Compare commits

..

1 Commits

Author SHA1 Message Date
yichuan-w
aaadb00e44 Add ColQwen2.5 model support and improve model selection
- Add ColQwen2.5 and ColQwen2_5_Processor imports
- Implement smart model type detection for colqwen2, colqwen2.5, and colpali
- Add task name aliases for easier benchmark invocation
- Add safe model name handling for file paths and index naming
- Support custom model paths including LoRA adapters
- Improve model choice validation and error handling

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-05 11:35:30 +00:00
19 changed files with 1166 additions and 1247 deletions

View File

@@ -35,8 +35,8 @@ jobs:
strategy:
matrix:
include:
# Note: Python 3.9 dropped - uses PEP 604 union syntax (str | None)
# which requires Python 3.10+
- os: ubuntu-22.04
python: '3.9'
- os: ubuntu-22.04
python: '3.10'
- os: ubuntu-22.04
@@ -46,6 +46,8 @@ jobs:
- os: ubuntu-22.04
python: '3.13'
# ARM64 Linux builds
- os: ubuntu-24.04-arm
python: '3.9'
- os: ubuntu-24.04-arm
python: '3.10'
- os: ubuntu-24.04-arm
@@ -54,6 +56,8 @@ jobs:
python: '3.12'
- os: ubuntu-24.04-arm
python: '3.13'
- os: macos-14
python: '3.9'
- os: macos-14
python: '3.10'
- os: macos-14
@@ -62,6 +66,8 @@ jobs:
python: '3.12'
- os: macos-14
python: '3.13'
- os: macos-15
python: '3.9'
- os: macos-15
python: '3.10'
- os: macos-15
@@ -70,24 +76,16 @@ jobs:
python: '3.12'
- os: macos-15
python: '3.13'
# Intel Mac builds (x86_64) - replaces deprecated macos-13
# Note: Python 3.13 excluded - PyTorch has no wheels for macOS x86_64 + Python 3.13
# (PyTorch <=2.4.1 lacks cp313, PyTorch >=2.5.0 dropped Intel Mac support)
- os: macos-15-intel
- os: macos-13
python: '3.9'
- os: macos-13
python: '3.10'
- os: macos-15-intel
- os: macos-13
python: '3.11'
- os: macos-15-intel
- os: macos-13
python: '3.12'
# macOS 26 (beta) - arm64
- os: macos-26
python: '3.10'
- os: macos-26
python: '3.11'
- os: macos-26
python: '3.12'
- os: macos-26
python: '3.13'
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
runs-on: ${{ matrix.os }}
steps:
@@ -206,16 +204,13 @@ jobs:
# Use system clang for better compatibility
export CC=clang
export CXX=clang++
# Set deployment target based on runner
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
# Homebrew libraries on each macOS version require matching minimum version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.0
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
export MACOSX_DEPLOYMENT_TARGET=26.0
fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else
@@ -229,16 +224,14 @@ jobs:
# Use system clang for better compatibility
export CC=clang
export CXX=clang++
# Set deployment target based on runner
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
# But Homebrew libraries on each macOS version require matching minimum version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.3
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
export MACOSX_DEPLOYMENT_TARGET=26.0
fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else
@@ -276,19 +269,16 @@ jobs:
if: runner.os == 'macOS'
run: |
# Determine deployment target based on runner OS
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
HNSW_TARGET="15.0"
DISKANN_TARGET="15.0"
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
# Must match the Homebrew libraries for each macOS version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
HNSW_TARGET="13.0"
DISKANN_TARGET="13.3"
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
HNSW_TARGET="14.0"
DISKANN_TARGET="14.0"
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
HNSW_TARGET="15.0"
DISKANN_TARGET="15.0"
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
HNSW_TARGET="26.0"
DISKANN_TARGET="26.0"
fi
# Repair HNSW wheel
@@ -344,15 +334,12 @@ jobs:
PY_TAG=$($UV_PY -c "import sys; print(f'cp{sys.version_info[0]}{sys.version_info[1]}')")
if [[ "$RUNNER_OS" == "macOS" ]]; then
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.3
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
export MACOSX_DEPLOYMENT_TARGET=26.0
fi
fi

View File

@@ -36,7 +36,7 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#slack-messages-search-your-team-conversations), [Twitter](#-twitter-bookmarks-your-personal-tweet-library)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#mcp-integration-rag-on-live-data-from-any-platform), [Twitter](#mcp-integration-rag-on-live-data-from-any-platform)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
@@ -201,7 +201,7 @@ LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`,
#### LLM Backend
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, Anthropic, and Any OpenAI compatible API).
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, and Any OpenAI compatible API).
<details>
@@ -269,7 +269,6 @@ Below is a list of base URLs for common providers to get you started.
| **SiliconFlow** | `https://api.siliconflow.cn/v1` |
| **Zhipu (BigModel)** | `https://open.bigmodel.cn/api/paas/v4/` |
| **Mistral AI** | `https://api.mistral.ai/v1` |
| **Anthropic** | `https://api.anthropic.com/v1` |
@@ -329,7 +328,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, hf, or anthropic (default: openai)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
@@ -392,54 +391,6 @@ python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authenticat
</details>
### 🎨 ColQwen: Multimodal PDF Retrieval with Vision-Language Models
Search through PDFs using both text and visual understanding with ColQwen2/ColPali models. Perfect for research papers, technical documents, and any PDFs with complex layouts, figures, or diagrams.
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
<details>
<summary><strong>📋 Click to expand: ColQwen Setup & Usage</strong></summary>
#### Prerequisites
```bash
# Install dependencies
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
#### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 # or colpali
```
#### Search
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
#### Models
- **ColQwen2** (`colqwen2`): Latest vision-language model with improved performance
- **ColPali** (`colpali`): Proven multimodal retriever
For detailed usage, see the [ColQwen Guide](docs/COLQWEN_GUIDE.md).
</details>
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
> **Note:** The examples below currently support macOS only. Windows support coming soon.
@@ -1106,10 +1057,10 @@ Options:
leann ask INDEX_NAME [OPTIONS]
Options:
--llm {ollama,openai,hf,anthropic} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode
--top-k N Retrieval count (default: 20)
--llm {ollama,openai,hf} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode
--top-k N Retrieval count (default: 20)
```
**List Command:**

View File

@@ -6,7 +6,7 @@ Provides common parameters and functionality for all RAG examples.
import argparse
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Union
from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
@@ -257,8 +257,8 @@ class BaseRAGExample(ABC):
pass
@abstractmethod
async def load_data(self, args) -> list[Union[str, dict[str, Any]]]:
"""Load data from the source. Returns list of text chunks (strings or dicts with 'text' key)."""
async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks."""
pass
def get_llm_config(self, args) -> dict[str, Any]:
@@ -282,8 +282,8 @@ class BaseRAGExample(ABC):
return config
async def build_index(self, args, texts: list[Union[str, dict[str, Any]]]) -> str:
"""Build LEANN index from texts (accepts strings or dicts with 'text' key)."""
async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...")
@@ -314,14 +314,8 @@ class BaseRAGExample(ABC):
batch_size = 1000
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
for item in batch:
# Handle both dict format (from create_text_chunks) and plain strings
if isinstance(item, dict):
text = item.get("text", "")
metadata = item.get("metadata")
builder.add_text(text, metadata)
else:
builder.add_text(item)
for text in batch:
builder.add_text(text)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...")

View File

@@ -1,364 +0,0 @@
#!/usr/bin/env python3
"""
ColQwen RAG - Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali
Usage:
python -m apps.colqwen_rag build --pdfs ./my_pdfs/ --index my_index
python -m apps.colqwen_rag search my_index "How does attention work?"
python -m apps.colqwen_rag ask my_index --interactive
"""
import argparse
import os
import sys
from pathlib import Path
from typing import Optional, cast
# Add LEANN packages to path
_repo_root = Path(__file__).resolve().parents[1]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
import torch # noqa: E402
from colpali_engine import ColPali, ColPaliProcessor, ColQwen2, ColQwen2Processor # noqa: E402
from colpali_engine.utils.torch_utils import ListDataset # noqa: E402
from pdf2image import convert_from_path # noqa: E402
from PIL import Image # noqa: E402
from torch.utils.data import DataLoader # noqa: E402
from tqdm import tqdm # noqa: E402
# Import the existing multi-vector implementation
sys.path.append(str(_repo_root / "apps" / "multimodal" / "vision-based-pdf-multi-vector"))
from leann_multi_vector import LeannMultiVector # noqa: E402
class ColQwenRAG:
"""Easy-to-use ColQwen RAG system for multimodal PDF retrieval."""
def __init__(self, model_type: str = "colpali"):
"""
Initialize ColQwen RAG system.
Args:
model_type: "colqwen2" or "colpali"
"""
self.model_type = model_type
self.device = self._get_device()
# Use float32 on MPS to avoid memory issues, float16 on CUDA, bfloat16 on CPU
if self.device.type == "mps":
self.dtype = torch.float32
elif self.device.type == "cuda":
self.dtype = torch.float16
else:
self.dtype = torch.bfloat16
print(f"🚀 Initializing {model_type.upper()} on {self.device} with {self.dtype}")
# Load model and processor with MPS-optimized settings
try:
if model_type == "colqwen2":
self.model_name = "vidore/colqwen2-v1.0"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColQwen2Processor.from_pretrained(self.model_name)
else: # colpali
self.model_name = "vidore/colpali-v1.2"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
except Exception as e:
if "memory" in str(e).lower() or "offload" in str(e).lower():
print(f"⚠️ Memory constraint on {self.device}, using CPU with optimizations...")
self.device = torch.device("cpu")
self.dtype = torch.float32
if model_type == "colqwen2":
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
raise
def _get_device(self):
"""Auto-select best available device."""
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
else:
return torch.device("cpu")
def build_index(self, pdf_paths: list[str], index_name: str, pages_dir: Optional[str] = None):
"""
Build multimodal index from PDF files.
Args:
pdf_paths: List of PDF file paths
index_name: Name for the index
pages_dir: Directory to save page images (optional)
"""
print(f"Building index '{index_name}' from {len(pdf_paths)} PDFs...")
# Convert PDFs to images
all_images = []
all_metadata = []
if pages_dir:
os.makedirs(pages_dir, exist_ok=True)
for pdf_path in tqdm(pdf_paths, desc="Converting PDFs"):
try:
images = convert_from_path(pdf_path, dpi=150)
pdf_name = Path(pdf_path).stem
for i, image in enumerate(images):
# Save image if pages_dir specified
if pages_dir:
image_path = Path(pages_dir) / f"{pdf_name}_page_{i + 1}.png"
image.save(image_path)
all_images.append(image)
all_metadata.append(
{
"pdf_path": pdf_path,
"pdf_name": pdf_name,
"page_number": i + 1,
"image_path": str(image_path) if pages_dir else None,
}
)
except Exception as e:
print(f"❌ Error processing {pdf_path}: {e}")
continue
print(f"📄 Converted {len(all_images)} pages from {len(pdf_paths)} PDFs")
print(f"All metadata: {all_metadata}")
# Generate embeddings
print("🧠 Generating embeddings...")
embeddings = self._embed_images(all_images)
# Build LEANN index
print("🔍 Building LEANN index...")
leann_mv = LeannMultiVector(
index_path=index_name,
dim=embeddings.shape[-1],
embedding_model_name=self.model_type,
)
# Create collection and insert data
leann_mv.create_collection()
for i, (embedding, metadata) in enumerate(zip(embeddings, all_metadata)):
data = {
"doc_id": i,
"filepath": metadata.get("image_path", ""),
"colbert_vecs": embedding.numpy(), # Convert tensor to numpy
}
leann_mv.insert(data)
# Build the index
leann_mv.create_index()
print(f"✅ Index '{index_name}' built successfully!")
return leann_mv
def search(self, index_name: str, query: str, top_k: int = 5):
"""
Search the index with a text query.
Args:
index_name: Name of the index to search
query: Text query
top_k: Number of results to return
"""
print(f"🔍 Searching '{index_name}' for: '{query}'")
# Load index
leann_mv = LeannMultiVector(
index_path=index_name,
dim=128, # Will be updated when loading
embedding_model_name=self.model_type,
)
# Generate query embedding
query_embedding = self._embed_query(query)
# Search (returns list of (score, doc_id) tuples)
search_results = leann_mv.search(query_embedding.numpy(), topk=top_k)
# Display results
print(f"\n📋 Top {len(search_results)} results:")
for i, (score, doc_id) in enumerate(search_results, 1):
# Get metadata for this doc_id (we need to load the metadata)
print(f"{i}. Score: {score:.3f} | Doc ID: {doc_id}")
return search_results
def ask(self, index_name: str, interactive: bool = False):
"""
Interactive Q&A with the indexed documents.
Args:
index_name: Name of the index to query
interactive: Whether to run in interactive mode
"""
print(f"💬 ColQwen Chat with '{index_name}'")
if interactive:
print("Type 'quit' to exit, 'help' for commands")
while True:
try:
query = input("\n🤔 Your question: ").strip()
if query.lower() in ["quit", "exit", "q"]:
break
elif query.lower() == "help":
print("Commands: quit/exit/q (exit), help (this message)")
continue
elif not query:
continue
self.search(index_name, query, top_k=3)
# TODO: Add answer generation with Qwen-VL
print("\n💡 For detailed answers, we can integrate Qwen-VL here!")
except KeyboardInterrupt:
print("\n👋 Goodbye!")
break
else:
query = input("🤔 Your question: ").strip()
if query:
self.search(index_name, query)
def _embed_images(self, images: list[Image.Image]) -> torch.Tensor:
"""Generate embeddings for a list of images."""
dataset = ListDataset(images)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=lambda x: x)
embeddings = []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Embedding images"):
batch_images = cast(list, batch)
batch_inputs = self.processor.process_images(batch_images).to(self.device)
batch_embeddings = self.model(**batch_inputs)
embeddings.append(batch_embeddings.cpu())
return torch.cat(embeddings, dim=0)
def _embed_query(self, query: str) -> torch.Tensor:
"""Generate embedding for a text query."""
with torch.no_grad():
query_inputs = self.processor.process_queries([query]).to(self.device)
query_embedding = self.model(**query_inputs)
return query_embedding.cpu()
def main():
parser = argparse.ArgumentParser(description="ColQwen RAG - Easy multimodal PDF retrieval")
subparsers = parser.add_subparsers(dest="command", help="Available commands")
# Build command
build_parser = subparsers.add_parser("build", help="Build index from PDFs")
build_parser.add_argument("--pdfs", required=True, help="Directory containing PDF files")
build_parser.add_argument("--index", required=True, help="Index name")
build_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
build_parser.add_argument("--pages-dir", help="Directory to save page images")
# Search command
search_parser = subparsers.add_parser("search", help="Search the index")
search_parser.add_argument("index", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument("--top-k", type=int, default=5, help="Number of results")
search_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Interactive Q&A")
ask_parser.add_argument("index", help="Index name")
ask_parser.add_argument("--interactive", action="store_true", help="Interactive mode")
ask_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
args = parser.parse_args()
if not args.command:
parser.print_help()
return
# Initialize ColQwen RAG
if args.command == "build":
colqwen = ColQwenRAG(args.model)
# Get PDF files
pdf_dir = Path(args.pdfs)
if pdf_dir.is_file() and pdf_dir.suffix.lower() == ".pdf":
pdf_paths = [str(pdf_dir)]
elif pdf_dir.is_dir():
pdf_paths = [str(p) for p in pdf_dir.glob("*.pdf")]
else:
print(f"❌ Invalid PDF path: {args.pdfs}")
return
if not pdf_paths:
print(f"❌ No PDF files found in {args.pdfs}")
return
colqwen.build_index(pdf_paths, args.index, args.pages_dir)
elif args.command == "search":
colqwen = ColQwenRAG(args.model)
colqwen.search(args.index, args.query, args.top_k)
elif args.command == "ask":
colqwen = ColQwenRAG(args.model)
colqwen.ask(args.index, args.interactive)
if __name__ == "__main__":
main()

View File

@@ -5,7 +5,6 @@ Supports PDF, TXT, MD, and other document formats.
import sys
from pathlib import Path
from typing import Any, Union
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
@@ -52,7 +51,7 @@ class DocumentRAG(BaseRAGExample):
help="Enable AST-aware chunking for code files in the data directory",
)
async def load_data(self, args) -> list[Union[str, dict[str, Any]]]:
async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks."""
print(f"Loading documents from: {args.data_dir}")
if args.file_types:

View File

@@ -1,218 +0,0 @@
#!/usr/bin/env python3
"""
CLIP Image RAG Application
This application enables RAG (Retrieval-Augmented Generation) on images using CLIP embeddings.
You can index a directory of images and search them using text queries.
Usage:
python -m apps.image_rag --image-dir ./my_images/ --query "a sunset over mountains"
python -m apps.image_rag --image-dir ./my_images/ --interactive
"""
import argparse
import pickle
import tempfile
from pathlib import Path
import numpy as np
from PIL import Image
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from apps.base_rag_example import BaseRAGExample
class ImageRAG(BaseRAGExample):
"""
RAG application for images using CLIP embeddings.
This class provides a complete RAG pipeline for image data, including
CLIP embedding generation, indexing, and text-based image search.
"""
def __init__(self):
super().__init__(
name="Image RAG",
description="RAG application for images using CLIP embeddings",
default_index_name="image_index",
)
# Override default embedding model to use CLIP
self.embedding_model_default = "clip-ViT-L-14"
self.embedding_mode_default = "sentence-transformers"
self._image_data: list[dict] = []
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add image-specific arguments."""
image_group = parser.add_argument_group("Image Parameters")
image_group.add_argument(
"--image-dir",
type=str,
required=True,
help="Directory containing images to index",
)
image_group.add_argument(
"--image-extensions",
type=str,
nargs="+",
default=[".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"],
help="Image file extensions to process (default: .jpg .jpeg .png .gif .bmp .webp)",
)
image_group.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for CLIP embedding generation (default: 32)",
)
async def load_data(self, args) -> list[str]:
"""Load images, generate CLIP embeddings, and return text descriptions."""
self._image_data = self._load_images_and_embeddings(args)
return [entry["text"] for entry in self._image_data]
def _load_images_and_embeddings(self, args) -> list[dict]:
"""Helper to process images and produce embeddings/metadata."""
image_dir = Path(args.image_dir)
if not image_dir.exists():
raise ValueError(f"Image directory does not exist: {image_dir}")
print(f"📸 Loading images from {image_dir}...")
# Find all image files
image_files = []
for ext in args.image_extensions:
image_files.extend(image_dir.rglob(f"*{ext}"))
image_files.extend(image_dir.rglob(f"*{ext.upper()}"))
if not image_files:
raise ValueError(
f"No images found in {image_dir} with extensions {args.image_extensions}"
)
print(f"✅ Found {len(image_files)} images")
# Limit if max_items is set
if args.max_items > 0:
image_files = image_files[: args.max_items]
print(f"📊 Processing {len(image_files)} images (limited by --max-items)")
# Load CLIP model
print("🔍 Loading CLIP model...")
model = SentenceTransformer(self.embedding_model_default)
# Process images and generate embeddings
print("🖼️ Processing images and generating embeddings...")
image_data = []
batch_images = []
batch_paths = []
for image_path in tqdm(image_files, desc="Processing images"):
try:
image = Image.open(image_path).convert("RGB")
batch_images.append(image)
batch_paths.append(image_path)
# Process in batches
if len(batch_images) >= args.batch_size:
embeddings = model.encode(
batch_images,
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=args.batch_size,
show_progress_bar=False,
)
for img_path, embedding in zip(batch_paths, embeddings):
image_data.append(
{
"text": f"Image: {img_path.name}\nPath: {img_path}",
"metadata": {
"image_path": str(img_path),
"image_name": img_path.name,
"image_dir": str(image_dir),
},
"embedding": embedding.astype(np.float32),
}
)
batch_images = []
batch_paths = []
except Exception as e:
print(f"⚠️ Failed to process {image_path}: {e}")
continue
# Process remaining images
if batch_images:
embeddings = model.encode(
batch_images,
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=len(batch_images),
show_progress_bar=False,
)
for img_path, embedding in zip(batch_paths, embeddings):
image_data.append(
{
"text": f"Image: {img_path.name}\nPath: {img_path}",
"metadata": {
"image_path": str(img_path),
"image_name": img_path.name,
"image_dir": str(image_dir),
},
"embedding": embedding.astype(np.float32),
}
)
print(f"✅ Processed {len(image_data)} images")
return image_data
async def build_index(self, args, texts: list[str]) -> str:
"""Build index using pre-computed CLIP embeddings."""
from leann.api import LeannBuilder
if not self._image_data or len(self._image_data) != len(texts):
raise RuntimeError("No image data found. Make sure load_data() ran successfully.")
print("🔨 Building LEANN index with CLIP embeddings...")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=self.embedding_model_default,
embedding_mode=self.embedding_mode_default,
is_recompute=False,
distance_metric="cosine",
graph_degree=args.graph_degree,
build_complexity=args.build_complexity,
is_compact=not args.no_compact,
)
for text, data in zip(texts, self._image_data):
builder.add_text(text=text, metadata=data["metadata"])
ids = [str(i) for i in range(len(self._image_data))]
embeddings = np.array([data["embedding"] for data in self._image_data], dtype=np.float32)
with tempfile.NamedTemporaryFile(mode="wb", suffix=".pkl", delete=False) as f:
pickle.dump((ids, embeddings), f)
pkl_path = f.name
try:
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
builder.build_index_from_embeddings(index_path, pkl_path)
print(f"✅ Index built successfully at {index_path}")
return index_path
finally:
Path(pkl_path).unlink()
def main():
"""Main entry point for the image RAG application."""
import asyncio
app = ImageRAG()
asyncio.run(app.run())
if __name__ == "__main__":
main()

View File

@@ -1,7 +1,5 @@
import concurrent.futures
import glob
import json
import logging
import os
import re
import sys
@@ -13,8 +11,6 @@ import numpy as np
from PIL import Image
from tqdm import tqdm
logger = logging.getLogger(__name__)
def _ensure_repo_paths_importable(current_file: str) -> None:
"""Make local leann packages importable without installing (mirrors multi-vector-leann.py)."""
@@ -100,63 +96,12 @@ def _natural_sort_key(name: str) -> int:
return int(m.group()) if m else 0
def _load_images_from_dir(
pages_dir: str, recursive: bool = False
) -> tuple[list[str], list[Image.Image]]:
"""
Load images from a directory.
Args:
pages_dir: Directory path containing images
recursive: If True, recursively search subdirectories (default: False)
Returns:
Tuple of (filepaths, images)
"""
# Supported image extensions
extensions = ("*.png", "*.jpg", "*.jpeg", "*.PNG", "*.JPG", "*.JPEG", "*.webp", "*.WEBP")
if recursive:
# Recursive search
filepaths = []
for ext in extensions:
pattern = os.path.join(pages_dir, "**", ext)
filepaths.extend(glob.glob(pattern, recursive=True))
else:
# Non-recursive search (only top-level directory)
filepaths = []
for ext in extensions:
pattern = os.path.join(pages_dir, ext)
filepaths.extend(glob.glob(pattern))
# Sort files naturally
filepaths = sorted(filepaths, key=lambda x: _natural_sort_key(os.path.basename(x)))
# Load images with error handling
images = []
valid_filepaths = []
failed_count = 0
for filepath in filepaths:
try:
img = Image.open(filepath)
# Convert to RGB if necessary (handles RGBA, P, etc.)
if img.mode != "RGB":
img = img.convert("RGB")
images.append(img)
valid_filepaths.append(filepath)
except Exception as e:
failed_count += 1
print(f"Warning: Failed to load image {filepath}: {e}")
continue
if failed_count > 0:
print(
f"Warning: Failed to load {failed_count} image(s) out of {len(filepaths)} total files"
)
return valid_filepaths, images
def _load_images_from_dir(pages_dir: str) -> tuple[list[str], list[Image.Image]]:
filenames = [n for n in os.listdir(pages_dir) if n.lower().endswith((".png", ".jpg", ".jpeg"))]
filenames = sorted(filenames, key=_natural_sort_key)
filepaths = [os.path.join(pages_dir, n) for n in filenames]
images = [Image.open(p) for p in filepaths]
return filepaths, images
def _maybe_convert_pdf_to_images(pdf_path: Optional[str], pages_dir: str, dpi: int = 200) -> None:
@@ -206,8 +151,6 @@ def _select_device_and_dtype():
def _load_colvision(model_choice: str):
import os
import torch
from colpali_engine.models import (
ColPali,
@@ -219,16 +162,6 @@ def _load_colvision(model_choice: str):
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
from transformers.utils.import_utils import is_flash_attn_2_available
# Force HuggingFace Hub to use HF endpoint, avoid Google Drive
# Set environment variables to ensure models are downloaded from HuggingFace
os.environ.setdefault("HF_ENDPOINT", "https://huggingface.co")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
# Log model loading info
logger.info(f"Loading ColVision model: {model_choice}")
logger.info(f"HF_ENDPOINT: {os.environ.get('HF_ENDPOINT', 'not set')}")
logger.info("Models will be downloaded from HuggingFace Hub, not Google Drive")
device_str, device, dtype = _select_device_and_dtype()
# Determine model name and type
@@ -269,36 +202,29 @@ def _load_colvision(model_choice: str):
"flash_attention_2" if (device_str == "cuda" and is_flash_attn_2_available()) else "eager"
)
# Load model from HuggingFace Hub (not Google Drive)
# Use local_files_only=False to ensure download from HF if not cached
if model_type == "colqwen2.5":
model = ColQwen2_5.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
attn_implementation=attn_implementation,
local_files_only=False, # Ensure download from HuggingFace Hub
).eval()
processor = ColQwen2_5_Processor.from_pretrained(model_name, local_files_only=False)
processor = ColQwen2_5_Processor.from_pretrained(model_name)
elif model_type == "colqwen2":
model = ColQwen2.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
attn_implementation=attn_implementation,
local_files_only=False, # Ensure download from HuggingFace Hub
).eval()
processor = ColQwen2Processor.from_pretrained(model_name, local_files_only=False)
processor = ColQwen2Processor.from_pretrained(model_name)
else: # colpali
model = ColPali.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
local_files_only=False, # Ensure download from HuggingFace Hub
).eval()
processor = cast(
ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name, local_files_only=False)
)
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
return model_name, model, processor, device_str, device, dtype

View File

@@ -62,7 +62,7 @@ DATASET_NAME: str = "weaviate/arXiv-AI-papers-multi-vector"
# DATASET_NAMES: Optional[list[str | tuple[str, Optional[str]]]] = None
DATASET_NAMES = [
"weaviate/arXiv-AI-papers-multi-vector",
# ("lmms-lab/DocVQA", "DocVQA"), # Specify config name for datasets with multiple configs
("lmms-lab/DocVQA", "DocVQA"), # Specify config name for datasets with multiple configs
]
# Load multiple splits to get more data (e.g., ["train", "test", "validation"])
# Set to None to try loading all available splits automatically
@@ -75,11 +75,6 @@ MAX_DOCS: Optional[int] = None # limit number of pages to index; None = all
# Local pages (used when USE_HF_DATASET == False)
PDF: Optional[str] = None # e.g., "./pdfs/2004.12832v2.pdf"
PAGES_DIR: str = "./pages"
# Custom folder path (takes precedence over USE_HF_DATASET and PAGES_DIR)
# If set, images will be loaded directly from this folder
CUSTOM_FOLDER_PATH: Optional[str] = None # e.g., "/home/ubuntu/dr-tulu/agent/screenshots"
# Whether to recursively search subdirectories when loading from custom folder
CUSTOM_FOLDER_RECURSIVE: bool = False # Set to True to search subdirectories
# Index + retrieval settings
# Use a different index path for larger dataset to avoid overwriting existing index
@@ -88,7 +83,7 @@ INDEX_PATH: str = "./indexes/colvision_large.leann"
# These are now command-line arguments (see CLI overrides section)
TOPK: int = 3
FIRST_STAGE_K: int = 500
REBUILD_INDEX: bool = False # Set to True to force rebuild even if index exists
REBUILD_INDEX: bool = True
# Artifacts
SAVE_TOP_IMAGE: Optional[str] = "./figures/retrieved_page.png"
@@ -133,33 +128,12 @@ parser.add_argument(
default=TOPK,
help=f"Number of top results to retrieve. Default: {TOPK}",
)
parser.add_argument(
"--custom-folder",
type=str,
default=None,
help="Path to a custom folder containing images to search. Takes precedence over dataset loading. Default: None",
)
parser.add_argument(
"--recursive",
action="store_true",
default=False,
help="Recursively search subdirectories when loading images from custom folder. Default: False",
)
parser.add_argument(
"--rebuild-index",
action="store_true",
default=False,
help="Force rebuild the index even if it already exists. Default: False (reuse existing index if available)",
)
cli_args, _unknown = parser.parse_known_args()
SEARCH_METHOD: str = cli_args.search_method
QUERY = cli_args.query # Override QUERY with CLI argument if provided
USE_FAST_PLAID: bool = cli_args.use_fast_plaid
FAST_PLAID_INDEX_PATH: str = cli_args.fast_plaid_index_path
TOPK: int = cli_args.topk # Override TOPK with CLI argument if provided
CUSTOM_FOLDER_PATH = cli_args.custom_folder if cli_args.custom_folder else CUSTOM_FOLDER_PATH # Override with CLI argument if provided
CUSTOM_FOLDER_RECURSIVE = cli_args.recursive if cli_args.recursive else CUSTOM_FOLDER_RECURSIVE # Override with CLI argument if provided
REBUILD_INDEX = cli_args.rebuild_index # Override REBUILD_INDEX with CLI argument
# %%
@@ -206,23 +180,7 @@ else:
# Step 2: Load data only if we need to build the index
if need_to_build_index:
print("Loading dataset...")
# Check for custom folder path first (takes precedence)
if CUSTOM_FOLDER_PATH:
if not os.path.isdir(CUSTOM_FOLDER_PATH):
raise RuntimeError(f"Custom folder path does not exist: {CUSTOM_FOLDER_PATH}")
print(f"Loading images from custom folder: {CUSTOM_FOLDER_PATH}")
if CUSTOM_FOLDER_RECURSIVE:
print(" (recursive mode: searching subdirectories)")
filepaths, images = _load_images_from_dir(CUSTOM_FOLDER_PATH, recursive=CUSTOM_FOLDER_RECURSIVE)
print(f" Found {len(filepaths)} image files")
if not images:
raise RuntimeError(
f"No images found in {CUSTOM_FOLDER_PATH}. Ensure the folder contains image files (.png, .jpg, .jpeg, .webp)."
)
print(f" Successfully loaded {len(images)} images")
# Use filenames as identifiers instead of full paths for cleaner metadata
filepaths = [os.path.basename(fp) for fp in filepaths]
elif USE_HF_DATASET:
if USE_HF_DATASET:
from datasets import load_dataset, concatenate_datasets, DatasetDict
# Determine which datasets to load
@@ -663,6 +621,7 @@ else:
except Exception:
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
## TODO stange results of second page of DeepSeek-V2 rather than the first page
# %%
# Step 6: Similarity maps for top-K results

View File

@@ -1,200 +0,0 @@
# ColQwen Integration Guide
Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali models.
## Quick Start
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
### 1. Install Dependencies
```bash
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
### 2. Basic Usage
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
## Commands
### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 \
--pages-dir ./page_images/ # Optional: save page images
```
**Options:**
- `--pdfs`: Directory containing PDF files (or single PDF path)
- `--index`: Name for the index (required)
- `--model`: `colqwen2` (default) or `colpali`
- `--pages-dir`: Directory to save page images (optional)
### Search Index
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
**Options:**
- `--top-k`: Number of results to return (default: 5)
- `--model`: Model used for search (should match build model)
### Interactive Q&A
```bash
python -m apps.colqwen_rag ask my_index --interactive
```
**Commands in interactive mode:**
- Type your questions naturally
- `help`: Show available commands
- `quit`/`exit`/`q`: Exit interactive mode
## 🧪 Test & Reproduce Results
Run the reproduction test for issue #119:
```bash
python test_colqwen_reproduction.py
```
This will:
1. ✅ Check dependencies
2. 📥 Download sample PDF (Attention Is All You Need paper)
3. 🏗️ Build test index
4. 🔍 Run sample queries
5. 📊 Show how to generate similarity maps
## 🎨 Advanced: Similarity Maps
For visual similarity analysis, use the existing advanced script:
```bash
cd apps/multimodal/vision-based-pdf-multi-vector/
python multi-vector-leann-similarity-map.py
```
Edit the script to customize:
- `QUERY`: Your question
- `MODEL`: "colqwen2" or "colpali"
- `USE_HF_DATASET`: Use HuggingFace dataset or local PDFs
- `SIMILARITY_MAP`: Generate heatmaps
- `ANSWER`: Enable Qwen-VL answer generation
## 🔧 How It Works
### ColQwen2 vs ColPali
- **ColQwen2** (`vidore/colqwen2-v1.0`): Latest vision-language model
- **ColPali** (`vidore/colpali-v1.2`): Proven multimodal retriever
### Architecture
1. **PDF → Images**: Convert PDF pages to images (150 DPI)
2. **Vision Encoding**: Process images with ColQwen2/ColPali
3. **Multi-Vector Index**: Build LEANN HNSW index with multiple embeddings per page
4. **Query Processing**: Encode text queries with same model
5. **Similarity Search**: Find most relevant pages/regions
6. **Visual Maps**: Generate attention heatmaps (optional)
### Device Support
- **CUDA**: Best performance with GPU acceleration
- **MPS**: Apple Silicon Mac support
- **CPU**: Fallback for any system (slower)
Auto-detection: CUDA > MPS > CPU
## 📊 Performance Tips
### For Best Performance:
```bash
# Use ColQwen2 for latest features
--model colqwen2
# Save page images for reuse
--pages-dir ./cached_pages/
# Adjust batch size based on GPU memory
# (automatically handled)
```
### For Large Document Sets:
- Process PDFs in batches
- Use SSD storage for index files
- Consider using CUDA if available
## 🔗 Related Resources
- **Fast-PLAID**: https://github.com/lightonai/fast-plaid
- **Pylate**: https://github.com/lightonai/pylate
- **ColBERT**: https://github.com/stanford-futuredata/ColBERT
- **ColPali Paper**: Vision-Language Models for Document Retrieval
- **Issue #119**: https://github.com/yichuan-w/LEANN/issues/119
## 🐛 Troubleshooting
### PDF Conversion Issues (macOS)
```bash
# Install poppler
brew install poppler
which pdfinfo && pdfinfo -v
```
### Memory Issues
- Reduce batch size (automatically handled)
- Use CPU instead of GPU: `export CUDA_VISIBLE_DEVICES=""`
- Process fewer PDFs at once
### Model Download Issues
- Ensure internet connection for first run
- Models are cached after first download
- Use HuggingFace mirrors if needed
### Import Errors
```bash
# Ensure all dependencies installed
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
# Check PyTorch installation
python -c "import torch; print(torch.__version__)"
```
## 💡 Examples
### Research Paper Analysis
```bash
# Index your research papers
python -m apps.colqwen_rag build --pdfs ~/Papers/AI/ --index ai_papers
# Ask research questions
python -m apps.colqwen_rag search ai_papers "What are the limitations of transformer models?"
python -m apps.colqwen_rag search ai_papers "How does BERT compare to GPT?"
```
### Document Q&A
```bash
# Index business documents
python -m apps.colqwen_rag build --pdfs ~/Documents/Reports/ --index reports
# Interactive analysis
python -m apps.colqwen_rag ask reports --interactive
```
### Visual Analysis
```bash
# Generate similarity maps for specific queries
cd apps/multimodal/vision-based-pdf-multi-vector/
# Edit multi-vector-leann-similarity-map.py with your query
python multi-vector-leann-similarity-map.py
# Check ./figures/ for generated heatmaps
```
---
**🎯 This integration makes ColQwen as easy to use as other LEANN features while maintaining the full power of multimodal document understanding!**

View File

@@ -454,7 +454,7 @@ leann search my-index "your query" \
### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://docs.skypilot.co/en/latest/docs/index.html). A template is provided at `sky/leann-build.yaml`.
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
```bash
# One-time: install and configure SkyPilot

View File

@@ -7,7 +7,7 @@ name = "leann-core"
version = "0.3.5"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.10"
requires-python = ">=3.9"
license = { text = "MIT" }
# All required dependencies included

View File

@@ -1251,15 +1251,15 @@ class LeannChat:
"Please provide the best answer you can based on this context and your knowledge."
)
logger.info("The context provided to the LLM is:")
logger.info(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
logger.info("-" * 150)
print("The context provided to the LLM is:")
print(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
print("-" * 150)
for r in results:
chunk_relevance = f"{r.score:.3f}"
chunk_id = r.id
chunk_content = r.text[:60]
chunk_source = r.metadata.get("source", "")[:80]
logger.info(
print(
f"{chunk_relevance:<10} | {chunk_id:<10} | {chunk_content:<60} | {chunk_source:<80}"
)
ask_time = time.time()

View File

@@ -12,13 +12,7 @@ from typing import Any, Optional
import torch
from .settings import (
resolve_anthropic_api_key,
resolve_anthropic_base_url,
resolve_ollama_host,
resolve_openai_api_key,
resolve_openai_base_url,
)
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
# Configure logging
logging.basicConfig(level=logging.INFO)
@@ -851,81 +845,6 @@ class OpenAIChat(LLMInterface):
return f"Error: Could not get a response from OpenAI. Details: {e}"
class AnthropicChat(LLMInterface):
"""LLM interface for Anthropic Claude models."""
def __init__(
self,
model: str = "claude-haiku-4-5",
api_key: Optional[str] = None,
base_url: Optional[str] = None,
):
self.model = model
self.base_url = resolve_anthropic_base_url(base_url)
self.api_key = resolve_anthropic_api_key(api_key)
if not self.api_key:
raise ValueError(
"Anthropic API key is required. Set ANTHROPIC_API_KEY environment variable or pass api_key parameter."
)
logger.info(
"Initializing Anthropic Chat with model='%s' and base_url='%s'",
model,
self.base_url,
)
try:
import anthropic
# Allow custom Anthropic-compatible endpoints via base_url
self.client = anthropic.Anthropic(
api_key=self.api_key,
base_url=self.base_url,
)
except ImportError:
raise ImportError(
"The 'anthropic' library is required for Anthropic models. Please install it with 'pip install anthropic'."
)
def ask(self, prompt: str, **kwargs) -> str:
logger.info(f"Sending request to Anthropic with model {self.model}")
try:
# Anthropic API parameters
params = {
"model": self.model,
"max_tokens": kwargs.get("max_tokens", 1000),
"messages": [{"role": "user", "content": prompt}],
}
# Add optional parameters
if "temperature" in kwargs:
params["temperature"] = kwargs["temperature"]
if "top_p" in kwargs:
params["top_p"] = kwargs["top_p"]
response = self.client.messages.create(**params)
# Extract text from response
response_text = response.content[0].text
# Log token usage
print(
f"Total tokens = {response.usage.input_tokens + response.usage.output_tokens}, "
f"input tokens = {response.usage.input_tokens}, "
f"output tokens = {response.usage.output_tokens}"
)
if response.stop_reason == "max_tokens":
print("The query is exceeding the maximum allowed number of tokens")
return response_text.strip()
except Exception as e:
logger.error(f"Error communicating with Anthropic: {e}")
return f"Error: Could not get a response from Anthropic. Details: {e}"
class SimulatedChat(LLMInterface):
"""A simple simulated chat for testing and development."""
@@ -978,12 +897,6 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
)
elif llm_type == "gemini":
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
elif llm_type == "anthropic":
return AnthropicChat(
model=model or "claude-3-5-sonnet-20241022",
api_key=llm_config.get("api_key"),
base_url=llm_config.get("base_url"),
)
elif llm_type == "simulated":
return SimulatedChat()
else:

View File

@@ -11,12 +11,7 @@ from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
from .interactive_utils import create_cli_session
from .registry import register_project_directory
from .settings import (
resolve_anthropic_base_url,
resolve_ollama_host,
resolve_openai_api_key,
resolve_openai_base_url,
)
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
@@ -296,7 +291,7 @@ Examples:
"--llm",
type=str,
default="ollama",
choices=["simulated", "ollama", "hf", "openai", "anthropic"],
choices=["simulated", "ollama", "hf", "openai"],
help="LLM provider (default: ollama)",
)
ask_parser.add_argument(
@@ -346,7 +341,7 @@ Examples:
"--api-key",
type=str,
default=None,
help="API key for cloud LLM providers (OpenAI, Anthropic)",
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
)
# List command
@@ -1621,12 +1616,6 @@ Examples:
resolved_api_key = resolve_openai_api_key(args.api_key)
if resolved_api_key:
llm_config["api_key"] = resolved_api_key
elif args.llm == "anthropic":
# For Anthropic, pass base_url and API key if provided
if args.api_base:
llm_config["base_url"] = resolve_anthropic_base_url(args.api_base)
if args.api_key:
llm_config["api_key"] = args.api_key
chat = LeannChat(index_path=index_path, llm_config=llm_config)

View File

@@ -9,7 +9,6 @@ from typing import Any
# Default fallbacks to preserve current behaviour while keeping them in one place.
_DEFAULT_OLLAMA_HOST = "http://localhost:11434"
_DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1"
_DEFAULT_ANTHROPIC_BASE_URL = "https://api.anthropic.com"
def _clean_url(value: str) -> str:
@@ -53,23 +52,6 @@ def resolve_openai_base_url(explicit: str | None = None) -> str:
return _clean_url(_DEFAULT_OPENAI_BASE_URL)
def resolve_anthropic_base_url(explicit: str | None = None) -> str:
"""Resolve the base URL for Anthropic-compatible services."""
candidates = (
explicit,
os.getenv("LEANN_ANTHROPIC_BASE_URL"),
os.getenv("ANTHROPIC_BASE_URL"),
os.getenv("LOCAL_ANTHROPIC_BASE_URL"),
)
for candidate in candidates:
if candidate:
return _clean_url(candidate)
return _clean_url(_DEFAULT_ANTHROPIC_BASE_URL)
def resolve_openai_api_key(explicit: str | None = None) -> str | None:
"""Resolve the API key for OpenAI-compatible services."""
@@ -79,15 +61,6 @@ def resolve_openai_api_key(explicit: str | None = None) -> str | None:
return os.getenv("OPENAI_API_KEY")
def resolve_anthropic_api_key(explicit: str | None = None) -> str | None:
"""Resolve the API key for Anthropic services."""
if explicit:
return explicit
return os.getenv("ANTHROPIC_API_KEY")
def encode_provider_options(options: dict[str, Any] | None) -> str | None:
"""Serialize provider options for child processes."""

View File

@@ -53,11 +53,6 @@ leann build my-project --docs $(git ls-files)
# Start Claude Code
claude
```
**Performance tip**: For maximum speed when storage space is not a concern, add the `--no-recompute` flag to your build command. This materializes all tensors and stores them on disk, avoiding recomputation on subsequent builds:
```bash
leann build my-project --docs $(git ls-files) --no-recompute
```
## 🚀 Advanced Usage Examples to build the index

View File

@@ -7,7 +7,7 @@ name = "leann"
version = "0.3.5"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.10"
requires-python = ">=3.9"
license = { text = "MIT" }
authors = [
{ name = "LEANN Team" }
@@ -18,10 +18,10 @@ classifiers = [
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
]
# Default installation: core + hnsw + diskann

View File

@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-workspace"
version = "0.1.0"
requires-python = ">=3.10"
requires-python = ">=3.9"
dependencies = [
"leann-core",

1163
uv.lock generated
View File

File diff suppressed because it is too large Load Diff