Compare commits
11 Commits
fix-arch-c
...
arch-eval
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c8f173c0e5 | ||
|
|
7ea34bd7d0 | ||
|
|
13bb561aad | ||
|
|
348423eca9 | ||
|
|
bc621677f6 | ||
|
|
9d5cdd93b4 | ||
|
|
0174ba5571 | ||
|
|
03af82d695 | ||
|
|
738f1dbab8 | ||
|
|
37d990d51c | ||
|
|
a6f07a54f1 |
23
.github/workflows/build-reusable.yml
vendored
23
.github/workflows/build-reusable.yml
vendored
@@ -87,7 +87,7 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
ref: ${{ inputs.ref }}
|
||||
submodules: recursive
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
python-version: ${{ matrix.python }}
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v4
|
||||
uses: astral-sh/setup-uv@v6
|
||||
|
||||
- name: Install system dependencies (Ubuntu)
|
||||
if: runner.os == 'Linux'
|
||||
@@ -322,24 +322,29 @@ jobs:
|
||||
pacman -S --noconfirm python python-pip gcc git zlib openssl
|
||||
|
||||
- name: Download ALL wheel artifacts from this run
|
||||
uses: actions/download-artifact@v4
|
||||
uses: actions/download-artifact@v5
|
||||
with:
|
||||
# Don't specify name, download all artifacts
|
||||
path: ./wheels
|
||||
|
||||
- name: Install wheels (pip automatically picks matching tags from wheels directory)
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
|
||||
- name: Create virtual environment and install wheels
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --find-links wheels leann-core
|
||||
pip install --find-links wheels leann-backend-hnsw
|
||||
pip install --find-links wheels leann-backend-diskann
|
||||
pip install --find-links wheels leann
|
||||
uv venv
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
uv pip install --find-links wheels leann-core
|
||||
uv pip install --find-links wheels leann-backend-hnsw
|
||||
uv pip install --find-links wheels leann-backend-diskann
|
||||
uv pip install --find-links wheels leann
|
||||
|
||||
- name: Import & tiny runtime check
|
||||
env:
|
||||
OMP_NUM_THREADS: 1
|
||||
MKL_NUM_THREADS: 1
|
||||
run: |
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
python - <<'PY'
|
||||
import leann
|
||||
import leann_backend_hnsw as h
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -93,3 +93,5 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
||||
batchtest.py
|
||||
tests/__pytest_cache__/
|
||||
tests/__pycache__/
|
||||
|
||||
benchmarks/data/
|
||||
|
||||
14
README.md
14
README.md
@@ -176,6 +176,9 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
|
||||
|
||||
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
|
||||
|
||||
**AST-Aware Code Chunking** - LEANN also features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files, providing improved code understanding compared to traditional text-based approaches.
|
||||
📖 Read the [AST Chunking Guide →](docs/ast_chunking_guide.md) to learn more.
|
||||
|
||||
### Generation Model Setup
|
||||
|
||||
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
|
||||
@@ -294,6 +297,12 @@ python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
|
||||
|
||||
# Filter only markdown and Python files with smaller chunks
|
||||
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
|
||||
|
||||
# Enable AST-aware chunking for code files
|
||||
python -m apps.document_rag --enable-code-chunking --data-dir "./my_project"
|
||||
|
||||
# Or use the specialized code RAG for better code understanding
|
||||
python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authentication work?"
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -472,6 +481,7 @@ Once the index is built, you can ask questions like:
|
||||
|
||||
**Key features:**
|
||||
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
|
||||
- 🧠 **AST-aware chunking** preserves code structure (functions, classes)
|
||||
- 📚 **Context-aware assistance** for debugging and development
|
||||
- 🚀 **Zero-config setup** with automatic language detection
|
||||
|
||||
@@ -534,7 +544,8 @@ leann remove my-docs
|
||||
|
||||
**Key CLI features:**
|
||||
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
|
||||
- Smart text chunking with overlap
|
||||
- **🧠 AST-aware chunking** for Python, Java, C#, TypeScript files
|
||||
- Smart text chunking with overlap for all other content
|
||||
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
|
||||
- Organized index storage in `.leann/indexes/` (project-local)
|
||||
- Support for advanced search parameters
|
||||
@@ -646,6 +657,7 @@ Options:
|
||||
```bash
|
||||
uv pip install -e ".[dev]" # Install dev dependencies
|
||||
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
|
||||
python benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index
|
||||
```
|
||||
|
||||
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
||||
|
||||
@@ -11,7 +11,6 @@ from typing import Any
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from leann.registry import register_project_directory
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
@@ -109,6 +108,38 @@ class BaseRAGExample(ABC):
|
||||
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||
)
|
||||
|
||||
# AST Chunking parameters
|
||||
ast_group = parser.add_argument_group("AST Chunking Parameters")
|
||||
ast_group.add_argument(
|
||||
"--use-ast-chunking",
|
||||
action="store_true",
|
||||
help="Enable AST-aware chunking for code files (requires astchunk)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--ast-chunk-size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Maximum characters per AST chunk (default: 512)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--ast-chunk-overlap",
|
||||
type=int,
|
||||
default=64,
|
||||
help="Overlap between AST chunks (default: 64)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--code-file-extensions",
|
||||
nargs="+",
|
||||
default=None,
|
||||
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--ast-fallback-traditional",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Fall back to traditional chunking if AST chunking fails (default: True)",
|
||||
)
|
||||
|
||||
# Search parameters
|
||||
search_group = parser.add_argument_group("Search Parameters")
|
||||
search_group.add_argument(
|
||||
@@ -310,21 +341,3 @@ class BaseRAGExample(ABC):
|
||||
await self.run_single_query(args, index_path, args.query)
|
||||
else:
|
||||
await self.run_interactive_chat(args, index_path)
|
||||
|
||||
|
||||
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
|
||||
"""Helper function to create text chunks from documents."""
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=chunk_size,
|
||||
chunk_overlap=chunk_overlap,
|
||||
separator=" ",
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
if nodes:
|
||||
all_texts.extend(node.get_content() for node in nodes)
|
||||
|
||||
return all_texts
|
||||
|
||||
22
apps/chunking/__init__.py
Normal file
22
apps/chunking/__init__.py
Normal file
@@ -0,0 +1,22 @@
|
||||
"""
|
||||
Chunking utilities for LEANN RAG applications.
|
||||
Provides AST-aware and traditional text chunking functionality.
|
||||
"""
|
||||
|
||||
from .utils import (
|
||||
CODE_EXTENSIONS,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
detect_code_files,
|
||||
get_language_from_extension,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"CODE_EXTENSIONS",
|
||||
"create_ast_chunks",
|
||||
"create_text_chunks",
|
||||
"create_traditional_chunks",
|
||||
"detect_code_files",
|
||||
"get_language_from_extension",
|
||||
]
|
||||
320
apps/chunking/utils.py
Normal file
320
apps/chunking/utils.py
Normal file
@@ -0,0 +1,320 @@
|
||||
"""
|
||||
Enhanced chunking utilities with AST-aware code chunking support.
|
||||
Provides unified interface for both traditional and AST-based text chunking.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Code file extensions supported by astchunk
|
||||
CODE_EXTENSIONS = {
|
||||
".py": "python",
|
||||
".java": "java",
|
||||
".cs": "csharp",
|
||||
".ts": "typescript",
|
||||
".tsx": "typescript",
|
||||
".js": "typescript",
|
||||
".jsx": "typescript",
|
||||
}
|
||||
|
||||
# Default chunk parameters for different content types
|
||||
DEFAULT_CHUNK_PARAMS = {
|
||||
"code": {
|
||||
"max_chunk_size": 512,
|
||||
"chunk_overlap": 64,
|
||||
},
|
||||
"text": {
|
||||
"chunk_size": 256,
|
||||
"chunk_overlap": 128,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
|
||||
"""
|
||||
Separate documents into code files and regular text files.
|
||||
|
||||
Args:
|
||||
documents: List of LlamaIndex Document objects
|
||||
code_extensions: Dict mapping file extensions to languages (defaults to CODE_EXTENSIONS)
|
||||
|
||||
Returns:
|
||||
Tuple of (code_documents, text_documents)
|
||||
"""
|
||||
if code_extensions is None:
|
||||
code_extensions = CODE_EXTENSIONS
|
||||
|
||||
code_docs = []
|
||||
text_docs = []
|
||||
|
||||
for doc in documents:
|
||||
# Get file path from metadata
|
||||
file_path = doc.metadata.get("file_path", "")
|
||||
if not file_path:
|
||||
# Fallback to file_name
|
||||
file_path = doc.metadata.get("file_name", "")
|
||||
|
||||
if file_path:
|
||||
file_ext = Path(file_path).suffix.lower()
|
||||
if file_ext in code_extensions:
|
||||
# Add language info to metadata
|
||||
doc.metadata["language"] = code_extensions[file_ext]
|
||||
doc.metadata["is_code"] = True
|
||||
code_docs.append(doc)
|
||||
else:
|
||||
doc.metadata["is_code"] = False
|
||||
text_docs.append(doc)
|
||||
else:
|
||||
# If no file path, treat as text
|
||||
doc.metadata["is_code"] = False
|
||||
text_docs.append(doc)
|
||||
|
||||
logger.info(f"Detected {len(code_docs)} code files and {len(text_docs)} text files")
|
||||
return code_docs, text_docs
|
||||
|
||||
|
||||
def get_language_from_extension(file_path: str) -> Optional[str]:
|
||||
"""Get the programming language from file extension."""
|
||||
ext = Path(file_path).suffix.lower()
|
||||
return CODE_EXTENSIONS.get(ext)
|
||||
|
||||
|
||||
def create_ast_chunks(
|
||||
documents,
|
||||
max_chunk_size: int = 512,
|
||||
chunk_overlap: int = 64,
|
||||
metadata_template: str = "default",
|
||||
) -> list[str]:
|
||||
"""
|
||||
Create AST-aware chunks from code documents using astchunk.
|
||||
|
||||
Args:
|
||||
documents: List of code documents
|
||||
max_chunk_size: Maximum characters per chunk
|
||||
chunk_overlap: Number of AST nodes to overlap between chunks
|
||||
metadata_template: Template for chunk metadata
|
||||
|
||||
Returns:
|
||||
List of text chunks with preserved code structure
|
||||
"""
|
||||
try:
|
||||
from astchunk import ASTChunkBuilder
|
||||
except ImportError as e:
|
||||
logger.error(f"astchunk not available: {e}")
|
||||
logger.info("Falling back to traditional chunking for code files")
|
||||
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
|
||||
|
||||
all_chunks = []
|
||||
|
||||
for doc in documents:
|
||||
# Get language from metadata (set by detect_code_files)
|
||||
language = doc.metadata.get("language")
|
||||
if not language:
|
||||
logger.warning(
|
||||
"No language detected for document, falling back to traditional chunking"
|
||||
)
|
||||
traditional_chunks = create_traditional_chunks([doc], max_chunk_size, chunk_overlap)
|
||||
all_chunks.extend(traditional_chunks)
|
||||
continue
|
||||
|
||||
try:
|
||||
# Configure astchunk
|
||||
configs = {
|
||||
"max_chunk_size": max_chunk_size,
|
||||
"language": language,
|
||||
"metadata_template": metadata_template,
|
||||
"chunk_overlap": chunk_overlap if chunk_overlap > 0 else 0,
|
||||
}
|
||||
|
||||
# Add repository-level metadata if available
|
||||
repo_metadata = {
|
||||
"file_path": doc.metadata.get("file_path", ""),
|
||||
"file_name": doc.metadata.get("file_name", ""),
|
||||
"creation_date": doc.metadata.get("creation_date", ""),
|
||||
"last_modified_date": doc.metadata.get("last_modified_date", ""),
|
||||
}
|
||||
configs["repo_level_metadata"] = repo_metadata
|
||||
|
||||
# Create chunk builder and process
|
||||
chunk_builder = ASTChunkBuilder(**configs)
|
||||
code_content = doc.get_content()
|
||||
|
||||
if not code_content or not code_content.strip():
|
||||
logger.warning("Empty code content, skipping")
|
||||
continue
|
||||
|
||||
chunks = chunk_builder.chunkify(code_content)
|
||||
|
||||
# Extract text content from chunks
|
||||
for chunk in chunks:
|
||||
if hasattr(chunk, "text"):
|
||||
chunk_text = chunk.text
|
||||
elif isinstance(chunk, dict) and "text" in chunk:
|
||||
chunk_text = chunk["text"]
|
||||
elif isinstance(chunk, str):
|
||||
chunk_text = chunk
|
||||
else:
|
||||
# Try to convert to string
|
||||
chunk_text = str(chunk)
|
||||
|
||||
if chunk_text and chunk_text.strip():
|
||||
all_chunks.append(chunk_text.strip())
|
||||
|
||||
logger.info(
|
||||
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"AST chunking failed for {language} file: {e}")
|
||||
logger.info("Falling back to traditional chunking")
|
||||
traditional_chunks = create_traditional_chunks([doc], max_chunk_size, chunk_overlap)
|
||||
all_chunks.extend(traditional_chunks)
|
||||
|
||||
return all_chunks
|
||||
|
||||
|
||||
def create_traditional_chunks(
|
||||
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||
) -> list[str]:
|
||||
"""
|
||||
Create traditional text chunks using LlamaIndex SentenceSplitter.
|
||||
|
||||
Args:
|
||||
documents: List of documents to chunk
|
||||
chunk_size: Size of each chunk in characters
|
||||
chunk_overlap: Overlap between chunks
|
||||
|
||||
Returns:
|
||||
List of text chunks
|
||||
"""
|
||||
# Handle invalid chunk_size values
|
||||
if chunk_size <= 0:
|
||||
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
|
||||
chunk_size = 256
|
||||
|
||||
# Ensure chunk_overlap is not negative and not larger than chunk_size
|
||||
if chunk_overlap < 0:
|
||||
chunk_overlap = 0
|
||||
if chunk_overlap >= chunk_size:
|
||||
chunk_overlap = chunk_size // 2
|
||||
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=chunk_size,
|
||||
chunk_overlap=chunk_overlap,
|
||||
separator=" ",
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
try:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
if nodes:
|
||||
chunk_texts = [node.get_content() for node in nodes]
|
||||
all_texts.extend(chunk_texts)
|
||||
logger.debug(f"Created {len(chunk_texts)} traditional chunks from document")
|
||||
except Exception as e:
|
||||
logger.error(f"Traditional chunking failed for document: {e}")
|
||||
# As last resort, add the raw content
|
||||
content = doc.get_content()
|
||||
if content and content.strip():
|
||||
all_texts.append(content.strip())
|
||||
|
||||
return all_texts
|
||||
|
||||
|
||||
def create_text_chunks(
|
||||
documents,
|
||||
chunk_size: int = 256,
|
||||
chunk_overlap: int = 128,
|
||||
use_ast_chunking: bool = False,
|
||||
ast_chunk_size: int = 512,
|
||||
ast_chunk_overlap: int = 64,
|
||||
code_file_extensions: Optional[list[str]] = None,
|
||||
ast_fallback_traditional: bool = True,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Create text chunks from documents with optional AST support for code files.
|
||||
|
||||
Args:
|
||||
documents: List of LlamaIndex Document objects
|
||||
chunk_size: Size for traditional text chunks
|
||||
chunk_overlap: Overlap for traditional text chunks
|
||||
use_ast_chunking: Whether to use AST chunking for code files
|
||||
ast_chunk_size: Size for AST chunks
|
||||
ast_chunk_overlap: Overlap for AST chunks
|
||||
code_file_extensions: Custom list of code file extensions
|
||||
ast_fallback_traditional: Fall back to traditional chunking on AST errors
|
||||
|
||||
Returns:
|
||||
List of text chunks
|
||||
"""
|
||||
if not documents:
|
||||
logger.warning("No documents provided for chunking")
|
||||
return []
|
||||
|
||||
# Create a local copy of supported extensions for this function call
|
||||
local_code_extensions = CODE_EXTENSIONS.copy()
|
||||
|
||||
# Update supported extensions if provided
|
||||
if code_file_extensions:
|
||||
# Map extensions to languages (simplified mapping)
|
||||
ext_mapping = {
|
||||
".py": "python",
|
||||
".java": "java",
|
||||
".cs": "c_sharp",
|
||||
".ts": "typescript",
|
||||
".tsx": "typescript",
|
||||
}
|
||||
for ext in code_file_extensions:
|
||||
if ext.lower() not in local_code_extensions:
|
||||
# Try to guess language from extension
|
||||
if ext.lower() in ext_mapping:
|
||||
local_code_extensions[ext.lower()] = ext_mapping[ext.lower()]
|
||||
else:
|
||||
logger.warning(f"Unsupported extension {ext}, will use traditional chunking")
|
||||
|
||||
all_chunks = []
|
||||
|
||||
if use_ast_chunking:
|
||||
# Separate code and text documents using local extensions
|
||||
code_docs, text_docs = detect_code_files(documents, local_code_extensions)
|
||||
|
||||
# Process code files with AST chunking
|
||||
if code_docs:
|
||||
logger.info(f"Processing {len(code_docs)} code files with AST chunking")
|
||||
try:
|
||||
ast_chunks = create_ast_chunks(
|
||||
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
|
||||
)
|
||||
all_chunks.extend(ast_chunks)
|
||||
logger.info(f"Created {len(ast_chunks)} AST chunks from code files")
|
||||
except Exception as e:
|
||||
logger.error(f"AST chunking failed: {e}")
|
||||
if ast_fallback_traditional:
|
||||
logger.info("Falling back to traditional chunking for code files")
|
||||
traditional_code_chunks = create_traditional_chunks(
|
||||
code_docs, chunk_size, chunk_overlap
|
||||
)
|
||||
all_chunks.extend(traditional_code_chunks)
|
||||
else:
|
||||
raise
|
||||
|
||||
# Process text files with traditional chunking
|
||||
if text_docs:
|
||||
logger.info(f"Processing {len(text_docs)} text files with traditional chunking")
|
||||
text_chunks = create_traditional_chunks(text_docs, chunk_size, chunk_overlap)
|
||||
all_chunks.extend(text_chunks)
|
||||
logger.info(f"Created {len(text_chunks)} traditional chunks from text files")
|
||||
else:
|
||||
# Use traditional chunking for all files
|
||||
logger.info(f"Processing {len(documents)} documents with traditional chunking")
|
||||
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||
|
||||
logger.info(f"Total chunks created: {len(all_chunks)}")
|
||||
return all_chunks
|
||||
211
apps/code_rag.py
Normal file
211
apps/code_rag.py
Normal file
@@ -0,0 +1,211 @@
|
||||
"""
|
||||
Code RAG example using AST-aware chunking for optimal code understanding.
|
||||
Specialized for code repositories with automatic language detection and
|
||||
optimized chunking parameters.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import CODE_EXTENSIONS, create_text_chunks
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
|
||||
|
||||
class CodeRAG(BaseRAGExample):
|
||||
"""Specialized RAG example for code repositories with AST-aware chunking."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
name="Code",
|
||||
description="Process and query code repositories with AST-aware chunking",
|
||||
default_index_name="code_index",
|
||||
)
|
||||
# Override defaults for code-specific usage
|
||||
self.embedding_model_default = "facebook/contriever" # Good for code
|
||||
self.max_items_default = -1 # Process all code files by default
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add code-specific arguments."""
|
||||
code_group = parser.add_argument_group("Code Repository Parameters")
|
||||
|
||||
code_group.add_argument(
|
||||
"--repo-dir",
|
||||
type=str,
|
||||
default=".",
|
||||
help="Code repository directory to index (default: current directory)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--include-extensions",
|
||||
nargs="+",
|
||||
default=list(CODE_EXTENSIONS.keys()),
|
||||
help="File extensions to include (default: supported code extensions)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--exclude-dirs",
|
||||
nargs="+",
|
||||
default=[
|
||||
".git",
|
||||
"__pycache__",
|
||||
"node_modules",
|
||||
"venv",
|
||||
".venv",
|
||||
"build",
|
||||
"dist",
|
||||
"target",
|
||||
],
|
||||
help="Directories to exclude from indexing",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--max-file-size",
|
||||
type=int,
|
||||
default=1000000, # 1MB
|
||||
help="Maximum file size in bytes to process (default: 1MB)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--include-comments",
|
||||
action="store_true",
|
||||
help="Include comments in chunking (useful for documentation)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--preserve-imports",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Try to preserve import statements in chunks (default: True)",
|
||||
)
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load code files and convert to AST-aware chunks."""
|
||||
print(f"🔍 Scanning code repository: {args.repo_dir}")
|
||||
print(f"📁 Including extensions: {args.include_extensions}")
|
||||
print(f"🚫 Excluding directories: {args.exclude_dirs}")
|
||||
|
||||
# Check if repository directory exists
|
||||
repo_path = Path(args.repo_dir)
|
||||
if not repo_path.exists():
|
||||
raise ValueError(f"Repository directory not found: {args.repo_dir}")
|
||||
|
||||
# Load code files with filtering
|
||||
reader_kwargs = {
|
||||
"recursive": True,
|
||||
"encoding": "utf-8",
|
||||
"required_exts": args.include_extensions,
|
||||
"exclude_hidden": True,
|
||||
}
|
||||
|
||||
# Create exclusion filter
|
||||
def file_filter(file_path: str) -> bool:
|
||||
"""Filter out unwanted files and directories."""
|
||||
path = Path(file_path)
|
||||
|
||||
# Check file size
|
||||
try:
|
||||
if path.stat().st_size > args.max_file_size:
|
||||
print(f"⚠️ Skipping large file: {path.name} ({path.stat().st_size} bytes)")
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
# Check if in excluded directory
|
||||
for exclude_dir in args.exclude_dirs:
|
||||
if exclude_dir in path.parts:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
try:
|
||||
# Load documents with file filtering
|
||||
documents = SimpleDirectoryReader(
|
||||
args.repo_dir,
|
||||
file_extractor=None, # Use default extractors
|
||||
**reader_kwargs,
|
||||
).load_data(show_progress=True)
|
||||
|
||||
# Apply custom filtering
|
||||
filtered_docs = []
|
||||
for doc in documents:
|
||||
file_path = doc.metadata.get("file_path", "")
|
||||
if file_filter(file_path):
|
||||
filtered_docs.append(doc)
|
||||
|
||||
documents = filtered_docs
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error loading code files: {e}")
|
||||
return []
|
||||
|
||||
if not documents:
|
||||
print(
|
||||
f"❌ No code files found in {args.repo_dir} with extensions {args.include_extensions}"
|
||||
)
|
||||
return []
|
||||
|
||||
print(f"✅ Loaded {len(documents)} code files")
|
||||
|
||||
# Show breakdown by language/extension
|
||||
ext_counts = {}
|
||||
for doc in documents:
|
||||
file_path = doc.metadata.get("file_path", "")
|
||||
if file_path:
|
||||
ext = Path(file_path).suffix.lower()
|
||||
ext_counts[ext] = ext_counts.get(ext, 0) + 1
|
||||
|
||||
print("📊 Files by extension:")
|
||||
for ext, count in sorted(ext_counts.items()):
|
||||
print(f" {ext}: {count} files")
|
||||
|
||||
# Use AST-aware chunking by default for code
|
||||
print(
|
||||
f"🧠 Using AST-aware chunking (chunk_size: {args.ast_chunk_size}, overlap: {args.ast_chunk_overlap})"
|
||||
)
|
||||
|
||||
all_texts = create_text_chunks(
|
||||
documents,
|
||||
chunk_size=256, # Fallback for non-code files
|
||||
chunk_overlap=64,
|
||||
use_ast_chunking=True, # Always use AST for code RAG
|
||||
ast_chunk_size=args.ast_chunk_size,
|
||||
ast_chunk_overlap=args.ast_chunk_overlap,
|
||||
code_file_extensions=args.include_extensions,
|
||||
ast_fallback_traditional=True,
|
||||
)
|
||||
|
||||
# Apply max_items limit if specified
|
||||
if args.max_items > 0 and len(all_texts) > args.max_items:
|
||||
print(f"⏳ Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
||||
all_texts = all_texts[: args.max_items]
|
||||
|
||||
print(f"✅ Generated {len(all_texts)} code chunks")
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Example queries for code RAG
|
||||
print("\n💻 Code RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'How does the embedding computation work?'")
|
||||
print("- 'What are the main classes in this codebase?'")
|
||||
print("- 'Show me the search implementation'")
|
||||
print("- 'How is error handling implemented?'")
|
||||
print("- 'What design patterns are used?'")
|
||||
print("- 'Explain the chunking logic'")
|
||||
print("\n🚀 Features:")
|
||||
print("- ✅ AST-aware chunking preserves code structure")
|
||||
print("- ✅ Automatic language detection")
|
||||
print("- ✅ Smart filtering of large files and common excludes")
|
||||
print("- ✅ Optimized for code understanding")
|
||||
print("\nUsage examples:")
|
||||
print(" python -m apps.code_rag --repo-dir ./my_project")
|
||||
print(
|
||||
" python -m apps.code_rag --include-extensions .py .js --query 'How does authentication work?'"
|
||||
)
|
||||
print("\nOr run without --query for interactive mode\n")
|
||||
|
||||
rag = CodeRAG()
|
||||
asyncio.run(rag.run())
|
||||
@@ -9,7 +9,8 @@ from pathlib import Path
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample, create_text_chunks
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import create_text_chunks
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
|
||||
|
||||
@@ -44,6 +45,11 @@ class DocumentRAG(BaseRAGExample):
|
||||
doc_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||
)
|
||||
doc_group.add_argument(
|
||||
"--enable-code-chunking",
|
||||
action="store_true",
|
||||
help="Enable AST-aware chunking for code files in the data directory",
|
||||
)
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load documents and convert to text chunks."""
|
||||
@@ -76,9 +82,22 @@ class DocumentRAG(BaseRAGExample):
|
||||
|
||||
print(f"Loaded {len(documents)} documents")
|
||||
|
||||
# Convert to text chunks
|
||||
# Determine chunking strategy
|
||||
use_ast = args.enable_code_chunking or getattr(args, "use_ast_chunking", False)
|
||||
|
||||
if use_ast:
|
||||
print("Using AST-aware chunking for code files")
|
||||
|
||||
# Convert to text chunks with optional AST support
|
||||
all_texts = create_text_chunks(
|
||||
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||
documents,
|
||||
chunk_size=args.chunk_size,
|
||||
chunk_overlap=args.chunk_overlap,
|
||||
use_ast_chunking=use_ast,
|
||||
ast_chunk_size=getattr(args, "ast_chunk_size", 512),
|
||||
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 64),
|
||||
code_file_extensions=getattr(args, "code_file_extensions", None),
|
||||
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||
)
|
||||
|
||||
# Apply max_items limit if specified
|
||||
@@ -102,6 +121,10 @@ if __name__ == "__main__":
|
||||
print(
|
||||
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
|
||||
)
|
||||
print("\n🚀 NEW: Code-aware chunking available!")
|
||||
print("- Use --enable-code-chunking to enable AST-aware chunking for code files")
|
||||
print("- Supports Python, Java, C#, TypeScript files")
|
||||
print("- Better semantic understanding of code structure")
|
||||
print("\nOr run without --query for interactive mode\n")
|
||||
|
||||
rag = DocumentRAG()
|
||||
|
||||
82
benchmarks/data/.gitattributes
vendored
82
benchmarks/data/.gitattributes
vendored
@@ -1,82 +0,0 @@
|
||||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.mds filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||
# Audio files - uncompressed
|
||||
*.pcm filter=lfs diff=lfs merge=lfs -text
|
||||
*.sam filter=lfs diff=lfs merge=lfs -text
|
||||
*.raw filter=lfs diff=lfs merge=lfs -text
|
||||
# Audio files - compressed
|
||||
*.aac filter=lfs diff=lfs merge=lfs -text
|
||||
*.flac filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ogg filter=lfs diff=lfs merge=lfs -text
|
||||
*.wav filter=lfs diff=lfs merge=lfs -text
|
||||
# Image files - uncompressed
|
||||
*.bmp filter=lfs diff=lfs merge=lfs -text
|
||||
*.gif filter=lfs diff=lfs merge=lfs -text
|
||||
*.png filter=lfs diff=lfs merge=lfs -text
|
||||
*.tiff filter=lfs diff=lfs merge=lfs -text
|
||||
# Image files - compressed
|
||||
*.jpg filter=lfs diff=lfs merge=lfs -text
|
||||
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
||||
*.webp filter=lfs diff=lfs merge=lfs -text
|
||||
# Video files - compressed
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.webm filter=lfs diff=lfs merge=lfs -text
|
||||
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
@@ -183,6 +183,9 @@ class Benchmark:
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||
# mps sync
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
return end_time - start_time
|
||||
|
||||
128
docs/ast_chunking_guide.md
Normal file
128
docs/ast_chunking_guide.md
Normal file
@@ -0,0 +1,128 @@
|
||||
# AST-Aware Code chunking guide
|
||||
|
||||
## Overview
|
||||
|
||||
This guide covers best practices for using AST-aware code chunking in LEANN. AST chunking provides better semantic understanding of code structure compared to traditional text-based chunking.
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```bash
|
||||
# Enable AST chunking for mixed content (code + docs)
|
||||
python -m apps.document_rag --enable-code-chunking --data-dir ./my_project
|
||||
|
||||
# Specialized code repository indexing
|
||||
python -m apps.code_rag --repo-dir ./my_codebase
|
||||
|
||||
# Global CLI with AST support
|
||||
leann build my-code-index --docs ./src --use-ast-chunking
|
||||
```
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
# Install LEANN with AST chunking support
|
||||
uv pip install -e "."
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### When to Use AST Chunking
|
||||
|
||||
✅ **Recommended for:**
|
||||
- Code repositories with multiple languages
|
||||
- Mixed documentation and code content
|
||||
- Complex codebases with deep function/class hierarchies
|
||||
- When working with Claude Code for code assistance
|
||||
|
||||
❌ **Not recommended for:**
|
||||
- Pure text documents
|
||||
- Very large files (>1MB)
|
||||
- Languages not supported by tree-sitter
|
||||
|
||||
### Optimal Configuration
|
||||
|
||||
```bash
|
||||
# Recommended settings for most codebases
|
||||
python -m apps.code_rag \
|
||||
--repo-dir ./src \
|
||||
--ast-chunk-size 768 \
|
||||
--ast-chunk-overlap 96 \
|
||||
--exclude-dirs .git __pycache__ node_modules build dist
|
||||
```
|
||||
|
||||
### Supported Languages
|
||||
|
||||
| Extension | Language | Status |
|
||||
|-----------|----------|--------|
|
||||
| `.py` | Python | ✅ Full support |
|
||||
| `.java` | Java | ✅ Full support |
|
||||
| `.cs` | C# | ✅ Full support |
|
||||
| `.ts`, `.tsx` | TypeScript | ✅ Full support |
|
||||
| `.js`, `.jsx` | JavaScript | ✅ Via TypeScript parser |
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### Document RAG with Code Support
|
||||
|
||||
```python
|
||||
# Enable code chunking in document RAG
|
||||
python -m apps.document_rag \
|
||||
--enable-code-chunking \
|
||||
--data-dir ./project \
|
||||
--query "How does authentication work in the codebase?"
|
||||
```
|
||||
|
||||
### Claude Code Integration
|
||||
|
||||
When using with Claude Code MCP server, AST chunking provides better context for:
|
||||
- Code completion and suggestions
|
||||
- Bug analysis and debugging
|
||||
- Architecture understanding
|
||||
- Refactoring assistance
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Fallback to Traditional Chunking**
|
||||
- Normal behavior for unsupported languages
|
||||
- Check logs for specific language support
|
||||
|
||||
2. **Performance with Large Files**
|
||||
- Adjust `--max-file-size` parameter
|
||||
- Use `--exclude-dirs` to skip unnecessary directories
|
||||
|
||||
3. **Quality Issues**
|
||||
- Try different `--ast-chunk-size` values (512, 768, 1024)
|
||||
- Adjust overlap for better context preservation
|
||||
|
||||
### Debug Mode
|
||||
|
||||
```bash
|
||||
export LEANN_LOG_LEVEL=DEBUG
|
||||
python -m apps.code_rag --repo-dir ./my_code
|
||||
```
|
||||
|
||||
## Migration from Traditional Chunking
|
||||
|
||||
Existing workflows continue to work without changes. To enable AST chunking:
|
||||
|
||||
```bash
|
||||
# Before
|
||||
python -m apps.document_rag --chunk-size 256
|
||||
|
||||
# After (maintains traditional chunking for non-code files)
|
||||
python -m apps.document_rag --enable-code-chunking --chunk-size 256 --ast-chunk-size 768
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
- [astchunk GitHub Repository](https://github.com/yilinjz/astchunk)
|
||||
- [LEANN MCP Integration](../packages/leann-mcp/README.md)
|
||||
- [Research Paper](https://arxiv.org/html/2506.15655v1)
|
||||
|
||||
---
|
||||
|
||||
**Note**: AST chunking maintains full backward compatibility while enhancing code understanding capabilities.
|
||||
@@ -3,6 +3,7 @@
|
||||
## 🔥 Core Features
|
||||
|
||||
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||
- **🧠 AST-Aware Code Chunking** - Intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files
|
||||
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
|
||||
|
||||
@@ -83,9 +83,7 @@ def create_diskann_embedding_server(
|
||||
|
||||
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
|
||||
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||
logger.info(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||
|
||||
# Import protobuf after ensuring the path is correct
|
||||
try:
|
||||
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.3.0"
|
||||
dependencies = ["leann-core==0.3.0", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.3.2"
|
||||
dependencies = ["leann-core==0.3.2", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
@@ -90,9 +90,7 @@ def create_hnsw_embedding_server(
|
||||
embedding_dim: int = int(meta.get("dimensions", 0))
|
||||
except Exception:
|
||||
embedding_dim = 0
|
||||
logger.info(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||
|
||||
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
||||
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.3.0"
|
||||
version = "0.3.2"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.3.0",
|
||||
"leann-core==0.3.2",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.3.0"
|
||||
version = "0.3.2"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -119,9 +119,12 @@ class PassageManager:
|
||||
def __init__(
|
||||
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
|
||||
):
|
||||
self.offset_maps = {}
|
||||
self.passage_files = {}
|
||||
self.global_offset_map = {} # Combined map for fast lookup
|
||||
self.offset_maps: dict[str, dict[str, int]] = {}
|
||||
self.passage_files: dict[str, str] = {}
|
||||
# Avoid materializing a single gigantic global map to reduce memory
|
||||
# footprint on very large corpora (e.g., 60M+ passages). Instead, keep
|
||||
# per-shard maps and do a lightweight per-shard lookup on demand.
|
||||
self._total_count: int = 0
|
||||
|
||||
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
|
||||
index_name_base = None
|
||||
@@ -142,12 +145,25 @@ class PassageManager:
|
||||
default_name: Optional[str],
|
||||
source_dict: dict[str, Any],
|
||||
) -> list[Path]:
|
||||
"""
|
||||
Build an ordered list of candidate paths. For relative paths specified in
|
||||
metadata, prefer resolution relative to the metadata file directory first,
|
||||
then fall back to CWD-based resolution, and finally to conventional
|
||||
sibling defaults (e.g., <index_base>.passages.idx / .jsonl).
|
||||
"""
|
||||
candidates: list[Path] = []
|
||||
# 1) Primary as-is (absolute or relative)
|
||||
# 1) Primary path
|
||||
if primary:
|
||||
p = Path(primary)
|
||||
candidates.append(p if p.is_absolute() else (Path.cwd() / p))
|
||||
# 2) metadata-relative explicit relative key
|
||||
if p.is_absolute():
|
||||
candidates.append(p)
|
||||
else:
|
||||
# Prefer metadata-relative resolution for relative paths
|
||||
if metadata_file_path:
|
||||
candidates.append(Path(metadata_file_path).parent / p)
|
||||
# Also consider CWD-relative as a fallback for legacy layouts
|
||||
candidates.append(Path.cwd() / p)
|
||||
# 2) metadata-relative explicit relative key (if present)
|
||||
if metadata_file_path and source_dict.get(relative_key):
|
||||
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
|
||||
# 3) metadata-relative standard sibling filename
|
||||
@@ -177,23 +193,28 @@ class PassageManager:
|
||||
raise FileNotFoundError(f"Passage index file not found: {index_file}")
|
||||
|
||||
with open(index_file, "rb") as f:
|
||||
offset_map = pickle.load(f)
|
||||
offset_map: dict[str, int] = pickle.load(f)
|
||||
self.offset_maps[passage_file] = offset_map
|
||||
self.passage_files[passage_file] = passage_file
|
||||
|
||||
# Build global map for O(1) lookup
|
||||
for passage_id, offset in offset_map.items():
|
||||
self.global_offset_map[passage_id] = (passage_file, offset)
|
||||
self._total_count += len(offset_map)
|
||||
|
||||
def get_passage(self, passage_id: str) -> dict[str, Any]:
|
||||
if passage_id in self.global_offset_map:
|
||||
passage_file, offset = self.global_offset_map[passage_id]
|
||||
# Lazy file opening - only open when needed
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
f.seek(offset)
|
||||
return json.loads(f.readline())
|
||||
# Fast path: check each shard map (there are typically few shards).
|
||||
# This avoids building a massive combined dict while keeping lookups
|
||||
# bounded by the number of shards.
|
||||
for passage_file, offset_map in self.offset_maps.items():
|
||||
try:
|
||||
offset = offset_map[passage_id]
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
f.seek(offset)
|
||||
return json.loads(f.readline())
|
||||
except KeyError:
|
||||
continue
|
||||
raise KeyError(f"Passage ID not found: {passage_id}")
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._total_count
|
||||
|
||||
|
||||
class LeannBuilder:
|
||||
def __init__(
|
||||
@@ -584,7 +605,9 @@ class LeannSearcher:
|
||||
logger.info(f" Additional kwargs: {kwargs}")
|
||||
|
||||
# Smart top_k detection and adjustment
|
||||
total_docs = len(self.passage_manager.global_offset_map)
|
||||
# Use PassageManager length (sum of shard sizes) to avoid
|
||||
# depending on a massive combined map
|
||||
total_docs = len(self.passage_manager)
|
||||
original_top_k = top_k
|
||||
if top_k > total_docs:
|
||||
top_k = total_docs
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
@@ -180,6 +181,29 @@ Examples:
|
||||
default=50,
|
||||
help="Code chunk overlap (default: 50)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--use-ast-chunking",
|
||||
action="store_true",
|
||||
help="Enable AST-aware chunking for code files (requires astchunk)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--ast-chunk-size",
|
||||
type=int,
|
||||
default=768,
|
||||
help="AST chunk size in characters (default: 768)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--ast-chunk-overlap",
|
||||
type=int,
|
||||
default=96,
|
||||
help="AST chunk overlap in characters (default: 96)",
|
||||
)
|
||||
build_parser.add_argument(
|
||||
"--ast-fallback-traditional",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Fall back to traditional chunking if AST chunking fails (default: True)",
|
||||
)
|
||||
|
||||
# Search command
|
||||
search_parser = subparsers.add_parser("search", help="Search documents")
|
||||
@@ -206,6 +230,11 @@ Examples:
|
||||
default="global",
|
||||
help="Pruning strategy (default: global)",
|
||||
)
|
||||
search_parser.add_argument(
|
||||
"--non-interactive",
|
||||
action="store_true",
|
||||
help="Non-interactive mode: automatically select index without prompting",
|
||||
)
|
||||
|
||||
# Ask command
|
||||
ask_parser = subparsers.add_parser("ask", help="Ask questions")
|
||||
@@ -405,13 +434,9 @@ Examples:
|
||||
print("💡 Get started:")
|
||||
print(" leann build my-docs --docs ./documents")
|
||||
else:
|
||||
projects_count = len(
|
||||
[
|
||||
p
|
||||
for p in valid_projects
|
||||
if (p / ".leann" / "indexes").exists()
|
||||
and list((p / ".leann" / "indexes").iterdir())
|
||||
]
|
||||
# Count only projects that have at least one discoverable index
|
||||
projects_count = sum(
|
||||
1 for p in valid_projects if len(self._discover_indexes_in_project(p)) > 0
|
||||
)
|
||||
print(f"📊 Total: {total_indexes} indexes across {projects_count} projects")
|
||||
|
||||
@@ -461,26 +486,35 @@ Examples:
|
||||
)
|
||||
|
||||
# 2. Apps format: *.leann.meta.json files anywhere in the project
|
||||
cli_indexes_dir = project_path / ".leann" / "indexes"
|
||||
for meta_file in project_path.rglob("*.leann.meta.json"):
|
||||
if meta_file.is_file():
|
||||
# Extract index name from filename (remove .leann.meta.json extension)
|
||||
index_name = meta_file.name.replace(".leann.meta.json", "")
|
||||
# Skip CLI-built indexes (which store meta under .leann/indexes/<name>/)
|
||||
try:
|
||||
if cli_indexes_dir.exists() and cli_indexes_dir in meta_file.parents:
|
||||
continue
|
||||
except Exception:
|
||||
pass
|
||||
# Use the parent directory name as the app index display name
|
||||
display_name = meta_file.parent.name
|
||||
# Extract file base used to store files
|
||||
file_base = meta_file.name.replace(".leann.meta.json", "")
|
||||
|
||||
# Apps indexes are considered complete if the .leann.meta.json file exists
|
||||
status = "✅"
|
||||
|
||||
# Calculate total size of all related files
|
||||
# Calculate total size of all related files (use file base)
|
||||
size_mb = 0
|
||||
try:
|
||||
index_dir = meta_file.parent
|
||||
for related_file in index_dir.glob(f"{index_name}.leann*"):
|
||||
for related_file in index_dir.glob(f"{file_base}.leann*"):
|
||||
size_mb += related_file.stat().st_size / (1024 * 1024)
|
||||
except (OSError, PermissionError):
|
||||
pass
|
||||
|
||||
indexes.append(
|
||||
{
|
||||
"name": index_name,
|
||||
"name": display_name,
|
||||
"type": "app",
|
||||
"status": status,
|
||||
"size_mb": size_mb,
|
||||
@@ -534,13 +568,79 @@ Examples:
|
||||
if not project_path.exists():
|
||||
continue
|
||||
|
||||
# 1) CLI-format index under .leann/indexes/<name>
|
||||
index_dir = project_path / ".leann" / "indexes" / index_name
|
||||
if index_dir.exists():
|
||||
is_current = project_path == current_path
|
||||
matches.append(
|
||||
{"project_path": project_path, "index_dir": index_dir, "is_current": is_current}
|
||||
{
|
||||
"project_path": project_path,
|
||||
"index_dir": index_dir,
|
||||
"is_current": is_current,
|
||||
"kind": "cli",
|
||||
}
|
||||
)
|
||||
|
||||
# 2) App-format indexes
|
||||
# We support two ways of addressing apps:
|
||||
# a) by the file base (e.g., `pdf_documents`)
|
||||
# b) by the parent directory name (e.g., `new_txt`)
|
||||
seen_app_meta = set()
|
||||
|
||||
# 2a) by file base
|
||||
for meta_file in project_path.rglob(f"{index_name}.leann.meta.json"):
|
||||
if meta_file.is_file():
|
||||
# Skip CLI-built indexes' meta under .leann/indexes
|
||||
try:
|
||||
cli_indexes_dir = project_path / ".leann" / "indexes"
|
||||
if cli_indexes_dir.exists() and cli_indexes_dir in meta_file.parents:
|
||||
continue
|
||||
except Exception:
|
||||
pass
|
||||
is_current = project_path == current_path
|
||||
key = (str(project_path), str(meta_file))
|
||||
if key in seen_app_meta:
|
||||
continue
|
||||
seen_app_meta.add(key)
|
||||
matches.append(
|
||||
{
|
||||
"project_path": project_path,
|
||||
"files_dir": meta_file.parent,
|
||||
"meta_file": meta_file,
|
||||
"is_current": is_current,
|
||||
"kind": "app",
|
||||
"display_name": meta_file.parent.name,
|
||||
"file_base": meta_file.name.replace(".leann.meta.json", ""),
|
||||
}
|
||||
)
|
||||
|
||||
# 2b) by parent directory name
|
||||
for meta_file in project_path.rglob("*.leann.meta.json"):
|
||||
if meta_file.is_file() and meta_file.parent.name == index_name:
|
||||
# Skip CLI-built indexes' meta under .leann/indexes
|
||||
try:
|
||||
cli_indexes_dir = project_path / ".leann" / "indexes"
|
||||
if cli_indexes_dir.exists() and cli_indexes_dir in meta_file.parents:
|
||||
continue
|
||||
except Exception:
|
||||
pass
|
||||
is_current = project_path == current_path
|
||||
key = (str(project_path), str(meta_file))
|
||||
if key in seen_app_meta:
|
||||
continue
|
||||
seen_app_meta.add(key)
|
||||
matches.append(
|
||||
{
|
||||
"project_path": project_path,
|
||||
"files_dir": meta_file.parent,
|
||||
"meta_file": meta_file,
|
||||
"is_current": is_current,
|
||||
"kind": "app",
|
||||
"display_name": meta_file.parent.name,
|
||||
"file_base": meta_file.name.replace(".leann.meta.json", ""),
|
||||
}
|
||||
)
|
||||
|
||||
# Sort: current project first, then by project name
|
||||
matches.sort(key=lambda x: (not x["is_current"], x["project_path"].name))
|
||||
return matches
|
||||
@@ -548,8 +648,8 @@ Examples:
|
||||
def _remove_single_match(self, match, index_name: str, force: bool):
|
||||
"""Handle removal when only one match is found"""
|
||||
project_path = match["project_path"]
|
||||
index_dir = match["index_dir"]
|
||||
is_current = match["is_current"]
|
||||
kind = match.get("kind", "cli")
|
||||
|
||||
if is_current:
|
||||
location_info = "current project"
|
||||
@@ -560,7 +660,10 @@ Examples:
|
||||
|
||||
print(f"✅ Found 1 index named '{index_name}':")
|
||||
print(f" {emoji} Location: {location_info}")
|
||||
print(f" 📍 Path: {project_path}")
|
||||
if kind == "cli":
|
||||
print(f" 📍 Path: {project_path / '.leann' / 'indexes' / index_name}")
|
||||
else:
|
||||
print(f" 📍 Meta: {match['meta_file']}")
|
||||
|
||||
if not force:
|
||||
if not is_current:
|
||||
@@ -572,9 +675,22 @@ Examples:
|
||||
print(" ❌ Removal cancelled.")
|
||||
return False
|
||||
|
||||
return self._delete_index_directory(
|
||||
index_dir, index_name, project_path if not is_current else None
|
||||
)
|
||||
if kind == "cli":
|
||||
return self._delete_index_directory(
|
||||
match["index_dir"],
|
||||
index_name,
|
||||
project_path if not is_current else None,
|
||||
is_app=False,
|
||||
)
|
||||
else:
|
||||
return self._delete_index_directory(
|
||||
match["files_dir"],
|
||||
match.get("display_name", index_name),
|
||||
project_path if not is_current else None,
|
||||
is_app=True,
|
||||
meta_file=match.get("meta_file"),
|
||||
app_file_base=match.get("file_base"),
|
||||
)
|
||||
|
||||
def _remove_from_multiple_matches(self, matches, index_name: str, force: bool):
|
||||
"""Handle removal when multiple matches are found"""
|
||||
@@ -585,19 +701,34 @@ Examples:
|
||||
for i, match in enumerate(matches, 1):
|
||||
project_path = match["project_path"]
|
||||
is_current = match["is_current"]
|
||||
kind = match.get("kind", "cli")
|
||||
|
||||
if is_current:
|
||||
print(f" {i}. 🏠 Current project")
|
||||
print(f" 📍 {project_path}")
|
||||
print(f" {i}. 🏠 Current project ({'CLI' if kind == 'cli' else 'APP'})")
|
||||
else:
|
||||
print(f" {i}. 📂 {project_path.name}")
|
||||
print(f" 📍 {project_path}")
|
||||
print(f" {i}. 📂 {project_path.name} ({'CLI' if kind == 'cli' else 'APP'})")
|
||||
|
||||
# Show path details
|
||||
if kind == "cli":
|
||||
print(f" 📍 {project_path / '.leann' / 'indexes' / index_name}")
|
||||
else:
|
||||
print(f" 📍 {match['meta_file']}")
|
||||
|
||||
# Show size info
|
||||
try:
|
||||
size_mb = sum(
|
||||
f.stat().st_size for f in match["index_dir"].iterdir() if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
if kind == "cli":
|
||||
size_mb = sum(
|
||||
f.stat().st_size for f in match["index_dir"].iterdir() if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
else:
|
||||
file_base = match.get("file_base")
|
||||
size_mb = 0.0
|
||||
if file_base:
|
||||
size_mb = sum(
|
||||
f.stat().st_size
|
||||
for f in match["files_dir"].glob(f"{file_base}.leann*")
|
||||
if f.is_file()
|
||||
) / (1024 * 1024)
|
||||
print(f" 📦 Size: {size_mb:.1f} MB")
|
||||
except (OSError, PermissionError):
|
||||
pass
|
||||
@@ -621,8 +752,8 @@ Examples:
|
||||
if 0 <= choice_idx < len(matches):
|
||||
selected_match = matches[choice_idx]
|
||||
project_path = selected_match["project_path"]
|
||||
index_dir = selected_match["index_dir"]
|
||||
is_current = selected_match["is_current"]
|
||||
kind = selected_match.get("kind", "cli")
|
||||
|
||||
location = "current project" if is_current else f"'{project_path.name}' project"
|
||||
print(f" 🎯 Selected: Remove from {location}")
|
||||
@@ -635,9 +766,22 @@ Examples:
|
||||
print(" ❌ Confirmation failed. Removal cancelled.")
|
||||
return False
|
||||
|
||||
return self._delete_index_directory(
|
||||
index_dir, index_name, project_path if not is_current else None
|
||||
)
|
||||
if kind == "cli":
|
||||
return self._delete_index_directory(
|
||||
selected_match["index_dir"],
|
||||
index_name,
|
||||
project_path if not is_current else None,
|
||||
is_app=False,
|
||||
)
|
||||
else:
|
||||
return self._delete_index_directory(
|
||||
selected_match["files_dir"],
|
||||
selected_match.get("display_name", index_name),
|
||||
project_path if not is_current else None,
|
||||
is_app=True,
|
||||
meta_file=selected_match.get("meta_file"),
|
||||
app_file_base=selected_match.get("file_base"),
|
||||
)
|
||||
else:
|
||||
print(" ❌ Invalid choice. Removal cancelled.")
|
||||
return False
|
||||
@@ -647,21 +791,65 @@ Examples:
|
||||
return False
|
||||
|
||||
def _delete_index_directory(
|
||||
self, index_dir: Path, index_name: str, project_path: Optional[Path] = None
|
||||
self,
|
||||
index_dir: Path,
|
||||
index_display_name: str,
|
||||
project_path: Optional[Path] = None,
|
||||
is_app: bool = False,
|
||||
meta_file: Optional[Path] = None,
|
||||
app_file_base: Optional[str] = None,
|
||||
):
|
||||
"""Actually delete the index directory"""
|
||||
"""Delete a CLI index directory or APP index files safely."""
|
||||
try:
|
||||
import shutil
|
||||
if is_app:
|
||||
removed = 0
|
||||
errors = 0
|
||||
# Delete only files that belong to this app index (based on file base)
|
||||
pattern_base = app_file_base or ""
|
||||
for f in index_dir.glob(f"{pattern_base}.leann*"):
|
||||
try:
|
||||
f.unlink()
|
||||
removed += 1
|
||||
except Exception:
|
||||
errors += 1
|
||||
# Best-effort: also remove the meta file if specified and still exists
|
||||
if meta_file and meta_file.exists():
|
||||
try:
|
||||
meta_file.unlink()
|
||||
removed += 1
|
||||
except Exception:
|
||||
errors += 1
|
||||
|
||||
shutil.rmtree(index_dir)
|
||||
|
||||
if project_path:
|
||||
print(f"✅ Index '{index_name}' removed from {project_path.name}")
|
||||
if removed > 0 and errors == 0:
|
||||
if project_path:
|
||||
print(
|
||||
f"✅ App index '{index_display_name}' removed from {project_path.name}"
|
||||
)
|
||||
else:
|
||||
print(f"✅ App index '{index_display_name}' removed successfully")
|
||||
return True
|
||||
elif removed > 0 and errors > 0:
|
||||
print(
|
||||
f"⚠️ App index '{index_display_name}' partially removed (some files couldn't be deleted)"
|
||||
)
|
||||
return True
|
||||
else:
|
||||
print(
|
||||
f"❌ No files found to remove for app index '{index_display_name}' in {index_dir}"
|
||||
)
|
||||
return False
|
||||
else:
|
||||
print(f"✅ Index '{index_name}' removed successfully")
|
||||
return True
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(index_dir)
|
||||
|
||||
if project_path:
|
||||
print(f"✅ Index '{index_display_name}' removed from {project_path.name}")
|
||||
else:
|
||||
print(f"✅ Index '{index_display_name}' removed successfully")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"❌ Error removing index '{index_name}': {e}")
|
||||
print(f"❌ Error removing index '{index_display_name}': {e}")
|
||||
return False
|
||||
|
||||
def load_documents(
|
||||
@@ -669,6 +857,7 @@ Examples:
|
||||
docs_paths: Union[str, list],
|
||||
custom_file_types: Union[str, None] = None,
|
||||
include_hidden: bool = False,
|
||||
args: Optional[dict[str, Any]] = None,
|
||||
):
|
||||
# Handle both single path (string) and multiple paths (list) for backward compatibility
|
||||
if isinstance(docs_paths, str):
|
||||
@@ -974,18 +1163,50 @@ Examples:
|
||||
}
|
||||
|
||||
print("start chunking documents")
|
||||
# Add progress bar for document chunking
|
||||
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
|
||||
# Check if this is a code file based on source path
|
||||
source_path = doc.metadata.get("source", "")
|
||||
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
|
||||
|
||||
# Use appropriate parser based on file type
|
||||
parser = self.code_parser if is_code_file else self.node_parser
|
||||
nodes = parser.get_nodes_from_documents([doc])
|
||||
# Check if AST chunking is requested
|
||||
use_ast = getattr(args, "use_ast_chunking", False)
|
||||
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
if use_ast:
|
||||
print("🧠 Using AST-aware chunking for code files")
|
||||
try:
|
||||
# Import enhanced chunking utilities
|
||||
# Add apps directory to path to import chunking utilities
|
||||
apps_dir = Path(__file__).parent.parent.parent.parent.parent / "apps"
|
||||
if apps_dir.exists():
|
||||
sys.path.insert(0, str(apps_dir))
|
||||
|
||||
from chunking import create_text_chunks
|
||||
|
||||
# Use enhanced chunking with AST support
|
||||
all_texts = create_text_chunks(
|
||||
documents,
|
||||
chunk_size=self.node_parser.chunk_size,
|
||||
chunk_overlap=self.node_parser.chunk_overlap,
|
||||
use_ast_chunking=True,
|
||||
ast_chunk_size=getattr(args, "ast_chunk_size", 768),
|
||||
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 96),
|
||||
code_file_extensions=None, # Use defaults
|
||||
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||
)
|
||||
|
||||
except ImportError as e:
|
||||
print(f"⚠️ AST chunking not available ({e}), falling back to traditional chunking")
|
||||
use_ast = False
|
||||
|
||||
if not use_ast:
|
||||
# Use traditional chunking logic
|
||||
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
|
||||
# Check if this is a code file based on source path
|
||||
source_path = doc.metadata.get("source", "")
|
||||
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
|
||||
|
||||
# Use appropriate parser based on file type
|
||||
parser = self.code_parser if is_code_file else self.node_parser
|
||||
nodes = parser.get_nodes_from_documents([doc])
|
||||
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
|
||||
return all_texts
|
||||
@@ -1052,7 +1273,7 @@ Examples:
|
||||
)
|
||||
|
||||
all_texts = self.load_documents(
|
||||
docs_paths, args.file_types, include_hidden=args.include_hidden
|
||||
docs_paths, args.file_types, include_hidden=args.include_hidden, args=args
|
||||
)
|
||||
if not all_texts:
|
||||
print("No documents found")
|
||||
@@ -1085,13 +1306,101 @@ Examples:
|
||||
async def search_documents(self, args):
|
||||
index_name = args.index_name
|
||||
query = args.query
|
||||
index_path = self.get_index_path(index_name)
|
||||
|
||||
if not self.index_exists(index_name):
|
||||
print(
|
||||
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir> [<dir2> ...]' to create it."
|
||||
)
|
||||
return
|
||||
# First try to find the index in current project
|
||||
index_path = self.get_index_path(index_name)
|
||||
if self.index_exists(index_name):
|
||||
# Found in current project, use it
|
||||
pass
|
||||
else:
|
||||
# Search across all registered projects (like list_indexes does)
|
||||
all_matches = self._find_all_matching_indexes(index_name)
|
||||
if not all_matches:
|
||||
print(
|
||||
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir> [<dir2> ...]' to create it."
|
||||
)
|
||||
return
|
||||
elif len(all_matches) == 1:
|
||||
# Found exactly one match, use it
|
||||
match = all_matches[0]
|
||||
if match["kind"] == "cli":
|
||||
index_path = str(match["index_dir"] / "documents.leann")
|
||||
else:
|
||||
# App format: use the meta file to construct the path
|
||||
meta_file = match["meta_file"]
|
||||
file_base = match["file_base"]
|
||||
index_path = str(meta_file.parent / f"{file_base}.leann")
|
||||
|
||||
project_info = (
|
||||
"current project"
|
||||
if match["is_current"]
|
||||
else f"project '{match['project_path'].name}'"
|
||||
)
|
||||
print(f"Using index '{index_name}' from {project_info}")
|
||||
else:
|
||||
# Multiple matches found
|
||||
if args.non_interactive:
|
||||
# Non-interactive mode: automatically select the best match
|
||||
# Priority: current project first, then first available
|
||||
current_matches = [m for m in all_matches if m["is_current"]]
|
||||
if current_matches:
|
||||
match = current_matches[0]
|
||||
location_desc = "current project"
|
||||
else:
|
||||
match = all_matches[0]
|
||||
location_desc = f"project '{match['project_path'].name}'"
|
||||
|
||||
if match["kind"] == "cli":
|
||||
index_path = str(match["index_dir"] / "documents.leann")
|
||||
else:
|
||||
meta_file = match["meta_file"]
|
||||
file_base = match["file_base"]
|
||||
index_path = str(meta_file.parent / f"{file_base}.leann")
|
||||
|
||||
print(
|
||||
f"Found {len(all_matches)} indexes named '{index_name}', using index from {location_desc}"
|
||||
)
|
||||
else:
|
||||
# Interactive mode: ask user to choose
|
||||
print(f"Found {len(all_matches)} indexes named '{index_name}':")
|
||||
for i, match in enumerate(all_matches, 1):
|
||||
project_path = match["project_path"]
|
||||
is_current = match["is_current"]
|
||||
kind = match.get("kind", "cli")
|
||||
|
||||
if is_current:
|
||||
print(
|
||||
f" {i}. 🏠 Current project ({'CLI' if kind == 'cli' else 'APP'})"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f" {i}. 📂 {project_path.name} ({'CLI' if kind == 'cli' else 'APP'})"
|
||||
)
|
||||
|
||||
try:
|
||||
choice = input(f"Which index to search? (1-{len(all_matches)}): ").strip()
|
||||
choice_idx = int(choice) - 1
|
||||
if 0 <= choice_idx < len(all_matches):
|
||||
match = all_matches[choice_idx]
|
||||
if match["kind"] == "cli":
|
||||
index_path = str(match["index_dir"] / "documents.leann")
|
||||
else:
|
||||
meta_file = match["meta_file"]
|
||||
file_base = match["file_base"]
|
||||
index_path = str(meta_file.parent / f"{file_base}.leann")
|
||||
|
||||
project_info = (
|
||||
"current project"
|
||||
if match["is_current"]
|
||||
else f"project '{match['project_path'].name}'"
|
||||
)
|
||||
print(f"Using index '{index_name}' from {project_info}")
|
||||
else:
|
||||
print("Invalid choice. Aborting search.")
|
||||
return
|
||||
except (ValueError, KeyboardInterrupt):
|
||||
print("Invalid input. Aborting search.")
|
||||
return
|
||||
|
||||
searcher = LeannSearcher(index_path=index_path)
|
||||
results = searcher.search(
|
||||
|
||||
@@ -192,6 +192,7 @@ class EmbeddingServerManager:
|
||||
stderr_target = None # Direct to console for visible logs
|
||||
|
||||
# Start embedding server subprocess
|
||||
logger.info(f"Starting server process with command: {' '.join(command)}")
|
||||
self.server_process = subprocess.Popen(
|
||||
command,
|
||||
cwd=project_root,
|
||||
|
||||
@@ -94,7 +94,7 @@ def handle_request(request):
|
||||
},
|
||||
}
|
||||
|
||||
# Build simplified command
|
||||
# Build simplified command with non-interactive flag for MCP compatibility
|
||||
cmd = [
|
||||
"leann",
|
||||
"search",
|
||||
@@ -102,6 +102,7 @@ def handle_request(request):
|
||||
args["query"],
|
||||
f"--top-k={args.get('top_k', 5)}",
|
||||
f"--complexity={args.get('complexity', 32)}",
|
||||
"--non-interactive",
|
||||
]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.3.0"
|
||||
version = "0.3.2"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -46,6 +46,13 @@ dependencies = [
|
||||
"pathspec>=0.12.1",
|
||||
"nbconvert>=7.16.6",
|
||||
"gitignore-parser>=0.1.12",
|
||||
# AST-aware code chunking dependencies
|
||||
"astchunk>=0.1.0",
|
||||
"tree-sitter>=0.20.0",
|
||||
"tree-sitter-python>=0.20.0",
|
||||
"tree-sitter-java>=0.20.0",
|
||||
"tree-sitter-c-sharp>=0.20.0",
|
||||
"tree-sitter-typescript>=0.20.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
||||
397
tests/test_astchunk_integration.py
Normal file
397
tests/test_astchunk_integration.py
Normal file
@@ -0,0 +1,397 @@
|
||||
"""
|
||||
Test suite for astchunk integration with LEANN.
|
||||
Tests AST-aware chunking functionality, language detection, and fallback mechanisms.
|
||||
"""
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
# Add apps directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent / "apps"))
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from chunking import (
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
detect_code_files,
|
||||
get_language_from_extension,
|
||||
)
|
||||
|
||||
|
||||
class MockDocument:
|
||||
"""Mock LlamaIndex Document for testing."""
|
||||
|
||||
def __init__(self, content: str, file_path: str = "", metadata: Optional[dict] = None):
|
||||
self.content = content
|
||||
self.metadata = metadata or {}
|
||||
if file_path:
|
||||
self.metadata["file_path"] = file_path
|
||||
|
||||
def get_content(self) -> str:
|
||||
return self.content
|
||||
|
||||
|
||||
class TestCodeFileDetection:
|
||||
"""Test code file detection and language mapping."""
|
||||
|
||||
def test_detect_code_files_python(self):
|
||||
"""Test detection of Python files."""
|
||||
docs = [
|
||||
MockDocument("print('hello')", "/path/to/file.py"),
|
||||
MockDocument("This is text", "/path/to/file.txt"),
|
||||
]
|
||||
|
||||
code_docs, text_docs = detect_code_files(docs)
|
||||
|
||||
assert len(code_docs) == 1
|
||||
assert len(text_docs) == 1
|
||||
assert code_docs[0].metadata["language"] == "python"
|
||||
assert code_docs[0].metadata["is_code"] is True
|
||||
assert text_docs[0].metadata["is_code"] is False
|
||||
|
||||
def test_detect_code_files_multiple_languages(self):
|
||||
"""Test detection of multiple programming languages."""
|
||||
docs = [
|
||||
MockDocument("def func():", "/path/to/script.py"),
|
||||
MockDocument("public class Test {}", "/path/to/Test.java"),
|
||||
MockDocument("interface ITest {}", "/path/to/test.ts"),
|
||||
MockDocument("using System;", "/path/to/Program.cs"),
|
||||
MockDocument("Regular text content", "/path/to/document.txt"),
|
||||
]
|
||||
|
||||
code_docs, text_docs = detect_code_files(docs)
|
||||
|
||||
assert len(code_docs) == 4
|
||||
assert len(text_docs) == 1
|
||||
|
||||
languages = [doc.metadata["language"] for doc in code_docs]
|
||||
assert "python" in languages
|
||||
assert "java" in languages
|
||||
assert "typescript" in languages
|
||||
assert "csharp" in languages
|
||||
|
||||
def test_detect_code_files_no_file_path(self):
|
||||
"""Test handling of documents without file paths."""
|
||||
docs = [
|
||||
MockDocument("some content"),
|
||||
MockDocument("other content", metadata={"some_key": "value"}),
|
||||
]
|
||||
|
||||
code_docs, text_docs = detect_code_files(docs)
|
||||
|
||||
assert len(code_docs) == 0
|
||||
assert len(text_docs) == 2
|
||||
for doc in text_docs:
|
||||
assert doc.metadata["is_code"] is False
|
||||
|
||||
def test_get_language_from_extension(self):
|
||||
"""Test language detection from file extensions."""
|
||||
assert get_language_from_extension("test.py") == "python"
|
||||
assert get_language_from_extension("Test.java") == "java"
|
||||
assert get_language_from_extension("component.tsx") == "typescript"
|
||||
assert get_language_from_extension("Program.cs") == "csharp"
|
||||
assert get_language_from_extension("document.txt") is None
|
||||
assert get_language_from_extension("") is None
|
||||
|
||||
|
||||
class TestChunkingFunctions:
|
||||
"""Test various chunking functionality."""
|
||||
|
||||
def test_create_traditional_chunks(self):
|
||||
"""Test traditional text chunking."""
|
||||
docs = [
|
||||
MockDocument(
|
||||
"This is a test document. It has multiple sentences. We want to test chunking."
|
||||
)
|
||||
]
|
||||
|
||||
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||
|
||||
def test_create_traditional_chunks_empty_docs(self):
|
||||
"""Test traditional chunking with empty documents."""
|
||||
chunks = create_traditional_chunks([], chunk_size=50, chunk_overlap=10)
|
||||
assert chunks == []
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip astchunk tests in CI - dependency may not be available",
|
||||
)
|
||||
def test_create_ast_chunks_with_astchunk_available(self):
|
||||
"""Test AST chunking when astchunk is available."""
|
||||
python_code = '''
|
||||
def hello_world():
|
||||
"""Print hello world message."""
|
||||
print("Hello, World!")
|
||||
|
||||
def add_numbers(a, b):
|
||||
"""Add two numbers and return the result."""
|
||||
return a + b
|
||||
|
||||
class Calculator:
|
||||
"""A simple calculator class."""
|
||||
|
||||
def __init__(self):
|
||||
self.history = []
|
||||
|
||||
def add(self, a, b):
|
||||
result = a + b
|
||||
self.history.append(f"{a} + {b} = {result}")
|
||||
return result
|
||||
'''
|
||||
|
||||
docs = [MockDocument(python_code, "/test/calculator.py", {"language": "python"})]
|
||||
|
||||
try:
|
||||
chunks = create_ast_chunks(docs, max_chunk_size=200, chunk_overlap=50)
|
||||
|
||||
# Should have multiple chunks due to different functions/classes
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||
|
||||
# Check that code structure is somewhat preserved
|
||||
combined_content = " ".join(chunks)
|
||||
assert "def hello_world" in combined_content
|
||||
assert "class Calculator" in combined_content
|
||||
|
||||
except ImportError:
|
||||
# astchunk not available, should fall back to traditional chunking
|
||||
chunks = create_ast_chunks(docs, max_chunk_size=200, chunk_overlap=50)
|
||||
assert len(chunks) > 0 # Should still get chunks from fallback
|
||||
|
||||
def test_create_ast_chunks_fallback_to_traditional(self):
|
||||
"""Test AST chunking falls back to traditional when astchunk is not available."""
|
||||
docs = [MockDocument("def test(): pass", "/test/script.py", {"language": "python"})]
|
||||
|
||||
# Mock astchunk import to fail
|
||||
with patch("chunking.create_ast_chunks"):
|
||||
# First call (actual test) should import astchunk and potentially fail
|
||||
# Let's call the actual function to test the import error handling
|
||||
chunks = create_ast_chunks(docs)
|
||||
|
||||
# Should return some chunks (either from astchunk or fallback)
|
||||
assert isinstance(chunks, list)
|
||||
|
||||
def test_create_text_chunks_traditional_mode(self):
|
||||
"""Test text chunking in traditional mode."""
|
||||
docs = [
|
||||
MockDocument("def test(): pass", "/test/script.py"),
|
||||
MockDocument("This is regular text.", "/test/doc.txt"),
|
||||
]
|
||||
|
||||
chunks = create_text_chunks(docs, use_ast_chunking=False, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
|
||||
def test_create_text_chunks_ast_mode(self):
|
||||
"""Test text chunking in AST mode."""
|
||||
docs = [
|
||||
MockDocument("def test(): pass", "/test/script.py"),
|
||||
MockDocument("This is regular text.", "/test/doc.txt"),
|
||||
]
|
||||
|
||||
chunks = create_text_chunks(
|
||||
docs,
|
||||
use_ast_chunking=True,
|
||||
ast_chunk_size=100,
|
||||
ast_chunk_overlap=20,
|
||||
chunk_size=50,
|
||||
chunk_overlap=10,
|
||||
)
|
||||
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
|
||||
def test_create_text_chunks_custom_extensions(self):
|
||||
"""Test text chunking with custom code file extensions."""
|
||||
docs = [
|
||||
MockDocument("function test() {}", "/test/script.js"), # Not in default extensions
|
||||
MockDocument("Regular text", "/test/doc.txt"),
|
||||
]
|
||||
|
||||
# First without custom extensions - should treat .js as text
|
||||
chunks_without = create_text_chunks(docs, use_ast_chunking=True, code_file_extensions=None)
|
||||
|
||||
# Then with custom extensions - should treat .js as code
|
||||
chunks_with = create_text_chunks(
|
||||
docs, use_ast_chunking=True, code_file_extensions=[".js", ".jsx"]
|
||||
)
|
||||
|
||||
# Both should return chunks
|
||||
assert len(chunks_without) > 0
|
||||
assert len(chunks_with) > 0
|
||||
|
||||
|
||||
class TestIntegrationWithDocumentRAG:
|
||||
"""Integration tests with the document RAG system."""
|
||||
|
||||
@pytest.fixture
|
||||
def temp_code_dir(self):
|
||||
"""Create a temporary directory with sample code files."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_path = Path(temp_dir)
|
||||
|
||||
# Create sample Python file
|
||||
python_file = temp_path / "example.py"
|
||||
python_file.write_text('''
|
||||
def fibonacci(n):
|
||||
"""Calculate fibonacci number."""
|
||||
if n <= 1:
|
||||
return n
|
||||
return fibonacci(n-1) + fibonacci(n-2)
|
||||
|
||||
class MathUtils:
|
||||
@staticmethod
|
||||
def factorial(n):
|
||||
if n <= 1:
|
||||
return 1
|
||||
return n * MathUtils.factorial(n-1)
|
||||
''')
|
||||
|
||||
# Create sample text file
|
||||
text_file = temp_path / "readme.txt"
|
||||
text_file.write_text("This is a sample text file for testing purposes.")
|
||||
|
||||
yield temp_path
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip integration tests in CI to avoid dependency issues",
|
||||
)
|
||||
def test_document_rag_with_ast_chunking(self, temp_code_dir):
|
||||
"""Test document RAG with AST chunking enabled."""
|
||||
with tempfile.TemporaryDirectory() as index_dir:
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"apps/document_rag.py",
|
||||
"--llm",
|
||||
"simulated",
|
||||
"--embedding-model",
|
||||
"facebook/contriever",
|
||||
"--embedding-mode",
|
||||
"sentence-transformers",
|
||||
"--index-dir",
|
||||
index_dir,
|
||||
"--data-dir",
|
||||
str(temp_code_dir),
|
||||
"--enable-code-chunking",
|
||||
"--query",
|
||||
"How does the fibonacci function work?",
|
||||
]
|
||||
|
||||
env = os.environ.copy()
|
||||
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
try:
|
||||
result = subprocess.run(
|
||||
cmd,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=300, # 5 minutes
|
||||
env=env,
|
||||
)
|
||||
|
||||
# Should succeed even if astchunk is not available (fallback)
|
||||
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||
|
||||
output = result.stdout + result.stderr
|
||||
assert "Index saved to" in output or "Using existing index" in output
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
pytest.skip("Test timed out - likely due to model download in CI")
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip integration tests in CI to avoid dependency issues",
|
||||
)
|
||||
def test_code_rag_application(self, temp_code_dir):
|
||||
"""Test the specialized code RAG application."""
|
||||
with tempfile.TemporaryDirectory() as index_dir:
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"apps/code_rag.py",
|
||||
"--llm",
|
||||
"simulated",
|
||||
"--embedding-model",
|
||||
"facebook/contriever",
|
||||
"--index-dir",
|
||||
index_dir,
|
||||
"--repo-dir",
|
||||
str(temp_code_dir),
|
||||
"--query",
|
||||
"What classes are defined in this code?",
|
||||
]
|
||||
|
||||
env = os.environ.copy()
|
||||
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
try:
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300, env=env)
|
||||
|
||||
# Should succeed
|
||||
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||
|
||||
output = result.stdout + result.stderr
|
||||
assert "Using AST-aware chunking" in output or "traditional chunking" in output
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
pytest.skip("Test timed out - likely due to model download in CI")
|
||||
|
||||
|
||||
class TestErrorHandling:
|
||||
"""Test error handling and edge cases."""
|
||||
|
||||
def test_text_chunking_empty_documents(self):
|
||||
"""Test text chunking with empty document list."""
|
||||
chunks = create_text_chunks([])
|
||||
assert chunks == []
|
||||
|
||||
def test_text_chunking_invalid_parameters(self):
|
||||
"""Test text chunking with invalid parameters."""
|
||||
docs = [MockDocument("test content")]
|
||||
|
||||
# Should handle negative chunk sizes gracefully
|
||||
chunks = create_text_chunks(
|
||||
docs, chunk_size=0, chunk_overlap=0, ast_chunk_size=0, ast_chunk_overlap=0
|
||||
)
|
||||
|
||||
# Should still return some result
|
||||
assert isinstance(chunks, list)
|
||||
|
||||
def test_create_ast_chunks_no_language(self):
|
||||
"""Test AST chunking with documents missing language metadata."""
|
||||
docs = [MockDocument("def test(): pass", "/test/script.py")] # No language set
|
||||
|
||||
chunks = create_ast_chunks(docs)
|
||||
|
||||
# Should fall back to traditional chunking
|
||||
assert isinstance(chunks, list)
|
||||
assert len(chunks) >= 0 # May be empty if fallback also fails
|
||||
|
||||
def test_create_ast_chunks_empty_content(self):
|
||||
"""Test AST chunking with empty content."""
|
||||
docs = [MockDocument("", "/test/script.py", {"language": "python"})]
|
||||
|
||||
chunks = create_ast_chunks(docs)
|
||||
|
||||
# Should handle empty content gracefully
|
||||
assert isinstance(chunks, list)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v"])
|
||||
@@ -57,6 +57,51 @@ def test_document_rag_simulated(test_data_dir):
|
||||
assert "This is a simulated answer" in output
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip AST chunking tests in CI to avoid dependency issues",
|
||||
)
|
||||
def test_document_rag_with_ast_chunking(test_data_dir):
|
||||
"""Test document_rag with AST-aware chunking enabled."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Use a subdirectory that doesn't exist yet to force index creation
|
||||
index_dir = Path(temp_dir) / "test_ast_index"
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"apps/document_rag.py",
|
||||
"--llm",
|
||||
"simulated",
|
||||
"--embedding-model",
|
||||
"facebook/contriever",
|
||||
"--embedding-mode",
|
||||
"sentence-transformers",
|
||||
"--index-dir",
|
||||
str(index_dir),
|
||||
"--data-dir",
|
||||
str(test_data_dir),
|
||||
"--enable-code-chunking", # Enable AST chunking
|
||||
"--query",
|
||||
"What is Pride and Prejudice about?",
|
||||
]
|
||||
|
||||
env = os.environ.copy()
|
||||
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
|
||||
|
||||
# Check return code
|
||||
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||
|
||||
# Verify output
|
||||
output = result.stdout + result.stderr
|
||||
assert "Index saved to" in output or "Using existing index" in output
|
||||
assert "This is a simulated answer" in output
|
||||
|
||||
# Should mention AST chunking if code files are present
|
||||
# (might not be relevant for the test data, but command should succeed)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true", reason="Skip OpenAI tests in CI to avoid API costs"
|
||||
|
||||
Reference in New Issue
Block a user