".", ".."] for part in p.parts)
|
||||
|
||||
# First, process individual files if any
|
||||
if files:
|
||||
print(f"\n🔄 Processing {len(files)} individual file{'s' if len(files) > 1 else ''}...")
|
||||
@@ -718,12 +443,8 @@ Examples:
|
||||
|
||||
files_by_dir = defaultdict(list)
|
||||
for file_path in files:
|
||||
file_path_obj = Path(file_path)
|
||||
if not include_hidden and _path_has_hidden_segment(file_path_obj):
|
||||
print(f" ⚠️ Skipping hidden file: {file_path}")
|
||||
continue
|
||||
parent_dir = str(file_path_obj.parent)
|
||||
files_by_dir[parent_dir].append(str(file_path_obj))
|
||||
parent_dir = str(Path(file_path).parent)
|
||||
files_by_dir[parent_dir].append(file_path)
|
||||
|
||||
# Load files from each parent directory
|
||||
for parent_dir, file_list in files_by_dir.items():
|
||||
@@ -734,7 +455,6 @@ Examples:
|
||||
file_docs = SimpleDirectoryReader(
|
||||
parent_dir,
|
||||
input_files=file_list,
|
||||
# exclude_hidden only affects directory scans; input_files are explicit
|
||||
filename_as_id=True,
|
||||
).load_data()
|
||||
all_documents.extend(file_docs)
|
||||
@@ -833,8 +553,6 @@ Examples:
|
||||
# Check if file matches any exclude pattern
|
||||
try:
|
||||
relative_path = file_path.relative_to(docs_path)
|
||||
if not include_hidden and _path_has_hidden_segment(relative_path):
|
||||
continue
|
||||
if self._should_exclude_file(relative_path, gitignore_matches):
|
||||
continue
|
||||
except ValueError:
|
||||
@@ -862,7 +580,6 @@ Examples:
|
||||
try:
|
||||
default_docs = SimpleDirectoryReader(
|
||||
str(file_path.parent),
|
||||
exclude_hidden=not include_hidden,
|
||||
filename_as_id=True,
|
||||
required_exts=[file_path.suffix],
|
||||
).load_data()
|
||||
@@ -891,7 +608,6 @@ Examples:
|
||||
encoding="utf-8",
|
||||
required_exts=code_extensions,
|
||||
file_extractor={}, # Use default extractors
|
||||
exclude_hidden=not include_hidden,
|
||||
filename_as_id=True,
|
||||
).load_data(show_progress=True)
|
||||
|
||||
@@ -1010,40 +726,7 @@ Examples:
|
||||
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
|
||||
return
|
||||
|
||||
# Configure chunking based on CLI args before loading documents
|
||||
# Guard against invalid configurations
|
||||
doc_chunk_size = max(1, int(args.doc_chunk_size))
|
||||
doc_chunk_overlap = max(0, int(args.doc_chunk_overlap))
|
||||
if doc_chunk_overlap >= doc_chunk_size:
|
||||
print(
|
||||
f"⚠️ Adjusting doc chunk overlap from {doc_chunk_overlap} to {doc_chunk_size - 1} (must be < chunk size)"
|
||||
)
|
||||
doc_chunk_overlap = doc_chunk_size - 1
|
||||
|
||||
code_chunk_size = max(1, int(args.code_chunk_size))
|
||||
code_chunk_overlap = max(0, int(args.code_chunk_overlap))
|
||||
if code_chunk_overlap >= code_chunk_size:
|
||||
print(
|
||||
f"⚠️ Adjusting code chunk overlap from {code_chunk_overlap} to {code_chunk_size - 1} (must be < chunk size)"
|
||||
)
|
||||
code_chunk_overlap = code_chunk_size - 1
|
||||
|
||||
self.node_parser = SentenceSplitter(
|
||||
chunk_size=doc_chunk_size,
|
||||
chunk_overlap=doc_chunk_overlap,
|
||||
separator=" ",
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
self.code_parser = SentenceSplitter(
|
||||
chunk_size=code_chunk_size,
|
||||
chunk_overlap=code_chunk_overlap,
|
||||
separator="\n",
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
|
||||
all_texts = self.load_documents(
|
||||
docs_paths, args.file_types, include_hidden=args.include_hidden
|
||||
)
|
||||
all_texts = self.load_documents(docs_paths, args.file_types)
|
||||
if not all_texts:
|
||||
print("No documents found")
|
||||
return
|
||||
@@ -1180,8 +863,6 @@ Examples:
|
||||
|
||||
if args.command == "list":
|
||||
self.list_indexes()
|
||||
elif args.command == "remove":
|
||||
self.remove_index(args.index_name, args.force)
|
||||
elif args.command == "build":
|
||||
await self.build_index(args)
|
||||
elif args.command == "search":
|
||||
@@ -1193,15 +874,10 @@ Examples:
|
||||
|
||||
|
||||
def main():
|
||||
import logging
|
||||
|
||||
import dotenv
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Set clean logging for CLI usage
|
||||
logging.getLogger().setLevel(logging.WARNING) # Only show warnings and errors
|
||||
|
||||
cli = LeannCLI()
|
||||
asyncio.run(cli.run())
|
||||
|
||||
|
||||
@@ -57,8 +57,6 @@ def compute_embeddings(
|
||||
return compute_embeddings_mlx(texts, model_name)
|
||||
elif mode == "ollama":
|
||||
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
||||
elif mode == "gemini":
|
||||
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding mode: {mode}")
|
||||
|
||||
@@ -246,16 +244,6 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
||||
except ImportError as e:
|
||||
raise ImportError(f"OpenAI package not installed: {e}")
|
||||
|
||||
# Validate input list
|
||||
if not texts:
|
||||
raise ValueError("Cannot compute embeddings for empty text list")
|
||||
# Extra validation: abort early if any item is empty/whitespace
|
||||
invalid_count = sum(1 for t in texts if not isinstance(t, str) or not t.strip())
|
||||
if invalid_count > 0:
|
||||
raise ValueError(
|
||||
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
|
||||
)
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
||||
@@ -275,16 +263,8 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
||||
print(f"len of texts: {len(texts)}")
|
||||
|
||||
# OpenAI has limits on batch size and input length
|
||||
max_batch_size = 800 # Conservative batch size because the token limit is 300K
|
||||
max_batch_size = 1000 # Conservative batch size
|
||||
all_embeddings = []
|
||||
# get the avg len of texts
|
||||
avg_len = sum(len(text) for text in texts) / len(texts)
|
||||
print(f"avg len of texts: {avg_len}")
|
||||
# if avg len is less than 1000, use the max batch size
|
||||
if avg_len > 300:
|
||||
max_batch_size = 500
|
||||
|
||||
# if avg len is less than 1000, use the max batch size
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
@@ -670,83 +650,3 @@ def compute_embeddings_ollama(
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
def compute_embeddings_gemini(
|
||||
texts: list[str], model_name: str = "text-embedding-004", is_build: bool = False
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using Google Gemini API.
|
||||
|
||||
Args:
|
||||
texts: List of texts to compute embeddings for
|
||||
model_name: Gemini model name (default: "text-embedding-004")
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
|
||||
Returns:
|
||||
Embeddings array, shape: (len(texts), embedding_dim)
|
||||
"""
|
||||
try:
|
||||
import os
|
||||
|
||||
import google.genai as genai
|
||||
except ImportError as e:
|
||||
raise ImportError(f"Google GenAI package not installed: {e}")
|
||||
|
||||
api_key = os.getenv("GEMINI_API_KEY")
|
||||
if not api_key:
|
||||
raise RuntimeError("GEMINI_API_KEY environment variable not set")
|
||||
|
||||
# Cache Gemini client
|
||||
cache_key = "gemini_client"
|
||||
if cache_key in _model_cache:
|
||||
client = _model_cache[cache_key]
|
||||
else:
|
||||
client = genai.Client(api_key=api_key)
|
||||
_model_cache[cache_key] = client
|
||||
logger.info("Gemini client cached")
|
||||
|
||||
logger.info(
|
||||
f"Computing embeddings for {len(texts)} texts using Gemini API, model: '{model_name}'"
|
||||
)
|
||||
|
||||
# Gemini supports batch embedding
|
||||
max_batch_size = 100 # Conservative batch size for Gemini
|
||||
all_embeddings = []
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
|
||||
total_batches = (len(texts) + max_batch_size - 1) // max_batch_size
|
||||
batch_range = range(0, len(texts), max_batch_size)
|
||||
batch_iterator = tqdm(
|
||||
batch_range, desc="Computing embeddings", unit="batch", total=total_batches
|
||||
)
|
||||
except ImportError:
|
||||
# Fallback when tqdm is not available
|
||||
batch_iterator = range(0, len(texts), max_batch_size)
|
||||
|
||||
for i in batch_iterator:
|
||||
batch_texts = texts[i : i + max_batch_size]
|
||||
|
||||
try:
|
||||
# Use the embed_content method from the new Google GenAI SDK
|
||||
response = client.models.embed_content(
|
||||
model=model_name,
|
||||
contents=batch_texts,
|
||||
config=genai.types.EmbedContentConfig(
|
||||
task_type="RETRIEVAL_DOCUMENT" # For document embedding
|
||||
),
|
||||
)
|
||||
|
||||
# Extract embeddings from response
|
||||
for embedding_data in response.embeddings:
|
||||
all_embeddings.append(embedding_data.values)
|
||||
except Exception as e:
|
||||
logger.error(f"Batch {i} failed: {e}")
|
||||
raise
|
||||
|
||||
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
|
||||
return embeddings
|
||||
|
||||
@@ -64,6 +64,19 @@ def handle_request(request):
|
||||
"required": ["index_name", "query"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "leann_status",
|
||||
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"index_name": {
|
||||
"type": "string",
|
||||
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
|
||||
}
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "leann_list",
|
||||
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
||||
@@ -105,6 +118,15 @@ def handle_request(request):
|
||||
]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_status":
|
||||
if args.get("index_name"):
|
||||
# Check specific index status - for now, we'll use leann list and filter
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
# We could enhance this to show more detailed status per index
|
||||
else:
|
||||
# Show all indexes status
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_list":
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
|
||||
|
||||
@@ -2,15 +2,11 @@
|
||||
|
||||
import importlib
|
||||
import importlib.metadata
|
||||
import logging
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from leann.interface import LeannBackendFactoryInterface
|
||||
|
||||
# Set up logger for this module
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
BACKEND_REGISTRY: dict[str, "LeannBackendFactoryInterface"] = {}
|
||||
|
||||
|
||||
@@ -18,7 +14,7 @@ def register_backend(name: str):
|
||||
"""A decorator to register a new backend class."""
|
||||
|
||||
def decorator(cls):
|
||||
logger.debug(f"Registering backend '{name}'")
|
||||
print(f"INFO: Registering backend '{name}'")
|
||||
BACKEND_REGISTRY[name] = cls
|
||||
return cls
|
||||
|
||||
|
||||
@@ -13,20 +13,10 @@ This installs the `leann` CLI into an isolated tool environment and includes bot
|
||||
|
||||
## 🚀 Quick Setup
|
||||
|
||||
Add the LEANN MCP server to Claude Code. Choose the scope based on how widely you want it available. Below is the command to install it globally; if you prefer a local install, skip this step:
|
||||
Add the LEANN MCP server to Claude Code:
|
||||
|
||||
```bash
|
||||
# Global (recommended): available in all projects for your user
|
||||
claude mcp add --scope user leann-server -- leann_mcp
|
||||
```
|
||||
|
||||
- `leann-server`: the display name of the MCP server in Claude Code (you can change it).
|
||||
- `leann_mcp`: the Python entry point installed with LEANN that starts the MCP server.
|
||||
|
||||
Verify it is registered globally:
|
||||
|
||||
```bash
|
||||
claude mcp list | cat
|
||||
claude mcp add leann-server -- leann_mcp
|
||||
```
|
||||
|
||||
## 🛠️ Available Tools
|
||||
@@ -35,36 +25,27 @@ Once connected, you'll have access to these powerful semantic search tools in Cl
|
||||
|
||||
- **`leann_list`** - List all available indexes across your projects
|
||||
- **`leann_search`** - Perform semantic searches across code and documents
|
||||
|
||||
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
|
||||
|
||||
## 🎯 Quick Start Example
|
||||
|
||||
```bash
|
||||
# Add locally if you did not add it globally (current folder only; default if --scope is omitted)
|
||||
claude mcp add leann-server -- leann_mcp
|
||||
|
||||
# Build an index for your project (change to your actual path)
|
||||
# See the advanced examples below for more ways to configure indexing
|
||||
# Set the index name (replace 'my-project' with your own)
|
||||
leann build my-project --docs $(git ls-files)
|
||||
leann build my-project --docs ./
|
||||
|
||||
# Start Claude Code
|
||||
claude
|
||||
```
|
||||
|
||||
## 🚀 Advanced Usage Examples to build the index
|
||||
## 🚀 Advanced Usage Examples
|
||||
|
||||
### Index Entire Git Repository
|
||||
```bash
|
||||
# Index all tracked files in your Git repository.
|
||||
# Note: submodules are currently skipped; we can add them back if needed.
|
||||
# Index all tracked files in your git repository, note right now we will skip submodules, but we can add it back easily if you want
|
||||
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
|
||||
|
||||
# Index only tracked Python files from Git.
|
||||
# Index only specific file types from git
|
||||
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
|
||||
|
||||
# If you encounter empty requests caused by empty files (e.g., __init__.py), exclude zero-byte files. Thanks @ww2283 for pointing [that](https://github.com/yichuan-w/LEANN/issues/48) out
|
||||
leann build leann-prospec-lig --docs $(find ./src -name "*.py" -not -empty) --embedding-mode openai --embedding-model text-embedding-3-small
|
||||
```
|
||||
|
||||
### Multiple Directories and Files
|
||||
@@ -92,7 +73,7 @@ leann build docs-and-configs --docs $(git ls-files "*.md" "*.yml" "*.yaml" "*.js
|
||||
```
|
||||
|
||||
|
||||
## **Try this in Claude Code:**
|
||||
**Try this in Claude Code:**
|
||||
```
|
||||
Help me understand this codebase. List available indexes and search for authentication patterns.
|
||||
```
|
||||
@@ -101,7 +82,6 @@ Help me understand this codebase. List available indexes and search for authenti
|
||||
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
|
||||
</p>
|
||||
|
||||
If you see a prompt asking whether to proceed with LEANN, you can now use it in your chat!
|
||||
|
||||
## 🧠 How It Works
|
||||
|
||||
@@ -137,11 +117,3 @@ To remove LEANN
|
||||
```
|
||||
uv pip uninstall leann leann-backend-hnsw leann-core
|
||||
```
|
||||
|
||||
To globally remove LEANN (for version update)
|
||||
```
|
||||
uv tool list | cat
|
||||
uv tool uninstall leann-core
|
||||
command -v leann || echo "leann gone"
|
||||
command -v leann_mcp || echo "leann_mcp gone"
|
||||
```
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.3.0"
|
||||
version = "0.2.9"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
__all__ = []
|
||||
@@ -136,9 +136,5 @@ def export_sqlite(
|
||||
connection.commit()
|
||||
|
||||
|
||||
def main():
|
||||
app()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
app()
|
||||
|
||||
@@ -10,7 +10,6 @@ requires-python = ">=3.9"
|
||||
dependencies = [
|
||||
"leann-core",
|
||||
"leann-backend-hnsw",
|
||||
"typer>=0.12.3",
|
||||
"numpy>=1.26.0",
|
||||
"torch",
|
||||
"tqdm",
|
||||
@@ -85,11 +84,6 @@ documents = [
|
||||
|
||||
[tool.setuptools]
|
||||
py-modules = []
|
||||
packages = ["wechat_exporter"]
|
||||
package-dir = { "wechat_exporter" = "packages/wechat-exporter" }
|
||||
|
||||
[project.scripts]
|
||||
wechat-exporter = "wechat_exporter.main:main"
|
||||
|
||||
|
||||
[tool.uv.sources]
|
||||
|
||||
Reference in New Issue
Block a user