Compare commits

..

1 Commits

Author SHA1 Message Date
yichuan-w
14f096dfe3 update exp for vldb 2025-08-22 14:29:36 -07:00
136 changed files with 6591 additions and 26072 deletions

View File

@@ -1,50 +0,0 @@
name: Bug Report
description: Report a bug in LEANN
labels: ["bug"]
body:
- type: textarea
id: description
attributes:
label: What happened?
description: A clear description of the bug
validations:
required: true
- type: textarea
id: reproduce
attributes:
label: How to reproduce
placeholder: |
1. Install with...
2. Run command...
3. See error
validations:
required: true
- type: textarea
id: error
attributes:
label: Error message
description: Paste any error messages
render: shell
- type: input
id: version
attributes:
label: LEANN Version
placeholder: "0.1.0"
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
options:
- macOS
- Linux
- Windows
- Docker
validations:
required: true

View File

@@ -1,8 +0,0 @@
blank_issues_enabled: true
contact_links:
- name: Documentation
url: https://github.com/LEANN-RAG/LEANN-RAG/tree/main/docs
about: Read the docs first
- name: Discussions
url: https://github.com/LEANN-RAG/LEANN-RAG/discussions
about: Ask questions and share ideas

View File

@@ -1,27 +0,0 @@
name: Feature Request
description: Suggest a new feature for LEANN
labels: ["enhancement"]
body:
- type: textarea
id: problem
attributes:
label: What problem does this solve?
description: Describe the problem or need
validations:
required: true
- type: textarea
id: solution
attributes:
label: Proposed solution
description: How would you like this to work?
validations:
required: true
- type: textarea
id: example
attributes:
label: Example usage
description: Show how the API might look
render: python

View File

@@ -1,13 +0,0 @@
## What does this PR do?
<!-- Brief description of your changes -->
## Related Issues
Fixes #
## Checklist
- [ ] Tests pass (`uv run pytest`)
- [ ] Code formatted (`ruff format` and `ruff check`)
- [ ] Pre-commit hooks pass (`pre-commit run --all-files`)

View File

@@ -17,17 +17,26 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
ref: ${{ inputs.ref }} ref: ${{ inputs.ref }}
submodules: recursive
- name: Install uv and Python - name: Setup Python
uses: astral-sh/setup-uv@v6 uses: actions/setup-python@v5
with: with:
python-version: '3.11' python-version: '3.11'
- name: Run pre-commit with only lint group (no project deps) - name: Install uv
run: | uses: astral-sh/setup-uv@v4
uv run --only-group lint pre-commit run --all-files --show-diff-on-failure
- name: Install ruff
run: |
uv tool install ruff
- name: Run ruff check
run: |
ruff check .
- name: Run ruff format check
run: |
ruff format --check .
build: build:
needs: lint needs: lint
@@ -35,8 +44,8 @@ jobs:
strategy: strategy:
matrix: matrix:
include: include:
# Note: Python 3.9 dropped - uses PEP 604 union syntax (str | None) - os: ubuntu-22.04
# which requires Python 3.10+ python: '3.9'
- os: ubuntu-22.04 - os: ubuntu-22.04
python: '3.10' python: '3.10'
- os: ubuntu-22.04 - os: ubuntu-22.04
@@ -45,15 +54,8 @@ jobs:
python: '3.12' python: '3.12'
- os: ubuntu-22.04 - os: ubuntu-22.04
python: '3.13' python: '3.13'
# ARM64 Linux builds - os: macos-14
- os: ubuntu-24.04-arm python: '3.9'
python: '3.10'
- os: ubuntu-24.04-arm
python: '3.11'
- os: ubuntu-24.04-arm
python: '3.12'
- os: ubuntu-24.04-arm
python: '3.13'
- os: macos-14 - os: macos-14
python: '3.10' python: '3.10'
- os: macos-14 - os: macos-14
@@ -62,6 +64,8 @@ jobs:
python: '3.12' python: '3.12'
- os: macos-14 - os: macos-14
python: '3.13' python: '3.13'
- os: macos-15
python: '3.9'
- os: macos-15 - os: macos-15
python: '3.10' python: '3.10'
- os: macos-15 - os: macos-15
@@ -70,24 +74,16 @@ jobs:
python: '3.12' python: '3.12'
- os: macos-15 - os: macos-15
python: '3.13' python: '3.13'
# Intel Mac builds (x86_64) - replaces deprecated macos-13 - os: macos-13
# Note: Python 3.13 excluded - PyTorch has no wheels for macOS x86_64 + Python 3.13 python: '3.9'
# (PyTorch <=2.4.1 lacks cp313, PyTorch >=2.5.0 dropped Intel Mac support) - os: macos-13
- os: macos-15-intel
python: '3.10' python: '3.10'
- os: macos-15-intel - os: macos-13
python: '3.11' python: '3.11'
- os: macos-15-intel - os: macos-13
python: '3.12' python: '3.12'
# macOS 26 (beta) - arm64 # Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
- os: macos-26 # (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
python: '3.10'
- os: macos-26
python: '3.11'
- os: macos-26
python: '3.12'
- os: macos-26
python: '3.13'
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
steps: steps:
@@ -96,11 +92,14 @@ jobs:
ref: ${{ inputs.ref }} ref: ${{ inputs.ref }}
submodules: recursive submodules: recursive
- name: Install uv and Python - name: Setup Python
uses: astral-sh/setup-uv@v6 uses: actions/setup-python@v5
with: with:
python-version: ${{ matrix.python }} python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v6
- name: Install system dependencies (Ubuntu) - name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux' if: runner.os == 'Linux'
run: | run: |
@@ -109,46 +108,13 @@ jobs:
pkg-config libabsl-dev libaio-dev libprotobuf-dev \ pkg-config libabsl-dev libaio-dev libprotobuf-dev \
patchelf patchelf
# Debug: Show system information # Install Intel MKL for DiskANN
echo "🔍 System Information:" wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
echo "Architecture: $(uname -m)" sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
echo "OS: $(uname -a)" source /opt/intel/oneapi/setvars.sh
echo "CPU info: $(lscpu | head -5)" echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
# Install math library based on architecture echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
ARCH=$(uname -m)
echo "🔍 Setting up math library for architecture: $ARCH"
if [[ "$ARCH" == "x86_64" ]]; then
# Install Intel MKL for DiskANN on x86_64
echo "📦 Installing Intel MKL for x86_64..."
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
echo "✅ Intel MKL installed for x86_64"
# Debug: Check MKL installation
echo "🔍 MKL Installation Check:"
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
elif [[ "$ARCH" == "aarch64" ]]; then
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
echo "📦 Installing OpenBLAS for ARM64..."
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
echo "✅ OpenBLAS installed for ARM64"
# Debug: Check OpenBLAS installation
echo "🔍 OpenBLAS Installation Check:"
dpkg -l | grep openblas || echo "OpenBLAS package not found"
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
fi
# Debug: Show final library paths
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
- name: Install system dependencies (macOS) - name: Install system dependencies (macOS)
if: runner.os == 'macOS' if: runner.os == 'macOS'
@@ -158,24 +124,11 @@ jobs:
- name: Install build dependencies - name: Install build dependencies
run: | run: |
uv python install ${{ matrix.python }} uv pip install --system scikit-build-core numpy swig Cython pybind11
uv venv --python ${{ matrix.python }} .uv-build
if [[ "$RUNNER_OS" == "Windows" ]]; then
BUILD_PY=".uv-build\\Scripts\\python.exe"
else
BUILD_PY=".uv-build/bin/python"
fi
uv pip install --python "$BUILD_PY" scikit-build-core numpy swig Cython pybind11
if [[ "$RUNNER_OS" == "Linux" ]]; then if [[ "$RUNNER_OS" == "Linux" ]]; then
uv pip install --python "$BUILD_PY" auditwheel uv pip install --system auditwheel
else else
uv pip install --python "$BUILD_PY" delocate uv pip install --system delocate
fi
if [[ "$RUNNER_OS" == "Windows" ]]; then
echo "$(pwd)\\.uv-build\\Scripts" >> $GITHUB_PATH
else
echo "$(pwd)/.uv-build/bin" >> $GITHUB_PATH
fi fi
- name: Set macOS environment variables - name: Set macOS environment variables
@@ -206,16 +159,13 @@ jobs:
# Use system clang for better compatibility # Use system clang for better compatibility
export CC=clang export CC=clang
export CXX=clang++ export CXX=clang++
# Set deployment target based on runner # Homebrew libraries on each macOS version require matching minimum version
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it) if [[ "${{ matrix.os }}" == "macos-13" ]]; then
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then export MACOSX_DEPLOYMENT_TARGET=13.0
export MACOSX_DEPLOYMENT_TARGET=15.0 elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0 export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == macos-15* ]]; then elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0 export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
export MACOSX_DEPLOYMENT_TARGET=26.0
fi fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else else
@@ -229,16 +179,14 @@ jobs:
# Use system clang for better compatibility # Use system clang for better compatibility
export CC=clang export CC=clang
export CXX=clang++ export CXX=clang++
# Set deployment target based on runner # DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it) # But Homebrew libraries on each macOS version require matching minimum version
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0 export MACOSX_DEPLOYMENT_TARGET=13.3
elif [[ "${{ matrix.os }}" == macos-14* ]]; then elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0 export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == macos-15* ]]; then elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0 export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
export MACOSX_DEPLOYMENT_TARGET=26.0
fi fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else else
@@ -276,19 +224,16 @@ jobs:
if: runner.os == 'macOS' if: runner.os == 'macOS'
run: | run: |
# Determine deployment target based on runner OS # Determine deployment target based on runner OS
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it) # Must match the Homebrew libraries for each macOS version
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then if [[ "${{ matrix.os }}" == "macos-13" ]]; then
HNSW_TARGET="15.0" HNSW_TARGET="13.0"
DISKANN_TARGET="15.0" DISKANN_TARGET="13.3"
elif [[ "${{ matrix.os }}" == macos-14* ]]; then elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
HNSW_TARGET="14.0" HNSW_TARGET="14.0"
DISKANN_TARGET="14.0" DISKANN_TARGET="14.0"
elif [[ "${{ matrix.os }}" == macos-15* ]]; then elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
HNSW_TARGET="15.0" HNSW_TARGET="15.0"
DISKANN_TARGET="15.0" DISKANN_TARGET="15.0"
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
HNSW_TARGET="26.0"
DISKANN_TARGET="26.0"
fi fi
# Repair HNSW wheel # Repair HNSW wheel
@@ -319,69 +264,18 @@ jobs:
- name: Install built packages for testing - name: Install built packages for testing
run: | run: |
# Create uv-managed virtual environment with the requested interpreter # Create a virtual environment with the correct Python version
uv python install ${{ matrix.python }}
uv venv --python ${{ matrix.python }} uv venv --python ${{ matrix.python }}
source .venv/bin/activate || source .venv/Scripts/activate source .venv/bin/activate || source .venv/Scripts/activate
if [[ "$RUNNER_OS" == "Windows" ]]; then # Install packages using --find-links to prioritize local builds
UV_PY=".venv\\Scripts\\python.exe" uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
else uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
UV_PY=".venv/bin/python" uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
fi uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
# Install test dependency group only (avoids reinstalling project package) # Install test dependencies using extras
uv pip install --python "$UV_PY" --group test uv pip install -e ".[test]"
# Install core wheel built in this job
CORE_WHL=$(find packages/leann-core/dist -maxdepth 1 -name "*.whl" -print -quit)
if [[ -n "$CORE_WHL" ]]; then
uv pip install --python "$UV_PY" "$CORE_WHL"
else
uv pip install --python "$UV_PY" packages/leann-core/dist/*.tar.gz
fi
PY_TAG=$($UV_PY -c "import sys; print(f'cp{sys.version_info[0]}{sys.version_info[1]}')")
if [[ "$RUNNER_OS" == "macOS" ]]; then
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
export MACOSX_DEPLOYMENT_TARGET=26.0
fi
fi
HNSW_WHL=$(find packages/leann-backend-hnsw/dist -maxdepth 1 -name "*-${PY_TAG}-*.whl" -print -quit)
if [[ -z "$HNSW_WHL" ]]; then
HNSW_WHL=$(find packages/leann-backend-hnsw/dist -maxdepth 1 -name "*-py3-*.whl" -print -quit)
fi
if [[ -n "$HNSW_WHL" ]]; then
uv pip install --python "$UV_PY" "$HNSW_WHL"
else
uv pip install --python "$UV_PY" ./packages/leann-backend-hnsw
fi
DISKANN_WHL=$(find packages/leann-backend-diskann/dist -maxdepth 1 -name "*-${PY_TAG}-*.whl" -print -quit)
if [[ -z "$DISKANN_WHL" ]]; then
DISKANN_WHL=$(find packages/leann-backend-diskann/dist -maxdepth 1 -name "*-py3-*.whl" -print -quit)
fi
if [[ -n "$DISKANN_WHL" ]]; then
uv pip install --python "$UV_PY" "$DISKANN_WHL"
else
uv pip install --python "$UV_PY" ./packages/leann-backend-diskann
fi
LEANN_WHL=$(find packages/leann/dist -maxdepth 1 -name "*.whl" -print -quit)
if [[ -n "$LEANN_WHL" ]]; then
uv pip install --python "$UV_PY" "$LEANN_WHL"
else
uv pip install --python "$UV_PY" packages/leann/dist/*.tar.gz
fi
- name: Run tests with pytest - name: Run tests with pytest
env: env:

View File

@@ -14,6 +14,6 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: lycheeverse/lychee-action@v2 - uses: lycheeverse/lychee-action@v2
with: with:
args: --no-progress --insecure --user-agent 'curl/7.68.0' --exclude '.*api\.star-history\.com.*' --accept 200,201,202,203,204,205,206,207,208,226,300,301,302,303,304,305,306,307,308,503 README.md docs/ apps/ examples/ benchmarks/ args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
env: env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

31
.gitignore vendored
View File

@@ -18,12 +18,10 @@ demo/experiment_results/**/*.json
*.eml *.eml
*.emlx *.emlx
*.json *.json
*.png
!.vscode/*.json !.vscode/*.json
*.sh *.sh
*.txt *.txt
!CMakeLists.txt !CMakeLists.txt
!llms.txt
latency_breakdown*.json latency_breakdown*.json
experiment_results/eval_results/diskann/*.json experiment_results/eval_results/diskann/*.json
aws/ aws/
@@ -91,21 +89,22 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
*.meta.json *.meta.json
*.passages.json *.passages.json
*.npy
*.db
batchtest.py batchtest.py
tests/__pytest_cache__/ tests/__pytest_cache__/
tests/__pycache__/ tests/__pycache__/
benchmarks/data/
## multi vector
apps/multimodal/vision-based-pdf-multi-vector/multi-vector-colpali-native-weaviate.py
# Ignore all PDFs (keep data exceptions above) and do not track demo PDFs
# If you need to commit a specific demo PDF, remove this negation locally.
# The following line used to force-add a large demo PDF; remove it to satisfy pre-commit:
# !apps/multimodal/vision-based-pdf-multi-vector/pdfs/2004.12832v2.pdf
!apps/multimodal/vision-based-pdf-multi-vector/fig/*
# AUR build directory (Arch Linux)
paru-bin/ paru-bin/
CLAUDE.md
CLAUDE.local.md
.claude/*.local.*
.claude/local/*
benchmarks/data/
!benchmarks/data/prompts_g5/*.txt
!benchmarks/run_all.sh
!benchmarks/run_speed_bench_all.sh
!benchmarks/simple_mac_tpt_test.py
!benchmarks/run_speed_bench_all.sh
!benchmarks/run_speed_bench_all.sh
!benchmarks/run_speed_bench_all.sh

3
.gitmodules vendored
View File

@@ -14,6 +14,3 @@
[submodule "packages/leann-backend-hnsw/third_party/libzmq"] [submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git url = https://github.com/zeromq/libzmq.git
[submodule "packages/astchunk-leann"]
path = packages/astchunk-leann
url = https://github.com/yichuan-w/astchunk-leann.git

558
README.md
View File

@@ -8,35 +8,17 @@
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform"> <img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License"> <img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration"> <img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q">
<img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
</a>
<a href="assets/wechat_user_group.JPG" title="Join WeChat group">
<img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group">
</a>
</p> </p>
<div align="center">
<a href="https://forms.gle/rDbZf864gMNxhpTq8">
<img src="https://img.shields.io/badge/📣_Community_Survey-Help_Shape_v0.4-007ec6?style=for-the-badge&logo=google-forms&logoColor=white" alt="Take Survey">
</a>
<p>
We track <b>zero telemetry</b>. This survey is the ONLY way to tell us if you want <br>
<b>GPU Acceleration</b> or <b>More Integrations</b> next.<br>
👉 <a href="https://forms.gle/rDbZf864gMNxhpTq8"><b>Click here to cast your vote (2 mins)</b></a>
</p>
</div>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto"> <h2 align="center" tabindex="-1" class="heading-element" dir="auto">
The smallest vector index in the world. RAG Everything with LEANN! The smallest vector index in the world. RAG Everything with LEANN!
</h2> </h2>
LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**. LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276) LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#slack-messages-search-your-team-conversations), [Twitter](#-twitter-bookmarks-your-personal-tweet-library)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy. **Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md) \* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
@@ -88,9 +70,8 @@ uv venv
source .venv/bin/activate source .venv/bin/activate
uv pip install leann uv pip install leann
``` ```
<!-- <!--
> Low-resource? See "Low-resource setups" in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). --> > Low-resource? See Low-resource setups in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
<details> <details>
<summary> <summary>
@@ -193,16 +174,13 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
## RAG on Everything! ## RAG on Everything!
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, ChatGPT conversations, Claude conversations, iMessage conversations, and **live data from any platform through MCP (Model Context Protocol) servers** - including Slack, Twitter, and more. LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
### Generation Model Setup ### Generation Model Setup
#### LLM Backend LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, Anthropic, and Any OpenAI compatible API).
<details> <details>
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary> <summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
@@ -213,69 +191,6 @@ Set your OpenAI API key as an environment variable:
export OPENAI_API_KEY="your-api-key-here" export OPENAI_API_KEY="your-api-key-here"
``` ```
Make sure to use `--llm openai` flag when using the CLI.
You can also specify the model name with `--llm-model <model-name>` flag.
</details>
<details>
<summary><strong>🛠️ Supported LLM & Embedding Providers (via OpenAI Compatibility)</strong></summary>
Thanks to the widespread adoption of the OpenAI API format, LEANN is compatible out-of-the-box with a vast array of LLM and embedding providers. Simply set the `OPENAI_BASE_URL` and `OPENAI_API_KEY` environment variables to connect to your preferred service.
```sh
export OPENAI_API_KEY="xxx"
export OPENAI_BASE_URL="http://localhost:1234/v1" # base url of the provider
```
To use OpenAI compatible endpoint with the CLI interface:
If you are using it for text generation, make sure to use `--llm openai` flag and specify the model name with `--llm-model <model-name>` flag.
If you are using it for embedding, set the `--embedding-mode openai` flag and specify the model name with `--embedding-model <MODEL>`.
-----
Below is a list of base URLs for common providers to get you started.
### 🖥️ Local Inference Engines (Recommended for full privacy)
| Provider | Sample Base URL |
| ---------------- | --------------------------- |
| **Ollama** | `http://localhost:11434/v1` |
| **LM Studio** | `http://localhost:1234/v1` |
| **vLLM** | `http://localhost:8000/v1` |
| **llama.cpp** | `http://localhost:8080/v1` |
| **SGLang** | `http://localhost:30000/v1` |
| **LiteLLM** | `http://localhost:4000` |
-----
### ☁️ Cloud Providers
> **🚨 A Note on Privacy:** Before choosing a cloud provider, carefully review their privacy and data retention policies. Depending on their terms, your data may be used for their own purposes, including but not limited to human reviews and model training, which can lead to serious consequences if not handled properly.
| Provider | Base URL |
| ---------------- | ---------------------------------------------------------- |
| **OpenAI** | `https://api.openai.com/v1` |
| **OpenRouter** | `https://openrouter.ai/api/v1` |
| **Gemini** | `https://generativelanguage.googleapis.com/v1beta/openai/` |
| **x.AI (Grok)** | `https://api.x.ai/v1` |
| **Groq AI** | `https://api.groq.com/openai/v1` |
| **DeepSeek** | `https://api.deepseek.com/v1` |
| **SiliconFlow** | `https://api.siliconflow.cn/v1` |
| **Zhipu (BigModel)** | `https://open.bigmodel.cn/api/paas/v4/` |
| **Mistral AI** | `https://api.mistral.ai/v1` |
| **Anthropic** | `https://api.anthropic.com/v1` |
If your provider isn't on this list, don't worry! Check their documentation for an OpenAI-compatible endpoint—chances are, it's OpenAI Compatible too!
</details> </details>
<details> <details>
@@ -329,7 +244,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama --embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models) # LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, hf, or anthropic (default: openai) --llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct --llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models) --thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
@@ -392,54 +307,6 @@ python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authenticat
</details> </details>
### 🎨 ColQwen: Multimodal PDF Retrieval with Vision-Language Models
Search through PDFs using both text and visual understanding with ColQwen2/ColPali models. Perfect for research papers, technical documents, and any PDFs with complex layouts, figures, or diagrams.
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
<details>
<summary><strong>📋 Click to expand: ColQwen Setup & Usage</strong></summary>
#### Prerequisites
```bash
# Install dependencies
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
#### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 # or colpali
```
#### Search
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
#### Models
- **ColQwen2** (`colqwen2`): Latest vision-language model with improved performance
- **ColPali** (`colpali`): Proven multimodal retriever
For detailed usage, see the [ColQwen Guide](docs/COLQWEN_GUIDE.md).
</details>
### 📧 Your Personal Email Secretary: RAG on Apple Mail! ### 📧 Your Personal Email Secretary: RAG on Apple Mail!
> **Note:** The examples below currently support macOS only. Windows support coming soon. > **Note:** The examples below currently support macOS only. Windows support coming soon.
@@ -608,386 +475,10 @@ Once the index is built, you can ask questions like:
</details> </details>
### 🤖 ChatGPT Chat History: Your Personal AI Conversation Archive!
Transform your ChatGPT conversations into a searchable knowledge base! Search through all your ChatGPT discussions about coding, research, brainstorming, and more.
```bash
python -m apps.chatgpt_rag --export-path chatgpt_export.html --query "How do I create a list in Python?"
```
**Unlock your AI conversation history.** Never lose track of valuable insights from your ChatGPT discussions again.
<details>
<summary><strong>📋 Click to expand: How to Export ChatGPT Data</strong></summary>
**Step-by-step export process:**
1. **Sign in to ChatGPT**
2. **Click your profile icon** in the top right corner
3. **Navigate to Settings** → **Data Controls**
4. **Click "Export"** under Export Data
5. **Confirm the export** request
6. **Download the ZIP file** from the email link (expires in 24 hours)
7. **Extract or use directly** with LEANN
**Supported formats:**
- `.html` files from ChatGPT exports
- `.zip` archives from ChatGPT
- Directories with multiple export files
</details>
<details>
<summary><strong>📋 Click to expand: ChatGPT-Specific Arguments</strong></summary>
#### Parameters
```bash
--export-path PATH # Path to ChatGPT export file (.html/.zip) or directory (default: ./chatgpt_export)
--separate-messages # Process each message separately instead of concatenated conversations
--chunk-size N # Text chunk size (default: 512)
--chunk-overlap N # Overlap between chunks (default: 128)
```
#### Example Commands
```bash
# Basic usage with HTML export
python -m apps.chatgpt_rag --export-path conversations.html
# Process ZIP archive from ChatGPT
python -m apps.chatgpt_rag --export-path chatgpt_export.zip
# Search with specific query
python -m apps.chatgpt_rag --export-path chatgpt_data.html --query "Python programming help"
# Process individual messages for fine-grained search
python -m apps.chatgpt_rag --separate-messages --export-path chatgpt_export.html
# Process directory containing multiple exports
python -m apps.chatgpt_rag --export-path ./chatgpt_exports/ --max-items 1000
```
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
Once your ChatGPT conversations are indexed, you can search with queries like:
- "What did I ask ChatGPT about Python programming?"
- "Show me conversations about machine learning algorithms"
- "Find discussions about web development frameworks"
- "What coding advice did ChatGPT give me?"
- "Search for conversations about debugging techniques"
- "Find ChatGPT's recommendations for learning resources"
</details>
### 🤖 Claude Chat History: Your Personal AI Conversation Archive!
Transform your Claude conversations into a searchable knowledge base! Search through all your Claude discussions about coding, research, brainstorming, and more.
```bash
python -m apps.claude_rag --export-path claude_export.json --query "What did I ask about Python dictionaries?"
```
**Unlock your AI conversation history.** Never lose track of valuable insights from your Claude discussions again.
<details>
<summary><strong>📋 Click to expand: How to Export Claude Data</strong></summary>
**Step-by-step export process:**
1. **Open Claude** in your browser
2. **Navigate to Settings** (look for gear icon or settings menu)
3. **Find Export/Download** options in your account settings
4. **Download conversation data** (usually in JSON format)
5. **Place the file** in your project directory
*Note: Claude export methods may vary depending on the interface you're using. Check Claude's help documentation for the most current export instructions.*
**Supported formats:**
- `.json` files (recommended)
- `.zip` archives containing JSON data
- Directories with multiple export files
</details>
<details>
<summary><strong>📋 Click to expand: Claude-Specific Arguments</strong></summary>
#### Parameters
```bash
--export-path PATH # Path to Claude export file (.json/.zip) or directory (default: ./claude_export)
--separate-messages # Process each message separately instead of concatenated conversations
--chunk-size N # Text chunk size (default: 512)
--chunk-overlap N # Overlap between chunks (default: 128)
```
#### Example Commands
```bash
# Basic usage with JSON export
python -m apps.claude_rag --export-path my_claude_conversations.json
# Process ZIP archive from Claude
python -m apps.claude_rag --export-path claude_export.zip
# Search with specific query
python -m apps.claude_rag --export-path claude_data.json --query "machine learning advice"
# Process individual messages for fine-grained search
python -m apps.claude_rag --separate-messages --export-path claude_export.json
# Process directory containing multiple exports
python -m apps.claude_rag --export-path ./claude_exports/ --max-items 1000
```
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
Once your Claude conversations are indexed, you can search with queries like:
- "What did I ask Claude about Python programming?"
- "Show me conversations about machine learning algorithms"
- "Find discussions about software architecture patterns"
- "What debugging advice did Claude give me?"
- "Search for conversations about data structures"
- "Find Claude's recommendations for learning resources"
</details>
### 💬 iMessage History: Your Personal Conversation Archive!
Transform your iMessage conversations into a searchable knowledge base! Search through all your text messages, group chats, and conversations with friends, family, and colleagues.
```bash
python -m apps.imessage_rag --query "What did we discuss about the weekend plans?"
```
**Unlock your message history.** Never lose track of important conversations, shared links, or memorable moments from your iMessage history.
<details>
<summary><strong>📋 Click to expand: How to Access iMessage Data</strong></summary>
**iMessage data location:**
iMessage conversations are stored in a SQLite database on your Mac at:
```
~/Library/Messages/chat.db
```
**Important setup requirements:**
1. **Grant Full Disk Access** to your terminal or IDE:
- Open **System Preferences** → **Security & Privacy** → **Privacy**
- Select **Full Disk Access** from the left sidebar
- Click the **+** button and add your terminal app (Terminal, iTerm2) or IDE (VS Code, etc.)
- Restart your terminal/IDE after granting access
2. **Alternative: Use a backup database**
- If you have Time Machine backups or manual copies of the database
- Use `--db-path` to specify a custom location
**Supported formats:**
- Direct access to `~/Library/Messages/chat.db` (default)
- Custom database path with `--db-path`
- Works with backup copies of the database
</details>
<details>
<summary><strong>📋 Click to expand: iMessage-Specific Arguments</strong></summary>
#### Parameters
```bash
--db-path PATH # Path to chat.db file (default: ~/Library/Messages/chat.db)
--concatenate-conversations # Group messages by conversation (default: True)
--no-concatenate-conversations # Process each message individually
--chunk-size N # Text chunk size (default: 1000)
--chunk-overlap N # Overlap between chunks (default: 200)
```
#### Example Commands
```bash
# Basic usage (requires Full Disk Access)
python -m apps.imessage_rag
# Search with specific query
python -m apps.imessage_rag --query "family dinner plans"
# Use custom database path
python -m apps.imessage_rag --db-path /path/to/backup/chat.db
# Process individual messages instead of conversations
python -m apps.imessage_rag --no-concatenate-conversations
# Limit processing for testing
python -m apps.imessage_rag --max-items 100 --query "weekend"
```
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
Once your iMessage conversations are indexed, you can search with queries like:
- "What did we discuss about vacation plans?"
- "Find messages about restaurant recommendations"
- "Show me conversations with John about the project"
- "Search for shared links about technology"
- "Find group chat discussions about weekend events"
- "What did mom say about the family gathering?"
</details>
### MCP Integration: RAG on Live Data from Any Platform
Connect to live data sources through the Model Context Protocol (MCP). LEANN now supports real-time RAG on platforms like Slack, Twitter, and more through standardized MCP servers.
**Key Benefits:**
- **Live Data Access**: Fetch real-time data without manual exports
- **Standardized Protocol**: Use any MCP-compatible server
- **Easy Extension**: Add new platforms with minimal code
- **Secure Access**: MCP servers handle authentication
#### 💬 Slack Messages: Search Your Team Conversations
Transform your Slack workspace into a searchable knowledge base! Find discussions, decisions, and shared knowledge across all your channels.
```bash
# Test MCP server connection
python -m apps.slack_rag --mcp-server "slack-mcp-server" --test-connection
# Index and search Slack messages
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "my-team" \
--channels general dev-team random \
--query "What did we decide about the product launch?"
```
**📖 Comprehensive Setup Guide**: For detailed setup instructions, troubleshooting common issues (like "users cache is not ready yet"), and advanced configuration options, see our [**Slack Setup Guide**](docs/slack-setup-guide.md).
**Quick Setup:**
1. Install a Slack MCP server (e.g., `npm install -g slack-mcp-server`)
2. Create a Slack App and get API credentials (see detailed guide above)
3. Set environment variables:
```bash
export SLACK_BOT_TOKEN="xoxb-your-bot-token"
export SLACK_APP_TOKEN="xapp-your-app-token" # Optional
```
4. Test connection with `--test-connection` flag
**Arguments:**
- `--mcp-server`: Command to start the Slack MCP server
- `--workspace-name`: Slack workspace name for organization
- `--channels`: Specific channels to index (optional)
- `--concatenate-conversations`: Group messages by channel (default: true)
- `--max-messages-per-channel`: Limit messages per channel (default: 100)
- `--max-retries`: Maximum retries for cache sync issues (default: 5)
- `--retry-delay`: Initial delay between retries in seconds (default: 2.0)
#### 🐦 Twitter Bookmarks: Your Personal Tweet Library
Search through your Twitter bookmarks! Find that perfect article, thread, or insight you saved for later.
```bash
# Test MCP server connection
python -m apps.twitter_rag --mcp-server "twitter-mcp-server" --test-connection
# Index and search Twitter bookmarks
python -m apps.twitter_rag \
--mcp-server "twitter-mcp-server" \
--max-bookmarks 1000 \
--query "What AI articles did I bookmark about machine learning?"
```
**Setup Requirements:**
1. Install a Twitter MCP server (e.g., `npm install -g twitter-mcp-server`)
2. Get Twitter API credentials:
- Apply for a Twitter Developer Account at [developer.twitter.com](https://developer.twitter.com)
- Create a new app in the Twitter Developer Portal
- Generate API keys and access tokens with "Read" permissions
- For bookmarks access, you may need Twitter API v2 with appropriate scopes
```bash
export TWITTER_API_KEY="your-api-key"
export TWITTER_API_SECRET="your-api-secret"
export TWITTER_ACCESS_TOKEN="your-access-token"
export TWITTER_ACCESS_TOKEN_SECRET="your-access-token-secret"
```
3. Test connection with `--test-connection` flag
**Arguments:**
- `--mcp-server`: Command to start the Twitter MCP server
- `--username`: Filter bookmarks by username (optional)
- `--max-bookmarks`: Maximum bookmarks to fetch (default: 1000)
- `--no-tweet-content`: Exclude tweet content, only metadata
- `--no-metadata`: Exclude engagement metadata
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
**Slack Queries:**
- "What did the team discuss about the project deadline?"
- "Find messages about the new feature launch"
- "Show me conversations about budget planning"
- "What decisions were made in the dev-team channel?"
**Twitter Queries:**
- "What AI articles did I bookmark last month?"
- "Find tweets about machine learning techniques"
- "Show me bookmarked threads about startup advice"
- "What Python tutorials did I save?"
</details>
<summary><strong>🔧 Using MCP with CLI Commands</strong></summary>
**Want to use MCP data with regular LEANN CLI?** You can combine MCP apps with CLI commands:
```bash
# Step 1: Use MCP app to fetch and index data
python -m apps.slack_rag --mcp-server "slack-mcp-server" --workspace-name "my-team"
# Step 2: The data is now indexed and available via CLI
leann search slack_messages "project deadline"
leann ask slack_messages "What decisions were made about the product launch?"
# Same for Twitter bookmarks
python -m apps.twitter_rag --mcp-server "twitter-mcp-server"
leann search twitter_bookmarks "machine learning articles"
```
**MCP vs Manual Export:**
- **MCP**: Live data, automatic updates, requires server setup
- **Manual Export**: One-time setup, works offline, requires manual data export
</details>
<details>
<summary><strong>🔧 Adding New MCP Platforms</strong></summary>
Want to add support for other platforms? LEANN's MCP integration is designed for easy extension:
1. **Find or create an MCP server** for your platform
2. **Create a reader class** following the pattern in `apps/slack_data/slack_mcp_reader.py`
3. **Create a RAG application** following the pattern in `apps/slack_rag.py`
4. **Test and contribute** back to the community!
**Popular MCP servers to explore:**
- GitHub repositories and issues
- Discord messages
- Notion pages
- Google Drive documents
- And many more in the MCP ecosystem!
</details>
### 🚀 Claude Code Integration: Transform Your Development Workflow! ### 🚀 Claude Code Integration: Transform Your Development Workflow!
<details> <details>
<summary><strong>ASTAware Code Chunking</strong></summary> <summary><strong>NEW!! ASTAware Code Chunking</strong></summary>
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking. LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.
@@ -1015,7 +506,7 @@ Try our fully agentic pipeline with auto query rewriting, semantic search planni
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md) **🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## Command Line Interface ## 🖥️ Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat. LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
@@ -1053,9 +544,6 @@ leann search my-docs "machine learning concepts"
# Interactive chat with your documents # Interactive chat with your documents
leann ask my-docs --interactive leann ask my-docs --interactive
# Ask a single question (non-interactive)
leann ask my-docs "Where are prompts configured?"
# List all your indexes # List all your indexes
leann list leann list
@@ -1106,10 +594,10 @@ Options:
leann ask INDEX_NAME [OPTIONS] leann ask INDEX_NAME [OPTIONS]
Options: Options:
--llm {ollama,openai,hf,anthropic} LLM provider (default: ollama) --llm {ollama,openai,hf} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b) --model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode --interactive Interactive chat mode
--top-k N Retrieval count (default: 20) --top-k N Retrieval count (default: 20)
``` ```
**List Command:** **List Command:**
@@ -1166,19 +654,6 @@ results = searcher.search(
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)** 📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
### 🔍 Grep Search
For exact text matching instead of semantic search, use the `use_grep` parameter:
```python
# Exact text search
results = searcher.search("bananacrocodile", use_grep=True, top_k=1)
```
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
📖 **[Complete grep search guide →](docs/grep_search.md)**
## 🏗️ Architecture & How It Works ## 🏗️ Architecture & How It Works
<p align="center"> <p align="center">
@@ -1216,8 +691,9 @@ results = searcher.search("bananacrocodile", use_grep=True, top_k=1)
## Reproduce Our Results ## Reproduce Our Results
```bash ```bash
uv run benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks uv pip install -e ".[dev]" # Install dev dependencies
uv run benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
python benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index
``` ```
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data! The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
@@ -1257,7 +733,7 @@ MIT License - see [LICENSE](LICENSE) for details.
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf). Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan), [Aakash Suresh](https://github.com/ASuresh0524) Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan)
We welcome more contributors! Feel free to open issues or submit PRs. We welcome more contributors! Feel free to open issues or submit PRs.
@@ -1274,7 +750,3 @@ This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.ed
<p align="center"> <p align="center">
Made with ❤️ by the Leann team Made with ❤️ by the Leann team
</p> </p>
## 🤖 Explore LEANN with AI
LEANN is indexed on [DeepWiki](https://deepwiki.com/yichuan-w/LEANN), so you can ask questions to LLMs using Deep Research to explore the codebase and get help to add new features.

View File

@@ -6,44 +6,12 @@ Provides common parameters and functionality for all RAG examples.
import argparse import argparse
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
from typing import Any, Union from typing import Any
import dotenv import dotenv
from leann.api import LeannBuilder, LeannChat from leann.api import LeannBuilder, LeannChat
# Optional import: older PyPI builds may not include interactive_utils
try:
from leann.interactive_utils import create_rag_session
except ImportError:
def create_rag_session(app_name: str, data_description: str):
class _SimpleSession:
def run_interactive_loop(self, handler):
print(f"Interactive session for {app_name}: {data_description}")
print("Interactive mode not available in this build")
return _SimpleSession()
from leann.registry import register_project_directory from leann.registry import register_project_directory
# Optional import: older PyPI builds may not include settings
try:
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
except ImportError:
# Minimal fallbacks if settings helpers are unavailable
import os
def resolve_ollama_host(value: str | None) -> str | None:
return value or os.getenv("LEANN_OLLAMA_HOST") or os.getenv("OLLAMA_HOST")
def resolve_openai_api_key(value: str | None) -> str | None:
return value or os.getenv("OPENAI_API_KEY")
def resolve_openai_base_url(value: str | None) -> str | None:
return value or os.getenv("OPENAI_BASE_URL")
dotenv.load_dotenv() dotenv.load_dotenv()
@@ -110,24 +78,6 @@ class BaseRAGExample(ABC):
choices=["sentence-transformers", "openai", "mlx", "ollama"], choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama", help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
) )
embedding_group.add_argument(
"--embedding-host",
type=str,
default=None,
help="Override Ollama-compatible embedding host",
)
embedding_group.add_argument(
"--embedding-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible embedding services",
)
embedding_group.add_argument(
"--embedding-api-key",
type=str,
default=None,
help="API key for embedding service (defaults to OPENAI_API_KEY)",
)
# LLM parameters # LLM parameters
llm_group = parser.add_argument_group("LLM Parameters") llm_group = parser.add_argument_group("LLM Parameters")
@@ -147,8 +97,8 @@ class BaseRAGExample(ABC):
llm_group.add_argument( llm_group.add_argument(
"--llm-host", "--llm-host",
type=str, type=str,
default=None, default="http://localhost:11434",
help="Host for Ollama-compatible APIs (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)", help="Host for Ollama API (default: http://localhost:11434)",
) )
llm_group.add_argument( llm_group.add_argument(
"--thinking-budget", "--thinking-budget",
@@ -157,18 +107,6 @@ class BaseRAGExample(ABC):
default=None, default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.", help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
) )
llm_group.add_argument(
"--llm-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible APIs",
)
llm_group.add_argument(
"--llm-api-key",
type=str,
default=None,
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
)
# AST Chunking parameters # AST Chunking parameters
ast_group = parser.add_argument_group("AST Chunking Parameters") ast_group = parser.add_argument_group("AST Chunking Parameters")
@@ -180,14 +118,14 @@ class BaseRAGExample(ABC):
ast_group.add_argument( ast_group.add_argument(
"--ast-chunk-size", "--ast-chunk-size",
type=int, type=int,
default=300, default=512,
help="Maximum CHARACTERS per AST chunk (default: 300). Final chunks may be larger due to overlap. For 512 token models: recommended 300 chars", help="Maximum characters per AST chunk (default: 512)",
) )
ast_group.add_argument( ast_group.add_argument(
"--ast-chunk-overlap", "--ast-chunk-overlap",
type=int, type=int,
default=64, default=64,
help="Overlap between AST chunks in CHARACTERS (default: 64). Added to chunk size, not included in it", help="Overlap between AST chunks (default: 64)",
) )
ast_group.add_argument( ast_group.add_argument(
"--code-file-extensions", "--code-file-extensions",
@@ -257,8 +195,8 @@ class BaseRAGExample(ABC):
pass pass
@abstractmethod @abstractmethod
async def load_data(self, args) -> list[Union[str, dict[str, Any]]]: async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks (strings or dicts with 'text' key).""" """Load data from the source. Returns list of text chunks."""
pass pass
def get_llm_config(self, args) -> dict[str, Any]: def get_llm_config(self, args) -> dict[str, Any]:
@@ -267,13 +205,9 @@ class BaseRAGExample(ABC):
if args.llm == "openai": if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o" config["model"] = args.llm_model or "gpt-4o"
config["base_url"] = resolve_openai_base_url(args.llm_api_base)
resolved_key = resolve_openai_api_key(args.llm_api_key)
if resolved_key:
config["api_key"] = resolved_key
elif args.llm == "ollama": elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b" config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = resolve_ollama_host(args.llm_host) config["host"] = args.llm_host
elif args.llm == "hf": elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct" config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated": elif args.llm == "simulated":
@@ -282,27 +216,17 @@ class BaseRAGExample(ABC):
return config return config
async def build_index(self, args, texts: list[Union[str, dict[str, Any]]]) -> str: async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts (accepts strings or dicts with 'text' key).""" """Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann") index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...") print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}") print(f"Total text chunks: {len(texts)}")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
elif args.embedding_mode == "openai":
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
if resolved_embedding_key:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder( builder = LeannBuilder(
backend_name=args.backend_name, backend_name=args.backend_name,
embedding_model=args.embedding_model, embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode, embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
graph_degree=args.graph_degree, graph_degree=args.graph_degree,
complexity=args.build_complexity, complexity=args.build_complexity,
is_compact=not args.no_compact, is_compact=not args.no_compact,
@@ -314,14 +238,8 @@ class BaseRAGExample(ABC):
batch_size = 1000 batch_size = 1000
for i in range(0, len(texts), batch_size): for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size] batch = texts[i : i + batch_size]
for item in batch: for text in batch:
# Handle both dict format (from create_text_chunks) and plain strings builder.add_text(text)
if isinstance(item, dict):
text = item.get("text", "")
metadata = item.get("metadata")
builder.add_text(text, metadata)
else:
builder.add_text(item)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...") print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...") print("Building index structure...")
@@ -344,26 +262,37 @@ class BaseRAGExample(ABC):
complexity=args.search_complexity, complexity=args.search_complexity,
) )
# Create interactive session print(f"\n[Interactive Mode] Chat with your {self.name} data!")
session = create_rag_session( print("Type 'quit' or 'exit' to stop.\n")
app_name=self.name.lower().replace(" ", "_"), data_description=self.name
)
def handle_query(query: str): while True:
# Prepare LLM kwargs with thinking budget if specified try:
llm_kwargs = {} query = input("You: ").strip()
if hasattr(args, "thinking_budget") and args.thinking_budget: if query.lower() in ["quit", "exit", "q"]:
llm_kwargs["thinking_budget"] = args.thinking_budget print("Goodbye!")
break
response = chat.ask( if not query:
query, continue
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
session.run_interactive_loop(handle_query) # Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error: {e}")
async def run_single_query(self, args, index_path: str, query: str): async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index.""" """Run a single query against the index."""

View File

@@ -10,8 +10,7 @@ from pathlib import Path
# Add parent directory to path for imports # Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent)) sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample from base_rag_example import BaseRAGExample, create_text_chunks
from chunking import create_text_chunks
from .history_data.history import ChromeHistoryReader from .history_data.history import ChromeHistoryReader

View File

@@ -1,413 +0,0 @@
"""
ChatGPT export data reader.
Reads and processes ChatGPT export data from chat.html files.
"""
import re
from pathlib import Path
from typing import Any
from zipfile import ZipFile
from bs4 import BeautifulSoup
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChatGPTReader(BaseReader):
"""
ChatGPT export data reader.
Reads ChatGPT conversation data from exported chat.html files or zip archives.
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
self.concatenate_conversations = concatenate_conversations
def _extract_html_from_zip(self, zip_path: Path) -> str | None:
"""
Extract chat.html from ChatGPT export zip file.
Args:
zip_path: Path to the ChatGPT export zip file
Returns:
HTML content as string, or None if not found
"""
try:
with ZipFile(zip_path, "r") as zip_file:
# Look for chat.html or conversations.html
html_files = [
f
for f in zip_file.namelist()
if f.endswith(".html") and ("chat" in f.lower() or "conversation" in f.lower())
]
if not html_files:
print(f"No HTML chat file found in {zip_path}")
return None
# Use the first HTML file found
html_file = html_files[0]
print(f"Found HTML file: {html_file}")
with zip_file.open(html_file) as f:
return f.read().decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error extracting HTML from zip {zip_path}: {e}")
return None
def _parse_chatgpt_html(self, html_content: str) -> list[dict]:
"""
Parse ChatGPT HTML export to extract conversations.
Args:
html_content: HTML content from ChatGPT export
Returns:
List of conversation dictionaries
"""
soup = BeautifulSoup(html_content, "html.parser")
conversations = []
# Try different possible structures for ChatGPT exports
# Structure 1: Look for conversation containers
conversation_containers = soup.find_all(
["div", "section"], class_=re.compile(r"conversation|chat", re.I)
)
if not conversation_containers:
# Structure 2: Look for message containers directly
conversation_containers = [soup] # Use the entire document as one conversation
for container in conversation_containers:
conversation = self._extract_conversation_from_container(container)
if conversation and conversation.get("messages"):
conversations.append(conversation)
# If no structured conversations found, try to extract all text as one conversation
if not conversations:
all_text = soup.get_text(separator="\n", strip=True)
if all_text:
conversations.append(
{
"title": "ChatGPT Conversation",
"messages": [{"role": "mixed", "content": all_text, "timestamp": None}],
"timestamp": None,
}
)
return conversations
def _extract_conversation_from_container(self, container) -> dict | None:
"""
Extract conversation data from a container element.
Args:
container: BeautifulSoup element containing conversation
Returns:
Dictionary with conversation data or None
"""
messages = []
# Look for message elements with various possible structures
message_selectors = ['[class*="message"]', '[class*="chat"]', "[data-message]", "p", "div"]
for selector in message_selectors:
message_elements = container.select(selector)
if message_elements:
break
else:
message_elements = []
# If no structured messages found, treat the entire container as one message
if not message_elements:
text_content = container.get_text(separator="\n", strip=True)
if text_content:
messages.append({"role": "mixed", "content": text_content, "timestamp": None})
else:
for element in message_elements:
message = self._extract_message_from_element(element)
if message:
messages.append(message)
if not messages:
return None
# Try to extract conversation title
title_element = container.find(["h1", "h2", "h3", "title"])
title = title_element.get_text(strip=True) if title_element else "ChatGPT Conversation"
# Try to extract timestamp from various possible locations
timestamp = self._extract_timestamp_from_container(container)
return {"title": title, "messages": messages, "timestamp": timestamp}
def _extract_message_from_element(self, element) -> dict | None:
"""
Extract message data from an element.
Args:
element: BeautifulSoup element containing message
Returns:
Dictionary with message data or None
"""
text_content = element.get_text(separator=" ", strip=True)
# Skip empty or very short messages
if not text_content or len(text_content.strip()) < 3:
return None
# Try to determine role (user/assistant) from class names or content
role = "mixed" # Default role
class_names = " ".join(element.get("class", [])).lower()
if "user" in class_names or "human" in class_names:
role = "user"
elif "assistant" in class_names or "ai" in class_names or "gpt" in class_names:
role = "assistant"
elif text_content.lower().startswith(("you:", "user:", "me:")):
role = "user"
text_content = re.sub(r"^(you|user|me):\s*", "", text_content, flags=re.IGNORECASE)
elif text_content.lower().startswith(("chatgpt:", "assistant:", "ai:")):
role = "assistant"
text_content = re.sub(
r"^(chatgpt|assistant|ai):\s*", "", text_content, flags=re.IGNORECASE
)
# Try to extract timestamp
timestamp = self._extract_timestamp_from_element(element)
return {"role": role, "content": text_content, "timestamp": timestamp}
def _extract_timestamp_from_element(self, element) -> str | None:
"""Extract timestamp from element."""
# Look for timestamp in various attributes and child elements
timestamp_attrs = ["data-timestamp", "timestamp", "datetime"]
for attr in timestamp_attrs:
if element.get(attr):
return element.get(attr)
# Look for time elements
time_element = element.find("time")
if time_element:
return time_element.get("datetime") or time_element.get_text(strip=True)
# Look for date-like text patterns
text = element.get_text()
date_patterns = [r"\d{4}-\d{2}-\d{2}", r"\d{1,2}/\d{1,2}/\d{4}", r"\w+ \d{1,2}, \d{4}"]
for pattern in date_patterns:
match = re.search(pattern, text)
if match:
return match.group()
return None
def _extract_timestamp_from_container(self, container) -> str | None:
"""Extract timestamp from conversation container."""
return self._extract_timestamp_from_element(container)
def _create_concatenated_content(self, conversation: dict) -> str:
"""
Create concatenated content from conversation messages.
Args:
conversation: Dictionary containing conversation data
Returns:
Formatted concatenated content
"""
title = conversation.get("title", "ChatGPT Conversation")
messages = conversation.get("messages", [])
timestamp = conversation.get("timestamp", "Unknown")
# Build message content
message_parts = []
for message in messages:
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if role == "user":
prefix = "[You]"
elif role == "assistant":
prefix = "[ChatGPT]"
else:
prefix = "[Message]"
# Add timestamp if available
if msg_timestamp:
prefix += f" ({msg_timestamp})"
message_parts.append(f"{prefix}: {content}")
concatenated_text = "\n\n".join(message_parts)
# Create final document content
doc_content = f"""Conversation: {title}
Date: {timestamp}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load ChatGPT export data.
Args:
input_dir: Directory containing ChatGPT export files or path to specific file
**load_kwargs:
max_count (int): Maximum number of conversations to process
chatgpt_export_path (str): Specific path to ChatGPT export file/directory
include_metadata (bool): Whether to include metadata in documents
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", -1)
chatgpt_export_path = load_kwargs.get("chatgpt_export_path", input_dir)
include_metadata = load_kwargs.get("include_metadata", True)
if not chatgpt_export_path:
print("No ChatGPT export path provided")
return docs
export_path = Path(chatgpt_export_path)
if not export_path.exists():
print(f"ChatGPT export path not found: {export_path}")
return docs
html_content = None
# Handle different input types
if export_path.is_file():
if export_path.suffix.lower() == ".zip":
# Extract HTML from zip file
html_content = self._extract_html_from_zip(export_path)
elif export_path.suffix.lower() == ".html":
# Read HTML file directly
try:
with open(export_path, encoding="utf-8", errors="ignore") as f:
html_content = f.read()
except Exception as e:
print(f"Error reading HTML file {export_path}: {e}")
return docs
else:
print(f"Unsupported file type: {export_path.suffix}")
return docs
elif export_path.is_dir():
# Look for HTML files in directory
html_files = list(export_path.glob("*.html"))
zip_files = list(export_path.glob("*.zip"))
if html_files:
# Use first HTML file found
html_file = html_files[0]
print(f"Found HTML file: {html_file}")
try:
with open(html_file, encoding="utf-8", errors="ignore") as f:
html_content = f.read()
except Exception as e:
print(f"Error reading HTML file {html_file}: {e}")
return docs
elif zip_files:
# Use first zip file found
zip_file = zip_files[0]
print(f"Found zip file: {zip_file}")
html_content = self._extract_html_from_zip(zip_file)
else:
print(f"No HTML or zip files found in {export_path}")
return docs
if not html_content:
print("No HTML content found to process")
return docs
# Parse conversations from HTML
print("Parsing ChatGPT conversations from HTML...")
conversations = self._parse_chatgpt_html(html_content)
if not conversations:
print("No conversations found in HTML content")
return docs
print(f"Found {len(conversations)} conversations")
# Process conversations into documents
count = 0
for conversation in conversations:
if max_count > 0 and count >= max_count:
break
if self.concatenate_conversations:
# Create one document per conversation with concatenated messages
doc_content = self._create_concatenated_content(conversation)
metadata = {}
if include_metadata:
metadata = {
"title": conversation.get("title", "ChatGPT Conversation"),
"timestamp": conversation.get("timestamp", "Unknown"),
"message_count": len(conversation.get("messages", [])),
"source": "ChatGPT Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
else:
# Create separate documents for each message
for message in conversation.get("messages", []):
if max_count > 0 and count >= max_count:
break
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if not content.strip():
continue
# Create document content with context
doc_content = f"""Conversation: {conversation.get("title", "ChatGPT Conversation")}
Role: {role}
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
Message: {content}
"""
metadata = {}
if include_metadata:
metadata = {
"conversation_title": conversation.get("title", "ChatGPT Conversation"),
"role": role,
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
"source": "ChatGPT Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
print(f"Created {len(docs)} documents from ChatGPT export")
return docs

View File

@@ -1,186 +0,0 @@
"""
ChatGPT RAG example using the unified interface.
Supports ChatGPT export data from chat.html files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .chatgpt_data.chatgpt_reader import ChatGPTReader
class ChatGPTRAG(BaseRAGExample):
"""RAG example for ChatGPT conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="ChatGPT",
description="Process and query ChatGPT conversation exports with LEANN",
default_index_name="chatgpt_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add ChatGPT-specific arguments."""
chatgpt_group = parser.add_argument_group("ChatGPT Parameters")
chatgpt_group.add_argument(
"--export-path",
type=str,
default="./chatgpt_export",
help="Path to ChatGPT export file (.zip or .html) or directory containing exports (default: ./chatgpt_export)",
)
chatgpt_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
chatgpt_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
chatgpt_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
chatgpt_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_chatgpt_exports(self, export_path: Path) -> list[Path]:
"""
Find ChatGPT export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to ChatGPT export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".html"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and html files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.html"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load ChatGPT export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"ChatGPT export path not found: {export_path}")
print(
"Please ensure you have exported your ChatGPT data and placed it in the correct location."
)
print("\nTo export your ChatGPT data:")
print("1. Sign in to ChatGPT")
print("2. Click on your profile icon → Settings → Data Controls")
print("3. Click 'Export' under Export Data")
print("4. Download the zip file from the email link")
print("5. Extract or place the file/directory at the specified path")
return []
# Find export files
export_files = self._find_chatgpt_exports(export_path)
if not export_files:
print(f"No ChatGPT export files (.zip or .html) found in: {export_path}")
return []
print(f"Found {len(export_files)} ChatGPT export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ChatGPTReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
chatgpt_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid ChatGPT export")
print("- Check that the HTML file contains conversation data")
print("- Try extracting the zip file and pointing to the HTML file directly")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for ChatGPT RAG
print("\n🤖 ChatGPT RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about travel planning'")
print("- 'What advice did ChatGPT give me about career development?'")
print("- 'Search for conversations about cooking recipes'")
print("\nTo get started:")
print("1. Export your ChatGPT data from Settings → Data Controls → Export")
print("2. Place the downloaded zip file or extracted HTML in ./chatgpt_export/")
print("3. Run this script to build your personal ChatGPT knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ChatGPTRAG()
asyncio.run(rag.run())

View File

@@ -1,44 +1,19 @@
"""Unified chunking utilities facade. """
Chunking utilities for LEANN RAG applications.
This module re-exports the packaged utilities from `leann.chunking_utils` so Provides AST-aware and traditional text chunking functionality.
that both repo apps (importing `chunking`) and installed wheels share one
single implementation. When running from the repo without installation, it
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
""" """
import sys from .utils import (
from pathlib import Path CODE_EXTENSIONS,
create_ast_chunks,
try: create_text_chunks,
from leann.chunking_utils import ( create_traditional_chunks,
CODE_EXTENSIONS, detect_code_files,
_traditional_chunks_as_dicts, get_language_from_extension,
create_ast_chunks, )
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
except Exception: # pragma: no cover - best-effort fallback for dev environment
repo_root = Path(__file__).resolve().parents[2]
leann_src = repo_root / "packages" / "leann-core" / "src"
if leann_src.exists():
sys.path.insert(0, str(leann_src))
from leann.chunking_utils import (
CODE_EXTENSIONS,
_traditional_chunks_as_dicts,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
else:
raise
__all__ = [ __all__ = [
"CODE_EXTENSIONS", "CODE_EXTENSIONS",
"_traditional_chunks_as_dicts",
"create_ast_chunks", "create_ast_chunks",
"create_text_chunks", "create_text_chunks",
"create_traditional_chunks", "create_traditional_chunks",

320
apps/chunking/utils.py Normal file
View File

@@ -0,0 +1,320 @@
"""
Enhanced chunking utilities with AST-aware code chunking support.
Provides unified interface for both traditional and AST-based text chunking.
"""
import logging
from pathlib import Path
from typing import Optional
from llama_index.core.node_parser import SentenceSplitter
logger = logging.getLogger(__name__)
# Code file extensions supported by astchunk
CODE_EXTENSIONS = {
".py": "python",
".java": "java",
".cs": "csharp",
".ts": "typescript",
".tsx": "typescript",
".js": "typescript",
".jsx": "typescript",
}
# Default chunk parameters for different content types
DEFAULT_CHUNK_PARAMS = {
"code": {
"max_chunk_size": 512,
"chunk_overlap": 64,
},
"text": {
"chunk_size": 256,
"chunk_overlap": 128,
},
}
def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
"""
Separate documents into code files and regular text files.
Args:
documents: List of LlamaIndex Document objects
code_extensions: Dict mapping file extensions to languages (defaults to CODE_EXTENSIONS)
Returns:
Tuple of (code_documents, text_documents)
"""
if code_extensions is None:
code_extensions = CODE_EXTENSIONS
code_docs = []
text_docs = []
for doc in documents:
# Get file path from metadata
file_path = doc.metadata.get("file_path", "")
if not file_path:
# Fallback to file_name
file_path = doc.metadata.get("file_name", "")
if file_path:
file_ext = Path(file_path).suffix.lower()
if file_ext in code_extensions:
# Add language info to metadata
doc.metadata["language"] = code_extensions[file_ext]
doc.metadata["is_code"] = True
code_docs.append(doc)
else:
doc.metadata["is_code"] = False
text_docs.append(doc)
else:
# If no file path, treat as text
doc.metadata["is_code"] = False
text_docs.append(doc)
logger.info(f"Detected {len(code_docs)} code files and {len(text_docs)} text files")
return code_docs, text_docs
def get_language_from_extension(file_path: str) -> Optional[str]:
"""Get the programming language from file extension."""
ext = Path(file_path).suffix.lower()
return CODE_EXTENSIONS.get(ext)
def create_ast_chunks(
documents,
max_chunk_size: int = 512,
chunk_overlap: int = 64,
metadata_template: str = "default",
) -> list[str]:
"""
Create AST-aware chunks from code documents using astchunk.
Args:
documents: List of code documents
max_chunk_size: Maximum characters per chunk
chunk_overlap: Number of AST nodes to overlap between chunks
metadata_template: Template for chunk metadata
Returns:
List of text chunks with preserved code structure
"""
try:
from astchunk import ASTChunkBuilder
except ImportError as e:
logger.error(f"astchunk not available: {e}")
logger.info("Falling back to traditional chunking for code files")
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
all_chunks = []
for doc in documents:
# Get language from metadata (set by detect_code_files)
language = doc.metadata.get("language")
if not language:
logger.warning(
"No language detected for document, falling back to traditional chunking"
)
traditional_chunks = create_traditional_chunks([doc], max_chunk_size, chunk_overlap)
all_chunks.extend(traditional_chunks)
continue
try:
# Configure astchunk
configs = {
"max_chunk_size": max_chunk_size,
"language": language,
"metadata_template": metadata_template,
"chunk_overlap": chunk_overlap if chunk_overlap > 0 else 0,
}
# Add repository-level metadata if available
repo_metadata = {
"file_path": doc.metadata.get("file_path", ""),
"file_name": doc.metadata.get("file_name", ""),
"creation_date": doc.metadata.get("creation_date", ""),
"last_modified_date": doc.metadata.get("last_modified_date", ""),
}
configs["repo_level_metadata"] = repo_metadata
# Create chunk builder and process
chunk_builder = ASTChunkBuilder(**configs)
code_content = doc.get_content()
if not code_content or not code_content.strip():
logger.warning("Empty code content, skipping")
continue
chunks = chunk_builder.chunkify(code_content)
# Extract text content from chunks
for chunk in chunks:
if hasattr(chunk, "text"):
chunk_text = chunk.text
elif isinstance(chunk, dict) and "text" in chunk:
chunk_text = chunk["text"]
elif isinstance(chunk, str):
chunk_text = chunk
else:
# Try to convert to string
chunk_text = str(chunk)
if chunk_text and chunk_text.strip():
all_chunks.append(chunk_text.strip())
logger.info(
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
)
except Exception as e:
logger.warning(f"AST chunking failed for {language} file: {e}")
logger.info("Falling back to traditional chunking")
traditional_chunks = create_traditional_chunks([doc], max_chunk_size, chunk_overlap)
all_chunks.extend(traditional_chunks)
return all_chunks
def create_traditional_chunks(
documents, chunk_size: int = 256, chunk_overlap: int = 128
) -> list[str]:
"""
Create traditional text chunks using LlamaIndex SentenceSplitter.
Args:
documents: List of documents to chunk
chunk_size: Size of each chunk in characters
chunk_overlap: Overlap between chunks
Returns:
List of text chunks
"""
# Handle invalid chunk_size values
if chunk_size <= 0:
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
chunk_size = 256
# Ensure chunk_overlap is not negative and not larger than chunk_size
if chunk_overlap < 0:
chunk_overlap = 0
if chunk_overlap >= chunk_size:
chunk_overlap = chunk_size // 2
node_parser = SentenceSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
all_texts = []
for doc in documents:
try:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
chunk_texts = [node.get_content() for node in nodes]
all_texts.extend(chunk_texts)
logger.debug(f"Created {len(chunk_texts)} traditional chunks from document")
except Exception as e:
logger.error(f"Traditional chunking failed for document: {e}")
# As last resort, add the raw content
content = doc.get_content()
if content and content.strip():
all_texts.append(content.strip())
return all_texts
def create_text_chunks(
documents,
chunk_size: int = 256,
chunk_overlap: int = 128,
use_ast_chunking: bool = False,
ast_chunk_size: int = 512,
ast_chunk_overlap: int = 64,
code_file_extensions: Optional[list[str]] = None,
ast_fallback_traditional: bool = True,
) -> list[str]:
"""
Create text chunks from documents with optional AST support for code files.
Args:
documents: List of LlamaIndex Document objects
chunk_size: Size for traditional text chunks
chunk_overlap: Overlap for traditional text chunks
use_ast_chunking: Whether to use AST chunking for code files
ast_chunk_size: Size for AST chunks
ast_chunk_overlap: Overlap for AST chunks
code_file_extensions: Custom list of code file extensions
ast_fallback_traditional: Fall back to traditional chunking on AST errors
Returns:
List of text chunks
"""
if not documents:
logger.warning("No documents provided for chunking")
return []
# Create a local copy of supported extensions for this function call
local_code_extensions = CODE_EXTENSIONS.copy()
# Update supported extensions if provided
if code_file_extensions:
# Map extensions to languages (simplified mapping)
ext_mapping = {
".py": "python",
".java": "java",
".cs": "c_sharp",
".ts": "typescript",
".tsx": "typescript",
}
for ext in code_file_extensions:
if ext.lower() not in local_code_extensions:
# Try to guess language from extension
if ext.lower() in ext_mapping:
local_code_extensions[ext.lower()] = ext_mapping[ext.lower()]
else:
logger.warning(f"Unsupported extension {ext}, will use traditional chunking")
all_chunks = []
if use_ast_chunking:
# Separate code and text documents using local extensions
code_docs, text_docs = detect_code_files(documents, local_code_extensions)
# Process code files with AST chunking
if code_docs:
logger.info(f"Processing {len(code_docs)} code files with AST chunking")
try:
ast_chunks = create_ast_chunks(
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
)
all_chunks.extend(ast_chunks)
logger.info(f"Created {len(ast_chunks)} AST chunks from code files")
except Exception as e:
logger.error(f"AST chunking failed: {e}")
if ast_fallback_traditional:
logger.info("Falling back to traditional chunking for code files")
traditional_code_chunks = create_traditional_chunks(
code_docs, chunk_size, chunk_overlap
)
all_chunks.extend(traditional_code_chunks)
else:
raise
# Process text files with traditional chunking
if text_docs:
logger.info(f"Processing {len(text_docs)} text files with traditional chunking")
text_chunks = create_traditional_chunks(text_docs, chunk_size, chunk_overlap)
all_chunks.extend(text_chunks)
logger.info(f"Created {len(text_chunks)} traditional chunks from text files")
else:
# Use traditional chunking for all files
logger.info(f"Processing {len(documents)} documents with traditional chunking")
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
logger.info(f"Total chunks created: {len(all_chunks)}")
return all_chunks

View File

View File

@@ -1,420 +0,0 @@
"""
Claude export data reader.
Reads and processes Claude conversation data from exported JSON files.
"""
import json
from pathlib import Path
from typing import Any
from zipfile import ZipFile
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ClaudeReader(BaseReader):
"""
Claude export data reader.
Reads Claude conversation data from exported JSON files or zip archives.
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
self.concatenate_conversations = concatenate_conversations
def _extract_json_from_zip(self, zip_path: Path) -> list[str]:
"""
Extract JSON files from Claude export zip file.
Args:
zip_path: Path to the Claude export zip file
Returns:
List of JSON content strings, or empty list if not found
"""
json_contents = []
try:
with ZipFile(zip_path, "r") as zip_file:
# Look for JSON files
json_files = [f for f in zip_file.namelist() if f.endswith(".json")]
if not json_files:
print(f"No JSON files found in {zip_path}")
return []
print(f"Found {len(json_files)} JSON files in archive")
for json_file in json_files:
with zip_file.open(json_file) as f:
content = f.read().decode("utf-8", errors="ignore")
json_contents.append(content)
except Exception as e:
print(f"Error extracting JSON from zip {zip_path}: {e}")
return json_contents
def _parse_claude_json(self, json_content: str) -> list[dict]:
"""
Parse Claude JSON export to extract conversations.
Args:
json_content: JSON content from Claude export
Returns:
List of conversation dictionaries
"""
try:
data = json.loads(json_content)
except json.JSONDecodeError as e:
print(f"Error parsing JSON: {e}")
return []
conversations = []
# Handle different possible JSON structures
if isinstance(data, list):
# If data is a list of conversations
for item in data:
conversation = self._extract_conversation_from_json(item)
if conversation:
conversations.append(conversation)
elif isinstance(data, dict):
# Check for common structures
if "conversations" in data:
# Structure: {"conversations": [...]}
for item in data["conversations"]:
conversation = self._extract_conversation_from_json(item)
if conversation:
conversations.append(conversation)
elif "messages" in data:
# Single conversation with messages
conversation = self._extract_conversation_from_json(data)
if conversation:
conversations.append(conversation)
else:
# Try to treat the whole object as a conversation
conversation = self._extract_conversation_from_json(data)
if conversation:
conversations.append(conversation)
return conversations
def _extract_conversation_from_json(self, conv_data: dict) -> dict | None:
"""
Extract conversation data from a JSON object.
Args:
conv_data: Dictionary containing conversation data
Returns:
Dictionary with conversation data or None
"""
if not isinstance(conv_data, dict):
return None
messages = []
# Look for messages in various possible structures
message_sources = []
if "messages" in conv_data:
message_sources = conv_data["messages"]
elif "chat" in conv_data:
message_sources = conv_data["chat"]
elif "conversation" in conv_data:
message_sources = conv_data["conversation"]
else:
# If no clear message structure, try to extract from the object itself
if "content" in conv_data and "role" in conv_data:
message_sources = [conv_data]
for msg_data in message_sources:
message = self._extract_message_from_json(msg_data)
if message:
messages.append(message)
if not messages:
return None
# Extract conversation metadata
title = self._extract_title_from_conversation(conv_data, messages)
timestamp = self._extract_timestamp_from_conversation(conv_data)
return {"title": title, "messages": messages, "timestamp": timestamp}
def _extract_message_from_json(self, msg_data: dict) -> dict | None:
"""
Extract message data from a JSON message object.
Args:
msg_data: Dictionary containing message data
Returns:
Dictionary with message data or None
"""
if not isinstance(msg_data, dict):
return None
# Extract content from various possible fields
content = ""
content_fields = ["content", "text", "message", "body"]
for field in content_fields:
if msg_data.get(field):
content = str(msg_data[field])
break
if not content or len(content.strip()) < 3:
return None
# Extract role (user/assistant/human/ai/claude)
role = "mixed" # Default role
role_fields = ["role", "sender", "from", "author", "type"]
for field in role_fields:
if msg_data.get(field):
role_value = str(msg_data[field]).lower()
if role_value in ["user", "human", "person"]:
role = "user"
elif role_value in ["assistant", "ai", "claude", "bot"]:
role = "assistant"
break
# Extract timestamp
timestamp = self._extract_timestamp_from_message(msg_data)
return {"role": role, "content": content, "timestamp": timestamp}
def _extract_timestamp_from_message(self, msg_data: dict) -> str | None:
"""Extract timestamp from message data."""
timestamp_fields = ["timestamp", "created_at", "date", "time"]
for field in timestamp_fields:
if msg_data.get(field):
return str(msg_data[field])
return None
def _extract_timestamp_from_conversation(self, conv_data: dict) -> str | None:
"""Extract timestamp from conversation data."""
timestamp_fields = ["timestamp", "created_at", "date", "updated_at", "last_updated"]
for field in timestamp_fields:
if conv_data.get(field):
return str(conv_data[field])
return None
def _extract_title_from_conversation(self, conv_data: dict, messages: list) -> str:
"""Extract or generate title for conversation."""
# Try to find explicit title
title_fields = ["title", "name", "subject", "topic"]
for field in title_fields:
if conv_data.get(field):
return str(conv_data[field])
# Generate title from first user message
for message in messages:
if message.get("role") == "user":
content = message.get("content", "")
if content:
# Use first 50 characters as title
title = content[:50].strip()
if len(content) > 50:
title += "..."
return title
return "Claude Conversation"
def _create_concatenated_content(self, conversation: dict) -> str:
"""
Create concatenated content from conversation messages.
Args:
conversation: Dictionary containing conversation data
Returns:
Formatted concatenated content
"""
title = conversation.get("title", "Claude Conversation")
messages = conversation.get("messages", [])
timestamp = conversation.get("timestamp", "Unknown")
# Build message content
message_parts = []
for message in messages:
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if role == "user":
prefix = "[You]"
elif role == "assistant":
prefix = "[Claude]"
else:
prefix = "[Message]"
# Add timestamp if available
if msg_timestamp:
prefix += f" ({msg_timestamp})"
message_parts.append(f"{prefix}: {content}")
concatenated_text = "\n\n".join(message_parts)
# Create final document content
doc_content = f"""Conversation: {title}
Date: {timestamp}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Claude export data.
Args:
input_dir: Directory containing Claude export files or path to specific file
**load_kwargs:
max_count (int): Maximum number of conversations to process
claude_export_path (str): Specific path to Claude export file/directory
include_metadata (bool): Whether to include metadata in documents
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", -1)
claude_export_path = load_kwargs.get("claude_export_path", input_dir)
include_metadata = load_kwargs.get("include_metadata", True)
if not claude_export_path:
print("No Claude export path provided")
return docs
export_path = Path(claude_export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
return docs
json_contents = []
# Handle different input types
if export_path.is_file():
if export_path.suffix.lower() == ".zip":
# Extract JSON from zip file
json_contents = self._extract_json_from_zip(export_path)
elif export_path.suffix.lower() == ".json":
# Read JSON file directly
try:
with open(export_path, encoding="utf-8", errors="ignore") as f:
json_contents.append(f.read())
except Exception as e:
print(f"Error reading JSON file {export_path}: {e}")
return docs
else:
print(f"Unsupported file type: {export_path.suffix}")
return docs
elif export_path.is_dir():
# Look for JSON files in directory
json_files = list(export_path.glob("*.json"))
zip_files = list(export_path.glob("*.zip"))
if json_files:
print(f"Found {len(json_files)} JSON files in directory")
for json_file in json_files:
try:
with open(json_file, encoding="utf-8", errors="ignore") as f:
json_contents.append(f.read())
except Exception as e:
print(f"Error reading JSON file {json_file}: {e}")
continue
if zip_files:
print(f"Found {len(zip_files)} ZIP files in directory")
for zip_file in zip_files:
zip_contents = self._extract_json_from_zip(zip_file)
json_contents.extend(zip_contents)
if not json_files and not zip_files:
print(f"No JSON or ZIP files found in {export_path}")
return docs
if not json_contents:
print("No JSON content found to process")
return docs
# Parse conversations from JSON content
print("Parsing Claude conversations from JSON...")
all_conversations = []
for json_content in json_contents:
conversations = self._parse_claude_json(json_content)
all_conversations.extend(conversations)
if not all_conversations:
print("No conversations found in JSON content")
return docs
print(f"Found {len(all_conversations)} conversations")
# Process conversations into documents
count = 0
for conversation in all_conversations:
if max_count > 0 and count >= max_count:
break
if self.concatenate_conversations:
# Create one document per conversation with concatenated messages
doc_content = self._create_concatenated_content(conversation)
metadata = {}
if include_metadata:
metadata = {
"title": conversation.get("title", "Claude Conversation"),
"timestamp": conversation.get("timestamp", "Unknown"),
"message_count": len(conversation.get("messages", [])),
"source": "Claude Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
else:
# Create separate documents for each message
for message in conversation.get("messages", []):
if max_count > 0 and count >= max_count:
break
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if not content.strip():
continue
# Create document content with context
doc_content = f"""Conversation: {conversation.get("title", "Claude Conversation")}
Role: {role}
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
Message: {content}
"""
metadata = {}
if include_metadata:
metadata = {
"conversation_title": conversation.get("title", "Claude Conversation"),
"role": role,
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
"source": "Claude Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
print(f"Created {len(docs)} documents from Claude export")
return docs

View File

@@ -1,189 +0,0 @@
"""
Claude RAG example using the unified interface.
Supports Claude export data from JSON files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .claude_data.claude_reader import ClaudeReader
class ClaudeRAG(BaseRAGExample):
"""RAG example for Claude conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Claude",
description="Process and query Claude conversation exports with LEANN",
default_index_name="claude_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add Claude-specific arguments."""
claude_group = parser.add_argument_group("Claude Parameters")
claude_group.add_argument(
"--export-path",
type=str,
default="./claude_export",
help="Path to Claude export file (.json or .zip) or directory containing exports (default: ./claude_export)",
)
claude_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
claude_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
claude_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
claude_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_claude_exports(self, export_path: Path) -> list[Path]:
"""
Find Claude export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to Claude export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".json"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and json files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.json"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load Claude export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
print(
"Please ensure you have exported your Claude data and placed it in the correct location."
)
print("\nTo export your Claude data:")
print("1. Open Claude in your browser")
print("2. Look for export/download options in settings or conversation menu")
print("3. Download the conversation data (usually in JSON format)")
print("4. Place the file/directory at the specified path")
print(
"\nNote: Claude export methods may vary. Check Claude's help documentation for current instructions."
)
return []
# Find export files
export_files = self._find_claude_exports(export_path)
if not export_files:
print(f"No Claude export files (.json or .zip) found in: {export_path}")
return []
print(f"Found {len(export_files)} Claude export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ClaudeReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
claude_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid Claude export")
print("- Check that the JSON file contains conversation data")
print("- Try using a different export format or method")
print("- Check Claude's documentation for current export procedures")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for Claude RAG
print("\n🤖 Claude RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask Claude about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about code optimization'")
print("- 'What advice did Claude give me about software design?'")
print("- 'Search for conversations about debugging techniques'")
print("\nTo get started:")
print("1. Export your Claude conversation data")
print("2. Place the JSON/ZIP file in ./claude_export/")
print("3. Run this script to build your personal Claude knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ClaudeRAG()
asyncio.run(rag.run())

View File

@@ -1,364 +0,0 @@
#!/usr/bin/env python3
"""
ColQwen RAG - Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali
Usage:
python -m apps.colqwen_rag build --pdfs ./my_pdfs/ --index my_index
python -m apps.colqwen_rag search my_index "How does attention work?"
python -m apps.colqwen_rag ask my_index --interactive
"""
import argparse
import os
import sys
from pathlib import Path
from typing import Optional, cast
# Add LEANN packages to path
_repo_root = Path(__file__).resolve().parents[1]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
import torch # noqa: E402
from colpali_engine import ColPali, ColPaliProcessor, ColQwen2, ColQwen2Processor # noqa: E402
from colpali_engine.utils.torch_utils import ListDataset # noqa: E402
from pdf2image import convert_from_path # noqa: E402
from PIL import Image # noqa: E402
from torch.utils.data import DataLoader # noqa: E402
from tqdm import tqdm # noqa: E402
# Import the existing multi-vector implementation
sys.path.append(str(_repo_root / "apps" / "multimodal" / "vision-based-pdf-multi-vector"))
from leann_multi_vector import LeannMultiVector # noqa: E402
class ColQwenRAG:
"""Easy-to-use ColQwen RAG system for multimodal PDF retrieval."""
def __init__(self, model_type: str = "colpali"):
"""
Initialize ColQwen RAG system.
Args:
model_type: "colqwen2" or "colpali"
"""
self.model_type = model_type
self.device = self._get_device()
# Use float32 on MPS to avoid memory issues, float16 on CUDA, bfloat16 on CPU
if self.device.type == "mps":
self.dtype = torch.float32
elif self.device.type == "cuda":
self.dtype = torch.float16
else:
self.dtype = torch.bfloat16
print(f"🚀 Initializing {model_type.upper()} on {self.device} with {self.dtype}")
# Load model and processor with MPS-optimized settings
try:
if model_type == "colqwen2":
self.model_name = "vidore/colqwen2-v1.0"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColQwen2Processor.from_pretrained(self.model_name)
else: # colpali
self.model_name = "vidore/colpali-v1.2"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
except Exception as e:
if "memory" in str(e).lower() or "offload" in str(e).lower():
print(f"⚠️ Memory constraint on {self.device}, using CPU with optimizations...")
self.device = torch.device("cpu")
self.dtype = torch.float32
if model_type == "colqwen2":
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
raise
def _get_device(self):
"""Auto-select best available device."""
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
else:
return torch.device("cpu")
def build_index(self, pdf_paths: list[str], index_name: str, pages_dir: Optional[str] = None):
"""
Build multimodal index from PDF files.
Args:
pdf_paths: List of PDF file paths
index_name: Name for the index
pages_dir: Directory to save page images (optional)
"""
print(f"Building index '{index_name}' from {len(pdf_paths)} PDFs...")
# Convert PDFs to images
all_images = []
all_metadata = []
if pages_dir:
os.makedirs(pages_dir, exist_ok=True)
for pdf_path in tqdm(pdf_paths, desc="Converting PDFs"):
try:
images = convert_from_path(pdf_path, dpi=150)
pdf_name = Path(pdf_path).stem
for i, image in enumerate(images):
# Save image if pages_dir specified
if pages_dir:
image_path = Path(pages_dir) / f"{pdf_name}_page_{i + 1}.png"
image.save(image_path)
all_images.append(image)
all_metadata.append(
{
"pdf_path": pdf_path,
"pdf_name": pdf_name,
"page_number": i + 1,
"image_path": str(image_path) if pages_dir else None,
}
)
except Exception as e:
print(f"❌ Error processing {pdf_path}: {e}")
continue
print(f"📄 Converted {len(all_images)} pages from {len(pdf_paths)} PDFs")
print(f"All metadata: {all_metadata}")
# Generate embeddings
print("🧠 Generating embeddings...")
embeddings = self._embed_images(all_images)
# Build LEANN index
print("🔍 Building LEANN index...")
leann_mv = LeannMultiVector(
index_path=index_name,
dim=embeddings.shape[-1],
embedding_model_name=self.model_type,
)
# Create collection and insert data
leann_mv.create_collection()
for i, (embedding, metadata) in enumerate(zip(embeddings, all_metadata)):
data = {
"doc_id": i,
"filepath": metadata.get("image_path", ""),
"colbert_vecs": embedding.numpy(), # Convert tensor to numpy
}
leann_mv.insert(data)
# Build the index
leann_mv.create_index()
print(f"✅ Index '{index_name}' built successfully!")
return leann_mv
def search(self, index_name: str, query: str, top_k: int = 5):
"""
Search the index with a text query.
Args:
index_name: Name of the index to search
query: Text query
top_k: Number of results to return
"""
print(f"🔍 Searching '{index_name}' for: '{query}'")
# Load index
leann_mv = LeannMultiVector(
index_path=index_name,
dim=128, # Will be updated when loading
embedding_model_name=self.model_type,
)
# Generate query embedding
query_embedding = self._embed_query(query)
# Search (returns list of (score, doc_id) tuples)
search_results = leann_mv.search(query_embedding.numpy(), topk=top_k)
# Display results
print(f"\n📋 Top {len(search_results)} results:")
for i, (score, doc_id) in enumerate(search_results, 1):
# Get metadata for this doc_id (we need to load the metadata)
print(f"{i}. Score: {score:.3f} | Doc ID: {doc_id}")
return search_results
def ask(self, index_name: str, interactive: bool = False):
"""
Interactive Q&A with the indexed documents.
Args:
index_name: Name of the index to query
interactive: Whether to run in interactive mode
"""
print(f"💬 ColQwen Chat with '{index_name}'")
if interactive:
print("Type 'quit' to exit, 'help' for commands")
while True:
try:
query = input("\n🤔 Your question: ").strip()
if query.lower() in ["quit", "exit", "q"]:
break
elif query.lower() == "help":
print("Commands: quit/exit/q (exit), help (this message)")
continue
elif not query:
continue
self.search(index_name, query, top_k=3)
# TODO: Add answer generation with Qwen-VL
print("\n💡 For detailed answers, we can integrate Qwen-VL here!")
except KeyboardInterrupt:
print("\n👋 Goodbye!")
break
else:
query = input("🤔 Your question: ").strip()
if query:
self.search(index_name, query)
def _embed_images(self, images: list[Image.Image]) -> torch.Tensor:
"""Generate embeddings for a list of images."""
dataset = ListDataset(images)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=lambda x: x)
embeddings = []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Embedding images"):
batch_images = cast(list, batch)
batch_inputs = self.processor.process_images(batch_images).to(self.device)
batch_embeddings = self.model(**batch_inputs)
embeddings.append(batch_embeddings.cpu())
return torch.cat(embeddings, dim=0)
def _embed_query(self, query: str) -> torch.Tensor:
"""Generate embedding for a text query."""
with torch.no_grad():
query_inputs = self.processor.process_queries([query]).to(self.device)
query_embedding = self.model(**query_inputs)
return query_embedding.cpu()
def main():
parser = argparse.ArgumentParser(description="ColQwen RAG - Easy multimodal PDF retrieval")
subparsers = parser.add_subparsers(dest="command", help="Available commands")
# Build command
build_parser = subparsers.add_parser("build", help="Build index from PDFs")
build_parser.add_argument("--pdfs", required=True, help="Directory containing PDF files")
build_parser.add_argument("--index", required=True, help="Index name")
build_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
build_parser.add_argument("--pages-dir", help="Directory to save page images")
# Search command
search_parser = subparsers.add_parser("search", help="Search the index")
search_parser.add_argument("index", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument("--top-k", type=int, default=5, help="Number of results")
search_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Interactive Q&A")
ask_parser.add_argument("index", help="Index name")
ask_parser.add_argument("--interactive", action="store_true", help="Interactive mode")
ask_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
args = parser.parse_args()
if not args.command:
parser.print_help()
return
# Initialize ColQwen RAG
if args.command == "build":
colqwen = ColQwenRAG(args.model)
# Get PDF files
pdf_dir = Path(args.pdfs)
if pdf_dir.is_file() and pdf_dir.suffix.lower() == ".pdf":
pdf_paths = [str(pdf_dir)]
elif pdf_dir.is_dir():
pdf_paths = [str(p) for p in pdf_dir.glob("*.pdf")]
else:
print(f"❌ Invalid PDF path: {args.pdfs}")
return
if not pdf_paths:
print(f"❌ No PDF files found in {args.pdfs}")
return
colqwen.build_index(pdf_paths, args.index, args.pages_dir)
elif args.command == "search":
colqwen = ColQwenRAG(args.model)
colqwen.search(args.index, args.query, args.top_k)
elif args.command == "ask":
colqwen = ColQwenRAG(args.model)
colqwen.ask(args.index, args.interactive)
if __name__ == "__main__":
main()

View File

@@ -5,7 +5,6 @@ Supports PDF, TXT, MD, and other document formats.
import sys import sys
from pathlib import Path from pathlib import Path
from typing import Any, Union
# Add parent directory to path for imports # Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent)) sys.path.insert(0, str(Path(__file__).parent))
@@ -52,7 +51,7 @@ class DocumentRAG(BaseRAGExample):
help="Enable AST-aware chunking for code files in the data directory", help="Enable AST-aware chunking for code files in the data directory",
) )
async def load_data(self, args) -> list[Union[str, dict[str, Any]]]: async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks.""" """Load documents and convert to text chunks."""
print(f"Loading documents from: {args.data_dir}") print(f"Loading documents from: {args.data_dir}")
if args.file_types: if args.file_types:

View File

@@ -9,8 +9,7 @@ from pathlib import Path
# Add parent directory to path for imports # Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent)) sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample from base_rag_example import BaseRAGExample, create_text_chunks
from chunking import create_text_chunks
from .email_data.LEANN_email_reader import EmlxReader from .email_data.LEANN_email_reader import EmlxReader

View File

@@ -74,7 +74,7 @@ class ChromeHistoryReader(BaseReader):
if count >= max_count and max_count > 0: if count >= max_count and max_count > 0:
break break
last_visit, url, title, visit_count, typed_count, _hidden = row last_visit, url, title, visit_count, typed_count, hidden = row
# Create document content with metadata embedded in text # Create document content with metadata embedded in text
doc_content = f""" doc_content = f"""

View File

@@ -1,218 +0,0 @@
#!/usr/bin/env python3
"""
CLIP Image RAG Application
This application enables RAG (Retrieval-Augmented Generation) on images using CLIP embeddings.
You can index a directory of images and search them using text queries.
Usage:
python -m apps.image_rag --image-dir ./my_images/ --query "a sunset over mountains"
python -m apps.image_rag --image-dir ./my_images/ --interactive
"""
import argparse
import pickle
import tempfile
from pathlib import Path
import numpy as np
from PIL import Image
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from apps.base_rag_example import BaseRAGExample
class ImageRAG(BaseRAGExample):
"""
RAG application for images using CLIP embeddings.
This class provides a complete RAG pipeline for image data, including
CLIP embedding generation, indexing, and text-based image search.
"""
def __init__(self):
super().__init__(
name="Image RAG",
description="RAG application for images using CLIP embeddings",
default_index_name="image_index",
)
# Override default embedding model to use CLIP
self.embedding_model_default = "clip-ViT-L-14"
self.embedding_mode_default = "sentence-transformers"
self._image_data: list[dict] = []
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add image-specific arguments."""
image_group = parser.add_argument_group("Image Parameters")
image_group.add_argument(
"--image-dir",
type=str,
required=True,
help="Directory containing images to index",
)
image_group.add_argument(
"--image-extensions",
type=str,
nargs="+",
default=[".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"],
help="Image file extensions to process (default: .jpg .jpeg .png .gif .bmp .webp)",
)
image_group.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for CLIP embedding generation (default: 32)",
)
async def load_data(self, args) -> list[str]:
"""Load images, generate CLIP embeddings, and return text descriptions."""
self._image_data = self._load_images_and_embeddings(args)
return [entry["text"] for entry in self._image_data]
def _load_images_and_embeddings(self, args) -> list[dict]:
"""Helper to process images and produce embeddings/metadata."""
image_dir = Path(args.image_dir)
if not image_dir.exists():
raise ValueError(f"Image directory does not exist: {image_dir}")
print(f"📸 Loading images from {image_dir}...")
# Find all image files
image_files = []
for ext in args.image_extensions:
image_files.extend(image_dir.rglob(f"*{ext}"))
image_files.extend(image_dir.rglob(f"*{ext.upper()}"))
if not image_files:
raise ValueError(
f"No images found in {image_dir} with extensions {args.image_extensions}"
)
print(f"✅ Found {len(image_files)} images")
# Limit if max_items is set
if args.max_items > 0:
image_files = image_files[: args.max_items]
print(f"📊 Processing {len(image_files)} images (limited by --max-items)")
# Load CLIP model
print("🔍 Loading CLIP model...")
model = SentenceTransformer(self.embedding_model_default)
# Process images and generate embeddings
print("🖼️ Processing images and generating embeddings...")
image_data = []
batch_images = []
batch_paths = []
for image_path in tqdm(image_files, desc="Processing images"):
try:
image = Image.open(image_path).convert("RGB")
batch_images.append(image)
batch_paths.append(image_path)
# Process in batches
if len(batch_images) >= args.batch_size:
embeddings = model.encode(
batch_images,
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=args.batch_size,
show_progress_bar=False,
)
for img_path, embedding in zip(batch_paths, embeddings):
image_data.append(
{
"text": f"Image: {img_path.name}\nPath: {img_path}",
"metadata": {
"image_path": str(img_path),
"image_name": img_path.name,
"image_dir": str(image_dir),
},
"embedding": embedding.astype(np.float32),
}
)
batch_images = []
batch_paths = []
except Exception as e:
print(f"⚠️ Failed to process {image_path}: {e}")
continue
# Process remaining images
if batch_images:
embeddings = model.encode(
batch_images,
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=len(batch_images),
show_progress_bar=False,
)
for img_path, embedding in zip(batch_paths, embeddings):
image_data.append(
{
"text": f"Image: {img_path.name}\nPath: {img_path}",
"metadata": {
"image_path": str(img_path),
"image_name": img_path.name,
"image_dir": str(image_dir),
},
"embedding": embedding.astype(np.float32),
}
)
print(f"✅ Processed {len(image_data)} images")
return image_data
async def build_index(self, args, texts: list[str]) -> str:
"""Build index using pre-computed CLIP embeddings."""
from leann.api import LeannBuilder
if not self._image_data or len(self._image_data) != len(texts):
raise RuntimeError("No image data found. Make sure load_data() ran successfully.")
print("🔨 Building LEANN index with CLIP embeddings...")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=self.embedding_model_default,
embedding_mode=self.embedding_mode_default,
is_recompute=False,
distance_metric="cosine",
graph_degree=args.graph_degree,
build_complexity=args.build_complexity,
is_compact=not args.no_compact,
)
for text, data in zip(texts, self._image_data):
builder.add_text(text=text, metadata=data["metadata"])
ids = [str(i) for i in range(len(self._image_data))]
embeddings = np.array([data["embedding"] for data in self._image_data], dtype=np.float32)
with tempfile.NamedTemporaryFile(mode="wb", suffix=".pkl", delete=False) as f:
pickle.dump((ids, embeddings), f)
pkl_path = f.name
try:
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
builder.build_index_from_embeddings(index_path, pkl_path)
print(f"✅ Index built successfully at {index_path}")
return index_path
finally:
Path(pkl_path).unlink()
def main():
"""Main entry point for the image RAG application."""
import asyncio
app = ImageRAG()
asyncio.run(app.run())
if __name__ == "__main__":
main()

View File

@@ -1 +0,0 @@
"""iMessage data processing module."""

View File

@@ -1,342 +0,0 @@
"""
iMessage data reader.
Reads and processes iMessage conversation data from the macOS Messages database.
"""
import sqlite3
from datetime import datetime
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class IMessageReader(BaseReader):
"""
iMessage data reader.
Reads iMessage conversation data from the macOS Messages database (chat.db).
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
self.concatenate_conversations = concatenate_conversations
def _get_default_chat_db_path(self) -> Path:
"""
Get the default path to the iMessage chat database.
Returns:
Path to the chat.db file
"""
home = Path.home()
return home / "Library" / "Messages" / "chat.db"
def _convert_cocoa_timestamp(self, cocoa_timestamp: int) -> str:
"""
Convert Cocoa timestamp to readable format.
Args:
cocoa_timestamp: Timestamp in Cocoa format (nanoseconds since 2001-01-01)
Returns:
Formatted timestamp string
"""
if cocoa_timestamp == 0:
return "Unknown"
try:
# Cocoa timestamp is nanoseconds since 2001-01-01 00:00:00 UTC
# Convert to seconds and add to Unix epoch
cocoa_epoch = datetime(2001, 1, 1)
unix_timestamp = cocoa_timestamp / 1_000_000_000 # Convert nanoseconds to seconds
message_time = cocoa_epoch.timestamp() + unix_timestamp
return datetime.fromtimestamp(message_time).strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
return "Unknown"
def _get_contact_name(self, handle_id: str) -> str:
"""
Get a readable contact name from handle ID.
Args:
handle_id: The handle ID (phone number or email)
Returns:
Formatted contact name
"""
if not handle_id:
return "Unknown"
# Clean up phone numbers and emails for display
if "@" in handle_id:
return handle_id # Email address
elif handle_id.startswith("+"):
return handle_id # International phone number
else:
# Try to format as phone number
digits = "".join(filter(str.isdigit, handle_id))
if len(digits) == 10:
return f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
elif len(digits) == 11 and digits[0] == "1":
return f"+1 ({digits[1:4]}) {digits[4:7]}-{digits[7:]}"
else:
return handle_id
def _read_messages_from_db(self, db_path: Path) -> list[dict]:
"""
Read messages from the iMessage database.
Args:
db_path: Path to the chat.db file
Returns:
List of message dictionaries
"""
if not db_path.exists():
print(f"iMessage database not found at: {db_path}")
return []
try:
# Connect to the database
conn = sqlite3.connect(str(db_path))
cursor = conn.cursor()
# Query to get messages with chat and handle information
query = """
SELECT
m.ROWID as message_id,
m.text,
m.date,
m.is_from_me,
m.service,
c.chat_identifier,
c.display_name as chat_display_name,
h.id as handle_id,
c.ROWID as chat_id
FROM message m
LEFT JOIN chat_message_join cmj ON m.ROWID = cmj.message_id
LEFT JOIN chat c ON cmj.chat_id = c.ROWID
LEFT JOIN handle h ON m.handle_id = h.ROWID
WHERE m.text IS NOT NULL AND m.text != ''
ORDER BY c.ROWID, m.date
"""
cursor.execute(query)
rows = cursor.fetchall()
messages = []
for row in rows:
(
message_id,
text,
date,
is_from_me,
service,
chat_identifier,
chat_display_name,
handle_id,
chat_id,
) = row
message = {
"message_id": message_id,
"text": text,
"timestamp": self._convert_cocoa_timestamp(date),
"is_from_me": bool(is_from_me),
"service": service or "iMessage",
"chat_identifier": chat_identifier or "Unknown",
"chat_display_name": chat_display_name or "Unknown Chat",
"handle_id": handle_id or "Unknown",
"contact_name": self._get_contact_name(handle_id or ""),
"chat_id": chat_id,
}
messages.append(message)
conn.close()
print(f"Found {len(messages)} messages in database")
return messages
except sqlite3.Error as e:
print(f"Error reading iMessage database: {e}")
return []
except Exception as e:
print(f"Unexpected error reading iMessage database: {e}")
return []
def _group_messages_by_chat(self, messages: list[dict]) -> dict[int, list[dict]]:
"""
Group messages by chat ID.
Args:
messages: List of message dictionaries
Returns:
Dictionary mapping chat_id to list of messages
"""
chats = {}
for message in messages:
chat_id = message["chat_id"]
if chat_id not in chats:
chats[chat_id] = []
chats[chat_id].append(message)
return chats
def _create_concatenated_content(self, chat_id: int, messages: list[dict]) -> str:
"""
Create concatenated content from chat messages.
Args:
chat_id: The chat ID
messages: List of messages in the chat
Returns:
Concatenated text content
"""
if not messages:
return ""
# Get chat info from first message
first_msg = messages[0]
chat_name = first_msg["chat_display_name"]
chat_identifier = first_msg["chat_identifier"]
# Build message content
message_parts = []
for message in messages:
timestamp = message["timestamp"]
is_from_me = message["is_from_me"]
text = message["text"]
contact_name = message["contact_name"]
if is_from_me:
prefix = "[You]"
else:
prefix = f"[{contact_name}]"
if timestamp != "Unknown":
prefix += f" ({timestamp})"
message_parts.append(f"{prefix}: {text}")
concatenated_text = "\n\n".join(message_parts)
doc_content = f"""Chat: {chat_name}
Identifier: {chat_identifier}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def _create_individual_content(self, message: dict) -> str:
"""
Create content for individual message.
Args:
message: Message dictionary
Returns:
Formatted message content
"""
timestamp = message["timestamp"]
is_from_me = message["is_from_me"]
text = message["text"]
contact_name = message["contact_name"]
chat_name = message["chat_display_name"]
sender = "You" if is_from_me else contact_name
return f"""Message from {sender} in chat "{chat_name}"
Time: {timestamp}
Content: {text}
"""
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load iMessage data and return as documents.
Args:
input_dir: Optional path to directory containing chat.db file.
If not provided, uses default macOS location.
**load_kwargs: Additional arguments (unused)
Returns:
List of Document objects containing iMessage data
"""
docs = []
# Determine database path
if input_dir:
db_path = Path(input_dir) / "chat.db"
else:
db_path = self._get_default_chat_db_path()
print(f"Reading iMessage database from: {db_path}")
# Read messages from database
messages = self._read_messages_from_db(db_path)
if not messages:
return docs
if self.concatenate_conversations:
# Group messages by chat and create concatenated documents
chats = self._group_messages_by_chat(messages)
for chat_id, chat_messages in chats.items():
if not chat_messages:
continue
content = self._create_concatenated_content(chat_id, chat_messages)
# Create metadata
first_msg = chat_messages[0]
last_msg = chat_messages[-1]
metadata = {
"source": "iMessage",
"chat_id": chat_id,
"chat_name": first_msg["chat_display_name"],
"chat_identifier": first_msg["chat_identifier"],
"message_count": len(chat_messages),
"first_message_date": first_msg["timestamp"],
"last_message_date": last_msg["timestamp"],
"participants": list(
{msg["contact_name"] for msg in chat_messages if not msg["is_from_me"]}
),
}
doc = Document(text=content, metadata=metadata)
docs.append(doc)
else:
# Create individual documents for each message
for message in messages:
content = self._create_individual_content(message)
metadata = {
"source": "iMessage",
"message_id": message["message_id"],
"chat_id": message["chat_id"],
"chat_name": message["chat_display_name"],
"chat_identifier": message["chat_identifier"],
"timestamp": message["timestamp"],
"is_from_me": message["is_from_me"],
"contact_name": message["contact_name"],
"service": message["service"],
}
doc = Document(text=content, metadata=metadata)
docs.append(doc)
print(f"Created {len(docs)} documents from iMessage data")
return docs

View File

@@ -1,125 +0,0 @@
"""
iMessage RAG Example.
This example demonstrates how to build a RAG system on your iMessage conversation history.
"""
import asyncio
from pathlib import Path
from leann.chunking_utils import create_text_chunks
from apps.base_rag_example import BaseRAGExample
from apps.imessage_data.imessage_reader import IMessageReader
class IMessageRAG(BaseRAGExample):
"""RAG example for iMessage conversation history."""
def __init__(self):
super().__init__(
name="iMessage",
description="RAG on your iMessage conversation history",
default_index_name="imessage_index",
)
def _add_specific_arguments(self, parser):
"""Add iMessage-specific arguments."""
imessage_group = parser.add_argument_group("iMessage Parameters")
imessage_group.add_argument(
"--db-path",
type=str,
default=None,
help="Path to iMessage chat.db file (default: ~/Library/Messages/chat.db)",
)
imessage_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
imessage_group.add_argument(
"--no-concatenate-conversations",
action="store_true",
help="Process each message individually instead of concatenating by conversation",
)
imessage_group.add_argument(
"--chunk-size",
type=int,
default=1000,
help="Maximum characters per text chunk (default: 1000)",
)
imessage_group.add_argument(
"--chunk-overlap",
type=int,
default=200,
help="Overlap between text chunks (default: 200)",
)
async def load_data(self, args) -> list[str]:
"""Load iMessage history and convert to text chunks."""
print("Loading iMessage conversation history...")
# Determine concatenation setting
concatenate = args.concatenate_conversations and not args.no_concatenate_conversations
# Initialize iMessage reader
reader = IMessageReader(concatenate_conversations=concatenate)
# Load documents
try:
if args.db_path:
# Use custom database path
db_dir = str(Path(args.db_path).parent)
documents = reader.load_data(input_dir=db_dir)
else:
# Use default macOS location
documents = reader.load_data()
except Exception as e:
print(f"Error loading iMessage data: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure you have granted Full Disk Access to your terminal/IDE")
print("2. Check that the iMessage database exists at ~/Library/Messages/chat.db")
print("3. Try specifying a custom path with --db-path if you have a backup")
return []
if not documents:
print("No iMessage conversations found!")
return []
print(f"Loaded {len(documents)} iMessage documents")
# Show some statistics
total_messages = sum(doc.metadata.get("message_count", 1) for doc in documents)
print(f"Total messages: {total_messages}")
if concatenate:
# Show chat statistics
chat_names = [doc.metadata.get("chat_name", "Unknown") for doc in documents]
unique_chats = len(set(chat_names))
print(f"Unique conversations: {unique_chats}")
# Convert to text chunks
all_texts = create_text_chunks(
documents,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
)
# Apply max_items limit if specified
if args.max_items > 0:
all_texts = all_texts[: args.max_items]
print(f"Limited to {len(all_texts)} text chunks (max_items={args.max_items})")
return all_texts
async def main():
"""Main entry point."""
app = IMessageRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,113 +0,0 @@
## Vision-based PDF Multi-Vector Demos (macOS/MPS)
This folder contains two demos to index PDF pages as images and run multi-vector retrieval with ColPali/ColQwen2, plus optional similarity map visualization and answer generation.
### What youll run
- `multi-vector-leann-paper-example.py`: local PDF → pages → embed → build HNSW index → search.
- `multi-vector-leann-similarity-map.py`: HF dataset (default) or local pages → embed → index → retrieve → similarity maps → optional Qwen-VL answer.
## Prerequisites (macOS)
### 1) Homebrew poppler (for pdf2image)
```bash
brew install poppler
which pdfinfo && pdfinfo -v
```
### 2) Python environment
Use uv (recommended) or pip. Python 3.9+.
Using uv:
```bash
uv pip install \
colpali_engine \
pdf2image \
pillow \
matplotlib qwen_vl_utils \
einops \
seaborn
```
Notes:
- On first run, models download from Hugging Face. Login/config if needed.
- The scripts auto-select device: CUDA > MPS > CPU. Verify MPS:
```bash
python -c "import torch; print('MPS available:', bool(getattr(torch.backends, 'mps', None) and torch.backends.mps.is_available()))"
```
## Run the demos
### A) Local PDF example
Converts a local PDF into page images, embeds them, builds an index, and searches.
```bash
cd apps/multimodal/vision-based-pdf-multi-vector
# If you don't have the sample PDF locally, download it (ignored by Git)
mkdir -p pdfs
curl -L -o pdfs/2004.12832v2.pdf https://arxiv.org/pdf/2004.12832.pdf
ls pdfs/2004.12832v2.pdf
# Ensure output dir exists
mkdir -p pages
python multi-vector-leann-paper-example.py
```
Expected:
- Page images in `pages/`.
- Console prints like `Using device=mps, dtype=...` and retrieved file paths for queries.
To use your own PDF: edit `pdf_path` near the top of the script.
### B) Similarity map + answer demo
Uses HF dataset `weaviate/arXiv-AI-papers-multi-vector` by default; can switch to local pages.
```bash
cd apps/multimodal/vision-based-pdf-multi-vector
python multi-vector-leann-similarity-map.py
```
Artifacts (when enabled):
- Retrieved pages: `./figures/retrieved_page_rank{K}.png`
- Similarity maps: `./figures/similarity_map_rank{K}.png`
Key knobs in the script (top of file):
- `QUERY`: your question
- `MODEL`: `"colqwen2"` or `"colpali"`
- `USE_HF_DATASET`: set `False` to use local pages
- `PDF`, `PAGES_DIR`: for local mode
- `INDEX_PATH`, `TOPK`, `FIRST_STAGE_K`, `REBUILD_INDEX`
- `SIMILARITY_MAP`, `SIM_TOKEN_IDX`, `SIM_OUTPUT`
- `ANSWER`, `MAX_NEW_TOKENS` (Qwen-VL)
## Troubleshooting
- pdf2image errors on macOS: ensure `brew install poppler` and `pdfinfo` works in terminal.
- Slow or OOM on MPS: reduce dataset size (e.g., set `MAX_DOCS`) or switch to CPU.
- NaNs on MPS: keep fp32 on MPS (default in similarity-map script); avoid fp16 there.
- First-run model downloads can be large; ensure network access (HF mirrors if needed).
## Notes
- Index files are under `./indexes/`. Delete or set `REBUILD_INDEX=True` to rebuild.
- For local PDFs, page images go to `./pages/`.
### Retrieval and Visualization Example
Example settings in `multi-vector-leann-similarity-map.py`:
- `QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"`
- `SIMILARITY_MAP = True` (to generate heatmaps)
- `TOPK = 1` (save the top retrieved page and its similarity map)
Run:
```bash
cd apps/multimodal/vision-based-pdf-multi-vector
python multi-vector-leann-similarity-map.py
```
Outputs (by default):
- Retrieved page: `./figures/retrieved_page_rank1.png`
- Similarity map: `./figures/similarity_map_rank1.png`
Sample visualization (example result, and the query is "QUERY = "How does Vim model performance and efficiency compared to other models?"
"):
![Similarity map example](fig/image.png)
Notes:
- Set `SIM_TOKEN_IDX` to visualize a specific token index; set `-1` to auto-select the most salient token.
- If you change `SIM_OUTPUT` to a file path (e.g., `./figures/my_map.png`), multiple ranks are saved as `my_map_rank{K}.png`.

View File

@@ -1,132 +0,0 @@
#!/usr/bin/env python3
"""Simple test script to test colqwen2 forward pass with a single image."""
import os
import sys
from pathlib import Path
# Add the current directory to path to import leann_multi_vector
sys.path.insert(0, str(Path(__file__).parent))
import torch
from leann_multi_vector import _embed_images, _ensure_repo_paths_importable, _load_colvision
from PIL import Image
# Ensure repo paths are importable
_ensure_repo_paths_importable(__file__)
# Set environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def create_test_image():
"""Create a simple test image."""
# Create a simple RGB image (800x600)
img = Image.new("RGB", (800, 600), color="white")
return img
def load_test_image_from_file():
"""Try to load an image from the indexes directory if available."""
# Try to find an existing image in the indexes directory
indexes_dir = Path(__file__).parent / "indexes"
# Look for images in common locations
possible_paths = [
indexes_dir / "vidore_fastplaid" / "images",
indexes_dir / "colvision_large.leann.images",
indexes_dir / "colvision.leann.images",
]
for img_dir in possible_paths:
if img_dir.exists():
# Find first image file
for ext in [".png", ".jpg", ".jpeg"]:
for img_file in img_dir.glob(f"*{ext}"):
print(f"Loading test image from: {img_file}")
return Image.open(img_file)
return None
def main():
print("=" * 60)
print("Testing ColQwen2 Forward Pass")
print("=" * 60)
# Step 1: Load or create test image
print("\n[Step 1] Loading test image...")
test_image = load_test_image_from_file()
if test_image is None:
print("No existing image found, creating a simple test image...")
test_image = create_test_image()
else:
print(f"✓ Loaded image: {test_image.size} ({test_image.mode})")
# Convert to RGB if needed
if test_image.mode != "RGB":
test_image = test_image.convert("RGB")
print(f"✓ Converted to RGB: {test_image.size}")
# Step 2: Load model
print("\n[Step 2] Loading ColQwen2 model...")
try:
model_name, model, processor, device_str, device, dtype = _load_colvision("colqwen2")
print(f"✓ Model loaded: {model_name}")
print(f"✓ Device: {device_str}, dtype: {dtype}")
# Print model info
if hasattr(model, "device"):
print(f"✓ Model device: {model.device}")
if hasattr(model, "dtype"):
print(f"✓ Model dtype: {model.dtype}")
except Exception as e:
print(f"✗ Error loading model: {e}")
import traceback
traceback.print_exc()
return
# Step 3: Test forward pass
print("\n[Step 3] Running forward pass...")
try:
# Use the _embed_images function which handles batching and forward pass
images = [test_image]
print(f"Processing {len(images)} image(s)...")
doc_vecs = _embed_images(model, processor, images)
print("✓ Forward pass completed!")
print(f"✓ Number of embeddings: {len(doc_vecs)}")
if len(doc_vecs) > 0:
emb = doc_vecs[0]
print(f"✓ Embedding shape: {emb.shape}")
print(f"✓ Embedding dtype: {emb.dtype}")
print("✓ Embedding stats:")
print(f" - Min: {emb.min().item():.4f}")
print(f" - Max: {emb.max().item():.4f}")
print(f" - Mean: {emb.mean().item():.4f}")
print(f" - Std: {emb.std().item():.4f}")
# Check for NaN or Inf
if torch.isnan(emb).any():
print("⚠ Warning: Embedding contains NaN values!")
if torch.isinf(emb).any():
print("⚠ Warning: Embedding contains Inf values!")
except Exception as e:
print(f"✗ Error during forward pass: {e}")
import traceback
traceback.print_exc()
return
print("\n" + "=" * 60)
print("Test completed successfully!")
print("=" * 60)
if __name__ == "__main__":
main()

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,112 +0,0 @@
# pip install pdf2image
# pip install pymilvus
# pip install colpali_engine
# pip install tqdm
# pip install pillow
import os
import re
import sys
from pathlib import Path
from typing import cast
from PIL import Image
from tqdm import tqdm
# Ensure local leann packages are importable before importing them
_repo_root = Path(__file__).resolve().parents[3]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
import torch
from colpali_engine.models import ColPali
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
from colpali_engine.utils.torch_utils import ListDataset, get_torch_device
from torch.utils.data import DataLoader
# Auto-select device: CUDA > MPS (mac) > CPU
_device_str = (
"cuda"
if torch.cuda.is_available()
else (
"mps"
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
else "cpu"
)
)
device = get_torch_device(_device_str)
# Prefer fp16 on GPU/MPS, bfloat16 on CPU
_dtype = torch.float16 if _device_str in ("cuda", "mps") else torch.bfloat16
model_name = "vidore/colpali-v1.2"
model = ColPali.from_pretrained(
model_name,
torch_dtype=_dtype,
device_map=device,
).eval()
print(f"Using device={_device_str}, dtype={_dtype}")
queries = [
"How to end-to-end retrieval with ColBert",
"Where is ColBERT performance Table, including text representation results?",
]
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
dataloader = DataLoader(
dataset=ListDataset[str](queries),
batch_size=1,
shuffle=False,
collate_fn=lambda x: processor.process_queries(x),
)
qs: list[torch.Tensor] = []
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
print(qs[0].shape)
# %%
page_filenames = sorted(os.listdir("./pages"), key=lambda n: int(re.search(r"\d+", n).group()))
images = [Image.open(os.path.join("./pages", name)) for name in page_filenames]
dataloader = DataLoader(
dataset=ListDataset[str](images),
batch_size=1,
shuffle=False,
collate_fn=lambda x: processor.process_images(x),
)
ds: list[torch.Tensor] = []
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
print(ds[0].shape)
# %%
# Build HNSW index via LeannRetriever primitives and run search
index_path = "./indexes/colpali.leann"
retriever = LeannRetriever(index_path=index_path, dim=int(ds[0].shape[-1]))
retriever.create_collection()
filepaths = [os.path.join("./pages", name) for name in page_filenames]
for i in range(len(filepaths)):
data = {
"colbert_vecs": ds[i].float().numpy(),
"doc_id": i,
"filepath": filepaths[i],
}
retriever.insert(data)
retriever.create_index()
for query in qs:
query_np = query.float().numpy()
result = retriever.search(query_np, topk=1)
print(filepaths[result[0][1]])

View File

@@ -1,713 +0,0 @@
## Jupyter-style notebook script
# %%
# uv pip install matplotlib qwen_vl_utils
import argparse
import faulthandler
import os
import time
from typing import Any, Optional
import numpy as np
from PIL import Image
from tqdm import tqdm
# Enable faulthandler to get stack trace on segfault
faulthandler.enable()
from leann_multi_vector import ( # utility functions/classes
_ensure_repo_paths_importable,
_load_images_from_dir,
_maybe_convert_pdf_to_images,
_load_colvision,
_embed_images,
_embed_queries,
_build_index,
_load_retriever_if_index_exists,
_generate_similarity_map,
_build_fast_plaid_index,
_load_fast_plaid_index_if_exists,
_search_fast_plaid,
_get_fast_plaid_image,
_get_fast_plaid_metadata,
QwenVL,
)
_ensure_repo_paths_importable(__file__)
# %%
# Config
os.environ["TOKENIZERS_PARALLELISM"] = "false"
QUERY = "The paper talk about the latent video generative model and data curation in the related work part?"
MODEL: str = "colqwen2" # "colpali" or "colqwen2"
# Data source: set to True to use the Hugging Face dataset example (recommended)
USE_HF_DATASET: bool = True
# Single dataset name (used when DATASET_NAMES is None)
DATASET_NAME: str = "weaviate/arXiv-AI-papers-multi-vector"
# Multiple datasets to combine (if provided, DATASET_NAME is ignored)
# Can be:
# - List of strings: ["dataset1", "dataset2"]
# - List of tuples: [("dataset1", "config1"), ("dataset2", None)] # None = no config needed
# - Mixed: ["dataset1", ("dataset2", "config2")]
#
# Some potential datasets with images (may need IMAGE_FIELD_NAME adjustment):
# - "weaviate/arXiv-AI-papers-multi-vector" (current, has "page_image" field)
# - ("lmms-lab/DocVQA", "DocVQA") (has "image" field, document images, needs config)
# - ("lmms-lab/DocVQA", "InfographicVQA") (has "image" field, infographic images)
# - "pixparse/arxiv-papers" (if available, arXiv papers)
# - "allenai/ai2d" (AI2D diagram dataset, has "image" field)
# - "huggingface/document-images" (if available)
# Note: Check dataset structure first - some may need IMAGE_FIELD_NAME specified
# DATASET_NAMES: Optional[list[str | tuple[str, Optional[str]]]] = None
DATASET_NAMES = [
"weaviate/arXiv-AI-papers-multi-vector",
# ("lmms-lab/DocVQA", "DocVQA"), # Specify config name for datasets with multiple configs
]
# Load multiple splits to get more data (e.g., ["train", "test", "validation"])
# Set to None to try loading all available splits automatically
DATASET_SPLITS: Optional[list[str]] = ["train", "test"] # None = auto-detect all splits
# Image field name in the dataset (auto-detect if None)
# Common names: "page_image", "image", "images", "img"
IMAGE_FIELD_NAME: Optional[str] = None # None = auto-detect
MAX_DOCS: Optional[int] = None # limit number of pages to index; None = all
# Local pages (used when USE_HF_DATASET == False)
PDF: Optional[str] = None # e.g., "./pdfs/2004.12832v2.pdf"
PAGES_DIR: str = "./pages"
# Custom folder path (takes precedence over USE_HF_DATASET and PAGES_DIR)
# If set, images will be loaded directly from this folder
CUSTOM_FOLDER_PATH: Optional[str] = None # e.g., "/home/ubuntu/dr-tulu/agent/screenshots"
# Whether to recursively search subdirectories when loading from custom folder
CUSTOM_FOLDER_RECURSIVE: bool = False # Set to True to search subdirectories
# Index + retrieval settings
# Use a different index path for larger dataset to avoid overwriting existing index
INDEX_PATH: str = "./indexes/colvision_large.leann"
# Fast-Plaid index settings (alternative to LEANN index)
# These are now command-line arguments (see CLI overrides section)
TOPK: int = 3
FIRST_STAGE_K: int = 500
REBUILD_INDEX: bool = False # Set to True to force rebuild even if index exists
# Artifacts
SAVE_TOP_IMAGE: Optional[str] = "./figures/retrieved_page.png"
SIMILARITY_MAP: bool = True
SIM_TOKEN_IDX: int = 13 # -1 means auto-select the most salient token
SIM_OUTPUT: str = "./figures/similarity_map.png"
ANSWER: bool = True
MAX_NEW_TOKENS: int = 1024
# %%
# CLI overrides
parser = argparse.ArgumentParser(description="Multi-vector LEANN similarity map demo")
parser.add_argument(
"--search-method",
type=str,
choices=["ann", "exact", "exact-all"],
default="ann",
help="Which search method to use: 'ann' (fast ANN), 'exact' (ANN + exact rerank), or 'exact-all' (exact over all docs).",
)
parser.add_argument(
"--query",
type=str,
default=QUERY,
help=f"Query string to search for. Default: '{QUERY}'",
)
parser.add_argument(
"--use-fast-plaid",
action="store_true",
default=False,
help="Set to True to use fast-plaid instead of LEANN. Default: False",
)
parser.add_argument(
"--fast-plaid-index-path",
type=str,
default="./indexes/colvision_fastplaid",
help="Path to the Fast-Plaid index. Default: './indexes/colvision_fastplaid'",
)
parser.add_argument(
"--topk",
type=int,
default=TOPK,
help=f"Number of top results to retrieve. Default: {TOPK}",
)
parser.add_argument(
"--custom-folder",
type=str,
default=None,
help="Path to a custom folder containing images to search. Takes precedence over dataset loading. Default: None",
)
parser.add_argument(
"--recursive",
action="store_true",
default=False,
help="Recursively search subdirectories when loading images from custom folder. Default: False",
)
parser.add_argument(
"--rebuild-index",
action="store_true",
default=False,
help="Force rebuild the index even if it already exists. Default: False (reuse existing index if available)",
)
cli_args, _unknown = parser.parse_known_args()
SEARCH_METHOD: str = cli_args.search_method
QUERY = cli_args.query # Override QUERY with CLI argument if provided
USE_FAST_PLAID: bool = cli_args.use_fast_plaid
FAST_PLAID_INDEX_PATH: str = cli_args.fast_plaid_index_path
TOPK: int = cli_args.topk # Override TOPK with CLI argument if provided
CUSTOM_FOLDER_PATH = cli_args.custom_folder if cli_args.custom_folder else CUSTOM_FOLDER_PATH # Override with CLI argument if provided
CUSTOM_FOLDER_RECURSIVE = cli_args.recursive if cli_args.recursive else CUSTOM_FOLDER_RECURSIVE # Override with CLI argument if provided
REBUILD_INDEX = cli_args.rebuild_index # Override REBUILD_INDEX with CLI argument
# %%
# Step 1: Check if we can skip data loading (index already exists)
retriever: Optional[Any] = None
fast_plaid_index: Optional[Any] = None
need_to_build_index = REBUILD_INDEX
if USE_FAST_PLAID:
# Fast-Plaid index handling
if not REBUILD_INDEX:
try:
fast_plaid_index = _load_fast_plaid_index_if_exists(FAST_PLAID_INDEX_PATH)
if fast_plaid_index is not None:
print(f"✓ Fast-Plaid index found at {FAST_PLAID_INDEX_PATH}")
need_to_build_index = False
else:
print(f"Fast-Plaid index not found, will build new index")
need_to_build_index = True
except Exception as e:
# If loading fails (e.g., memory error, corrupted index), rebuild
print(f"Warning: Failed to load Fast-Plaid index: {e}")
print("Will rebuild the index...")
need_to_build_index = True
fast_plaid_index = None
else:
print(f"REBUILD_INDEX=True, will rebuild Fast-Plaid index")
need_to_build_index = True
else:
# Original LEANN index handling
if not REBUILD_INDEX:
retriever = _load_retriever_if_index_exists(INDEX_PATH)
if retriever is not None:
print(f"✓ Index loaded from {INDEX_PATH}")
print(f"✓ Images available at: {retriever._images_dir_path()}")
need_to_build_index = False
else:
print(f"Index not found, will build new index")
need_to_build_index = True
else:
print(f"REBUILD_INDEX=True, will rebuild index")
need_to_build_index = True
# Step 2: Load data only if we need to build the index
if need_to_build_index:
print("Loading dataset...")
# Check for custom folder path first (takes precedence)
if CUSTOM_FOLDER_PATH:
if not os.path.isdir(CUSTOM_FOLDER_PATH):
raise RuntimeError(f"Custom folder path does not exist: {CUSTOM_FOLDER_PATH}")
print(f"Loading images from custom folder: {CUSTOM_FOLDER_PATH}")
if CUSTOM_FOLDER_RECURSIVE:
print(" (recursive mode: searching subdirectories)")
filepaths, images = _load_images_from_dir(CUSTOM_FOLDER_PATH, recursive=CUSTOM_FOLDER_RECURSIVE)
print(f" Found {len(filepaths)} image files")
if not images:
raise RuntimeError(
f"No images found in {CUSTOM_FOLDER_PATH}. Ensure the folder contains image files (.png, .jpg, .jpeg, .webp)."
)
print(f" Successfully loaded {len(images)} images")
# Use filenames as identifiers instead of full paths for cleaner metadata
filepaths = [os.path.basename(fp) for fp in filepaths]
elif USE_HF_DATASET:
from datasets import load_dataset, concatenate_datasets, DatasetDict
# Determine which datasets to load
if DATASET_NAMES is not None:
dataset_names_to_load = DATASET_NAMES
print(f"Loading {len(dataset_names_to_load)} datasets: {dataset_names_to_load}")
else:
dataset_names_to_load = [DATASET_NAME]
print(f"Loading single dataset: {DATASET_NAME}")
# Load and combine datasets
all_datasets_to_concat = []
for dataset_entry in dataset_names_to_load:
# Handle both string and tuple formats
if isinstance(dataset_entry, tuple):
dataset_name, config_name = dataset_entry
else:
dataset_name = dataset_entry
config_name = None
print(f"\nProcessing dataset: {dataset_name}" + (f" (config: {config_name})" if config_name else ""))
# Load dataset to check available splits
# If config_name is provided, use it; otherwise try without config
try:
if config_name:
dataset_dict = load_dataset(dataset_name, config_name)
else:
dataset_dict = load_dataset(dataset_name)
except ValueError as e:
if "Config name is missing" in str(e):
# Try to get available configs and suggest
from datasets import get_dataset_config_names
try:
available_configs = get_dataset_config_names(dataset_name)
raise ValueError(
f"Dataset '{dataset_name}' requires a config name. "
f"Available configs: {available_configs}. "
f"Please specify as: ('{dataset_name}', 'config_name')"
) from e
except Exception:
raise ValueError(
f"Dataset '{dataset_name}' requires a config name. "
f"Please specify as: ('{dataset_name}', 'config_name')"
) from e
raise
# Determine which splits to load
if DATASET_SPLITS is None:
# Auto-detect: try to load all available splits
available_splits = list(dataset_dict.keys())
print(f" Auto-detected splits: {available_splits}")
splits_to_load = available_splits
else:
splits_to_load = DATASET_SPLITS
# Load and concatenate multiple splits for this dataset
datasets_to_concat = []
for split in splits_to_load:
if split not in dataset_dict:
print(f" Warning: Split '{split}' not found in dataset. Available splits: {list(dataset_dict.keys())}")
continue
split_dataset = dataset_dict[split]
print(f" Loaded split '{split}': {len(split_dataset)} pages")
datasets_to_concat.append(split_dataset)
if not datasets_to_concat:
print(f" Warning: No valid splits found for {dataset_name}. Skipping.")
continue
# Concatenate splits for this dataset
if len(datasets_to_concat) > 1:
combined_dataset = concatenate_datasets(datasets_to_concat)
print(f" Concatenated {len(datasets_to_concat)} splits into {len(combined_dataset)} pages")
else:
combined_dataset = datasets_to_concat[0]
all_datasets_to_concat.append(combined_dataset)
if not all_datasets_to_concat:
raise RuntimeError("No valid datasets or splits found.")
# Concatenate all datasets
if len(all_datasets_to_concat) > 1:
dataset = concatenate_datasets(all_datasets_to_concat)
print(f"\nConcatenated {len(all_datasets_to_concat)} datasets into {len(dataset)} total pages")
else:
dataset = all_datasets_to_concat[0]
# Apply MAX_DOCS limit if specified
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
if N < len(dataset):
print(f"Limiting to {N} pages (from {len(dataset)} total)")
dataset = dataset.select(range(N))
# Auto-detect image field name if not specified
if IMAGE_FIELD_NAME is None:
# Check multiple samples to find the most common image field
# (useful when datasets are merged and may have different field names)
possible_image_fields = ["page_image", "image", "images", "img", "page", "document_image"]
field_counts = {}
# Check first few samples to find image fields
num_samples_to_check = min(10, len(dataset))
for sample_idx in range(num_samples_to_check):
sample = dataset[sample_idx]
for field in possible_image_fields:
if field in sample and sample[field] is not None:
value = sample[field]
if isinstance(value, Image.Image) or (hasattr(value, 'size') and hasattr(value, 'mode')):
field_counts[field] = field_counts.get(field, 0) + 1
# Choose the most common field, or first found if tied
if field_counts:
image_field = max(field_counts.items(), key=lambda x: x[1])[0]
print(f"Auto-detected image field: '{image_field}' (found in {field_counts[image_field]}/{num_samples_to_check} samples)")
else:
# Fallback: check first sample only
sample = dataset[0]
image_field = None
for field in possible_image_fields:
if field in sample:
value = sample[field]
if isinstance(value, Image.Image) or (hasattr(value, 'size') and hasattr(value, 'mode')):
image_field = field
break
if image_field is None:
raise RuntimeError(
f"Could not auto-detect image field. Available fields: {list(sample.keys())}. "
f"Please specify IMAGE_FIELD_NAME manually."
)
print(f"Auto-detected image field: '{image_field}'")
else:
image_field = IMAGE_FIELD_NAME
if image_field not in dataset[0]:
raise RuntimeError(
f"Image field '{image_field}' not found. Available fields: {list(dataset[0].keys())}"
)
filepaths: list[str] = []
images: list[Image.Image] = []
for i in tqdm(range(len(dataset)), desc="Loading dataset", total=len(dataset)):
p = dataset[i]
# Try to compose a descriptive identifier
# Handle different dataset structures
identifier_parts = []
# Helper function to safely get field value
def safe_get(field_name, default=None):
if field_name in p and p[field_name] is not None:
return p[field_name]
return default
# Try to get various identifier fields
if safe_get("paper_arxiv_id"):
identifier_parts.append(f"arXiv:{p['paper_arxiv_id']}")
if safe_get("paper_title"):
identifier_parts.append(f"title:{p['paper_title']}")
if safe_get("page_number") is not None:
try:
identifier_parts.append(f"page:{int(p['page_number'])}")
except (ValueError, TypeError):
# If conversion fails, use the raw value or skip
if p['page_number']:
identifier_parts.append(f"page:{p['page_number']}")
if safe_get("page_id"):
identifier_parts.append(f"id:{p['page_id']}")
elif safe_get("questionId"):
identifier_parts.append(f"qid:{p['questionId']}")
elif safe_get("docId"):
identifier_parts.append(f"docId:{p['docId']}")
elif safe_get("id"):
identifier_parts.append(f"id:{p['id']}")
# If no identifier parts found, create one from index
if identifier_parts:
identifier = "|".join(identifier_parts)
else:
# Create identifier from available fields or index
fallback_parts = []
# Try common fields that might exist
for field in ["ucsf_document_id", "docId", "questionId", "id"]:
if safe_get(field):
fallback_parts.append(f"{field}:{p[field]}")
break
if fallback_parts:
identifier = "|".join(fallback_parts) + f"|idx:{i}"
else:
identifier = f"doc_{i}"
filepaths.append(identifier)
# Get image - try detected field first, then fallback to other common fields
img = None
if image_field in p and p[image_field] is not None:
img = p[image_field]
else:
# Fallback: try other common image field names
for fallback_field in ["image", "page_image", "images", "img"]:
if fallback_field in p and p[fallback_field] is not None:
img = p[fallback_field]
break
if img is None:
raise RuntimeError(
f"No image found for sample {i}. Available fields: {list(p.keys())}. "
f"Expected field: {image_field}"
)
# Ensure it's a PIL Image
if not isinstance(img, Image.Image):
if hasattr(img, 'convert'):
img = img.convert('RGB')
else:
img = Image.fromarray(img) if hasattr(img, '__array__') else Image.open(img)
images.append(img)
else:
_maybe_convert_pdf_to_images(PDF, PAGES_DIR)
filepaths, images = _load_images_from_dir(PAGES_DIR)
if not images:
raise RuntimeError(
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
)
print(f"Loaded {len(images)} images")
# Memory check before loading model
try:
import psutil
import torch
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
print(f"Memory usage after loading images: {mem_info.rss / 1024 / 1024 / 1024:.2f} GB")
if torch.cuda.is_available():
print(f"GPU memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
print(f"GPU memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
except ImportError:
pass
else:
print("Skipping dataset loading (using existing index)")
filepaths = [] # Not needed when using existing index
images = [] # Not needed when using existing index
# %%
# Step 3: Load model and processor (only if we need to build index or perform search)
print("Step 3: Loading model and processor...")
print(f" Model: {MODEL}")
try:
import sys
print(f" Python version: {sys.version}")
print(f" Python executable: {sys.executable}")
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
print(f"✓ Using model={model_name}, device={device_str}, dtype={dtype}")
# Memory check after loading model
try:
import psutil
import torch
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
print(f" Memory usage after loading model: {mem_info.rss / 1024 / 1024 / 1024:.2f} GB")
if torch.cuda.is_available():
print(f" GPU memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
print(f" GPU memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
except ImportError:
pass
except Exception as e:
print(f"✗ Error loading model: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
# %%
# %%
# Step 4: Build index if needed
if need_to_build_index:
print("Step 4: Building index...")
print(f" Number of images: {len(images)}")
print(f" Number of filepaths: {len(filepaths)}")
try:
print(" Embedding images...")
doc_vecs = _embed_images(model, processor, images)
print(f" Embedded {len(doc_vecs)} documents")
print(f" First doc vec shape: {doc_vecs[0].shape if len(doc_vecs) > 0 else 'N/A'}")
except Exception as e:
print(f"Error embedding images: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
if USE_FAST_PLAID:
# Build Fast-Plaid index
print(" Building Fast-Plaid index...")
try:
fast_plaid_index, build_secs = _build_fast_plaid_index(
FAST_PLAID_INDEX_PATH, doc_vecs, filepaths, images
)
from pathlib import Path
print(f"✓ Fast-Plaid index built in {build_secs:.3f}s")
print(f"✓ Index saved to: {FAST_PLAID_INDEX_PATH}")
print(f"✓ Images saved to: {Path(FAST_PLAID_INDEX_PATH) / 'images'}")
except Exception as e:
print(f"Error building Fast-Plaid index: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
finally:
# Clear memory
print(" Clearing memory...")
del images, filepaths, doc_vecs
else:
# Build original LEANN index
try:
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths, images)
print(f"✓ Index built and images saved to: {retriever._images_dir_path()}")
except Exception as e:
print(f"Error building LEANN index: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
finally:
# Clear memory
print(" Clearing memory...")
del images, filepaths, doc_vecs
# Note: Images are now stored separately, retriever/fast_plaid_index will reference them
# %%
# Step 5: Embed query and search
_t0 = time.perf_counter()
q_vec = _embed_queries(model, processor, [QUERY])[0]
query_embed_secs = time.perf_counter() - _t0
print(f"[Search] Method: {SEARCH_METHOD}")
print(f"[Timing] Query embedding: {query_embed_secs:.3f}s")
# Run the selected search method and time it
if USE_FAST_PLAID:
# Fast-Plaid search
if fast_plaid_index is None:
fast_plaid_index = _load_fast_plaid_index_if_exists(FAST_PLAID_INDEX_PATH)
if fast_plaid_index is None:
raise RuntimeError(f"Fast-Plaid index not found at {FAST_PLAID_INDEX_PATH}")
results, search_secs = _search_fast_plaid(fast_plaid_index, q_vec, TOPK)
print(f"[Timing] Fast-Plaid Search: {search_secs:.3f}s")
else:
# Original LEANN search
query_np = q_vec.float().numpy()
if SEARCH_METHOD == "ann":
results = retriever.search(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
search_secs = time.perf_counter() - _t0
print(f"[Timing] Search (ANN): {search_secs:.3f}s (first_stage_k={FIRST_STAGE_K})")
elif SEARCH_METHOD == "exact":
results = retriever.search_exact(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
search_secs = time.perf_counter() - _t0
print(f"[Timing] Search (Exact rerank): {search_secs:.3f}s (first_stage_k={FIRST_STAGE_K})")
elif SEARCH_METHOD == "exact-all":
results = retriever.search_exact_all(query_np, topk=TOPK)
search_secs = time.perf_counter() - _t0
print(f"[Timing] Search (Exact all): {search_secs:.3f}s")
else:
results = []
if not results:
print("No results found.")
else:
print(f'Top {len(results)} results for query: "{QUERY}"')
print("\n[DEBUG] Retrieval details:")
top_images: list[Image.Image] = []
image_hashes = {} # Track image hashes to detect duplicates
for rank, (score, doc_id) in enumerate(results, start=1):
# Retrieve image and metadata based on index type
if USE_FAST_PLAID:
# Fast-Plaid: load image and get metadata
image = _get_fast_plaid_image(FAST_PLAID_INDEX_PATH, doc_id)
if image is None:
print(f"Warning: Could not find image for doc_id {doc_id}")
continue
metadata = _get_fast_plaid_metadata(FAST_PLAID_INDEX_PATH, doc_id)
path = metadata.get("filepath", f"doc_{doc_id}") if metadata else f"doc_{doc_id}"
top_images.append(image)
else:
# Original LEANN: retrieve from retriever
image = retriever.get_image(doc_id)
if image is None:
print(f"Warning: Could not retrieve image for doc_id {doc_id}")
continue
metadata = retriever.get_metadata(doc_id)
path = metadata.get("filepath", "unknown") if metadata else "unknown"
top_images.append(image)
# Calculate image hash to detect duplicates
import hashlib
import io
# Convert image to bytes for hashing
img_bytes = io.BytesIO()
image.save(img_bytes, format='PNG')
image_bytes = img_bytes.getvalue()
image_hash = hashlib.md5(image_bytes).hexdigest()[:8]
# Check if this image was already seen
duplicate_info = ""
if image_hash in image_hashes:
duplicate_info = f" [DUPLICATE of rank {image_hashes[image_hash]}]"
else:
image_hashes[image_hash] = rank
# Print detailed information
print(f"{rank}) doc_id={doc_id}, MaxSim={score:.4f}, Page={path}, ImageHash={image_hash}{duplicate_info}")
if metadata:
print(f" Metadata: {metadata}")
if SAVE_TOP_IMAGE:
from pathlib import Path as _Path
base = _Path(SAVE_TOP_IMAGE)
base.parent.mkdir(parents=True, exist_ok=True)
for rank, img in enumerate(top_images[:TOPK], start=1):
if base.suffix:
out_path = base.parent / f"{base.stem}_rank{rank}{base.suffix}"
else:
out_path = base / f"retrieved_page_rank{rank}.png"
img.save(str(out_path))
# Print the retrieval score (document-level MaxSim) alongside the saved path
try:
score, _doc_id = results[rank - 1]
print(f"Saved retrieved page (rank {rank}) [MaxSim={score:.4f}] to: {out_path}")
except Exception:
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
# %%
# Step 6: Similarity maps for top-K results
if results and SIMILARITY_MAP:
token_idx = None if SIM_TOKEN_IDX < 0 else int(SIM_TOKEN_IDX)
from pathlib import Path as _Path
output_base = _Path(SIM_OUTPUT) if SIM_OUTPUT else None
for rank, img in enumerate(top_images[:TOPK], start=1):
if output_base:
if output_base.suffix:
out_dir = output_base.parent
out_name = f"{output_base.stem}_rank{rank}{output_base.suffix}"
out_path = str(out_dir / out_name)
else:
out_dir = output_base
out_dir.mkdir(parents=True, exist_ok=True)
out_path = str(out_dir / f"similarity_map_rank{rank}.png")
else:
out_path = None
chosen_idx, max_sim = _generate_similarity_map(
model=model,
processor=processor,
image=img,
query=QUERY,
token_idx=token_idx,
output_path=out_path,
)
if out_path:
print(
f"Saved similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f}) to: {out_path}"
)
else:
print(
f"Computed similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f})"
)
# %%
# Step 7: Optional answer generation
if results and ANSWER:
qwen = QwenVL(device=device_str)
_t0 = time.perf_counter()
response = qwen.answer(QUERY, top_images[:TOPK], max_new_tokens=MAX_NEW_TOKENS)
gen_secs = time.perf_counter() - _t0
print(f"[Timing] Generation: {gen_secs:.3f}s")
print("\nAnswer:")
print(response)

View File

@@ -1,448 +0,0 @@
#!/usr/bin/env python3
"""
Modular script to reproduce NDCG results for ViDoRe v1 benchmark.
This script uses the interface from leann_multi_vector.py to:
1. Download ViDoRe v1 datasets
2. Build indexes (LEANN or Fast-Plaid)
3. Perform retrieval
4. Evaluate using NDCG metrics
Usage:
# Evaluate all ViDoRe v1 tasks
python vidore_v1_benchmark.py --model colqwen2 --tasks all
# Evaluate specific task
python vidore_v1_benchmark.py --model colqwen2 --task VidoreArxivQARetrieval
# Use Fast-Plaid index
python vidore_v1_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
# Rebuild index
python vidore_v1_benchmark.py --model colqwen2 --rebuild-index
"""
import argparse
import json
import os
from typing import Optional
from datasets import load_dataset
from leann_multi_vector import (
ViDoReBenchmarkEvaluator,
_ensure_repo_paths_importable,
)
_ensure_repo_paths_importable(__file__)
# ViDoRe v1 task configurations
# Prompts match MTEB task metadata prompts
VIDORE_V1_TASKS = {
"VidoreArxivQARetrieval": {
"dataset_path": "vidore/arxivqa_test_subsampled_beir",
"revision": "7d94d570960eac2408d3baa7a33f9de4822ae3e4",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreDocVQARetrieval": {
"dataset_path": "vidore/docvqa_test_subsampled_beir",
"revision": "162ba2fc1a8437eda8b6c37b240bc1c0f0deb092",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreInfoVQARetrieval": {
"dataset_path": "vidore/infovqa_test_subsampled_beir",
"revision": "b802cc5fd6c605df2d673a963667d74881d2c9a4",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreTabfquadRetrieval": {
"dataset_path": "vidore/tabfquad_test_subsampled_beir",
"revision": "61a2224bcd29b7b261a4892ff4c8bea353527a31",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreTatdqaRetrieval": {
"dataset_path": "vidore/tatdqa_test_beir",
"revision": "5feb5630fdff4d8d189ffedb2dba56862fdd45c0",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreShiftProjectRetrieval": {
"dataset_path": "vidore/shiftproject_test_beir",
"revision": "84a382e05c4473fed9cff2bbae95fe2379416117",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAAIRetrieval": {
"dataset_path": "vidore/syntheticDocQA_artificial_intelligence_test_beir",
"revision": "2d9ebea5a1c6e9ef4a3b902a612f605dca11261c",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAEnergyRetrieval": {
"dataset_path": "vidore/syntheticDocQA_energy_test_beir",
"revision": "9935aadbad5c8deec30910489db1b2c7133ae7a7",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAGovernmentReportsRetrieval": {
"dataset_path": "vidore/syntheticDocQA_government_reports_test_beir",
"revision": "b4909afa930f81282fd20601e860668073ad02aa",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAHealthcareIndustryRetrieval": {
"dataset_path": "vidore/syntheticDocQA_healthcare_industry_test_beir",
"revision": "f9e25d5b6e13e1ad9f5c3cce202565031b3ab164",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
}
# Task name aliases (short names -> full names)
TASK_ALIASES = {
"arxivqa": "VidoreArxivQARetrieval",
"docvqa": "VidoreDocVQARetrieval",
"infovqa": "VidoreInfoVQARetrieval",
"tabfquad": "VidoreTabfquadRetrieval",
"tatdqa": "VidoreTatdqaRetrieval",
"shiftproject": "VidoreShiftProjectRetrieval",
"syntheticdocqa_ai": "VidoreSyntheticDocQAAIRetrieval",
"syntheticdocqa_energy": "VidoreSyntheticDocQAEnergyRetrieval",
"syntheticdocqa_government": "VidoreSyntheticDocQAGovernmentReportsRetrieval",
"syntheticdocqa_healthcare": "VidoreSyntheticDocQAHealthcareIndustryRetrieval",
}
def normalize_task_name(task_name: str) -> str:
"""Normalize task name (handle aliases)."""
task_name_lower = task_name.lower()
if task_name in VIDORE_V1_TASKS:
return task_name
if task_name_lower in TASK_ALIASES:
return TASK_ALIASES[task_name_lower]
# Try partial match
for alias, full_name in TASK_ALIASES.items():
if alias in task_name_lower or task_name_lower in alias:
return full_name
return task_name
def get_safe_model_name(model_name: str) -> str:
"""Get a safe model name for use in file paths."""
import hashlib
import os
# If it's a path, use basename or hash
if os.path.exists(model_name) and os.path.isdir(model_name):
# Use basename if it's reasonable, otherwise use hash
basename = os.path.basename(model_name.rstrip("/"))
if basename and len(basename) < 100 and not basename.startswith("."):
return basename
# Use hash for very long or problematic paths
return hashlib.md5(model_name.encode()).hexdigest()[:16]
# For HuggingFace model names, replace / with _
return model_name.replace("/", "_").replace(":", "_")
def load_vidore_v1_data(
dataset_path: str,
revision: Optional[str] = None,
split: str = "test",
):
"""
Load ViDoRe v1 dataset.
Returns:
corpus: dict mapping corpus_id to PIL Image
queries: dict mapping query_id to query text
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
"""
print(f"Loading dataset: {dataset_path} (split={split})")
# Load queries
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
queries = {}
for row in query_ds:
query_id = f"query-{split}-{row['query-id']}"
queries[query_id] = row["query"]
# Load corpus (images)
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
corpus = {}
for row in corpus_ds:
corpus_id = f"corpus-{split}-{row['corpus-id']}"
# Extract image from the dataset row
if "image" in row:
corpus[corpus_id] = row["image"]
elif "page_image" in row:
corpus[corpus_id] = row["page_image"]
else:
raise ValueError(
f"No image field found in corpus. Available fields: {list(row.keys())}"
)
# Load qrels (relevance judgments)
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
qrels = {}
for row in qrels_ds:
query_id = f"query-{split}-{row['query-id']}"
corpus_id = f"corpus-{split}-{row['corpus-id']}"
if query_id not in qrels:
qrels[query_id] = {}
qrels[query_id][corpus_id] = int(row["score"])
print(
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
)
# Filter qrels to only include queries that exist
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
# Filter out queries without any relevant documents (matching MTEB behavior)
# This is important for correct NDCG calculation
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
queries_filtered = {
qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered
}
print(
f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings"
)
return corpus, queries_filtered, qrels_filtered
def evaluate_task(
task_name: str,
model_name: str,
index_path: str,
use_fast_plaid: bool = False,
fast_plaid_index_path: Optional[str] = None,
rebuild_index: bool = False,
top_k: int = 1000,
first_stage_k: int = 500,
k_values: Optional[list[int]] = None,
output_dir: Optional[str] = None,
):
"""
Evaluate a single ViDoRe v1 task.
"""
print(f"\n{'=' * 80}")
print(f"Evaluating task: {task_name}")
print(f"{'=' * 80}")
# Normalize task name (handle aliases)
task_name = normalize_task_name(task_name)
# Get task config
if task_name not in VIDORE_V1_TASKS:
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V1_TASKS.keys())}")
task_config = VIDORE_V1_TASKS[task_name]
dataset_path = task_config["dataset_path"]
revision = task_config["revision"]
# Load data
corpus, queries, qrels = load_vidore_v1_data(
dataset_path=dataset_path,
revision=revision,
split="test",
)
# Initialize k_values if not provided
if k_values is None:
k_values = [1, 3, 5, 10, 20, 100, 1000]
# Check if we have any queries
if len(queries) == 0:
print(f"\nWarning: No queries found for task {task_name}. Skipping evaluation.")
# Return zero scores
scores = {}
for k in k_values:
scores[f"ndcg_at_{k}"] = 0.0
scores[f"map_at_{k}"] = 0.0
scores[f"recall_at_{k}"] = 0.0
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
# Initialize evaluator
evaluator = ViDoReBenchmarkEvaluator(
model_name=model_name,
use_fast_plaid=use_fast_plaid,
top_k=top_k,
first_stage_k=first_stage_k,
k_values=k_values,
)
# Build or load index
# Use safe model name for index path (different models need different indexes)
safe_model_name = get_safe_model_name(model_name)
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
if index_path_full is None:
index_path_full = f"./indexes/{task_name}_{safe_model_name}"
if use_fast_plaid:
index_path_full = f"./indexes/{task_name}_{safe_model_name}_fastplaid"
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
corpus=corpus,
index_path=index_path_full,
rebuild=rebuild_index,
)
# Search queries
task_prompt = task_config.get("prompt")
results = evaluator.search_queries(
queries=queries,
corpus_ids=corpus_ids_ordered,
index_or_retriever=index_or_retriever,
fast_plaid_index_path=fast_plaid_index_path,
task_prompt=task_prompt,
)
# Evaluate
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
# Print results
print(f"\n{'=' * 80}")
print(f"Results for {task_name}:")
print(f"{'=' * 80}")
for metric, value in scores.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.5f}")
# Save results
if output_dir:
os.makedirs(output_dir, exist_ok=True)
results_file = os.path.join(output_dir, f"{task_name}_results.json")
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
print(f"\nSaved results to: {results_file}")
with open(scores_file, "w") as f:
json.dump(scores, f, indent=2)
print(f"Saved scores to: {scores_file}")
return scores
def main():
parser = argparse.ArgumentParser(
description="Evaluate ViDoRe v1 benchmark using LEANN/Fast-Plaid indexing"
)
parser.add_argument(
"--model",
type=str,
default="colqwen2",
help="Model to use: 'colqwen2', 'colpali', or path to a model directory (supports LoRA adapters)",
)
parser.add_argument(
"--task",
type=str,
default=None,
help="Specific task to evaluate (or 'all' for all tasks)",
)
parser.add_argument(
"--tasks",
type=str,
default="all",
help="Tasks to evaluate: 'all' or comma-separated list",
)
parser.add_argument(
"--index-path",
type=str,
default=None,
help="Path to LEANN index (auto-generated if not provided)",
)
parser.add_argument(
"--use-fast-plaid",
action="store_true",
help="Use Fast-Plaid instead of LEANN",
)
parser.add_argument(
"--fast-plaid-index-path",
type=str,
default=None,
help="Path to Fast-Plaid index (auto-generated if not provided)",
)
parser.add_argument(
"--rebuild-index",
action="store_true",
help="Rebuild index even if it exists",
)
parser.add_argument(
"--top-k",
type=int,
default=1000,
help="Top-k results to retrieve (MTEB default is max(k_values)=1000)",
)
parser.add_argument(
"--first-stage-k",
type=int,
default=500,
help="First stage k for LEANN search",
)
parser.add_argument(
"--k-values",
type=str,
default="1,3,5,10,20,100,1000",
help="Comma-separated k values for evaluation (e.g., '1,3,5,10,100')",
)
parser.add_argument(
"--output-dir",
type=str,
default="./vidore_v1_results",
help="Output directory for results",
)
args = parser.parse_args()
# Parse k_values
k_values = [int(k.strip()) for k in args.k_values.split(",")]
# Determine tasks to evaluate
if args.task:
tasks_to_eval = [normalize_task_name(args.task)]
elif args.tasks.lower() == "all":
tasks_to_eval = list(VIDORE_V1_TASKS.keys())
else:
tasks_to_eval = [normalize_task_name(t.strip()) for t in args.tasks.split(",")]
print(f"Tasks to evaluate: {tasks_to_eval}")
# Evaluate each task
all_scores = {}
for task_name in tasks_to_eval:
try:
scores = evaluate_task(
task_name=task_name,
model_name=args.model,
index_path=args.index_path,
use_fast_plaid=args.use_fast_plaid,
fast_plaid_index_path=args.fast_plaid_index_path,
rebuild_index=args.rebuild_index,
top_k=args.top_k,
first_stage_k=args.first_stage_k,
k_values=k_values,
output_dir=args.output_dir,
)
all_scores[task_name] = scores
except Exception as e:
print(f"\nError evaluating {task_name}: {e}")
import traceback
traceback.print_exc()
continue
# Print summary
if all_scores:
print(f"\n{'=' * 80}")
print("SUMMARY")
print(f"{'=' * 80}")
for task_name, scores in all_scores.items():
print(f"\n{task_name}:")
# Print main metrics
for metric in ["ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "map_at_10", "recall_at_10"]:
if metric in scores:
print(f" {metric}: {scores[metric]:.5f}")
if __name__ == "__main__":
main()

View File

@@ -1,439 +0,0 @@
#!/usr/bin/env python3
"""
Modular script to reproduce NDCG results for ViDoRe v2 benchmark.
This script uses the interface from leann_multi_vector.py to:
1. Download ViDoRe v2 datasets
2. Build indexes (LEANN or Fast-Plaid)
3. Perform retrieval
4. Evaluate using NDCG metrics
Usage:
# Evaluate all ViDoRe v2 tasks
python vidore_v2_benchmark.py --model colqwen2 --tasks all
# Evaluate specific task
python vidore_v2_benchmark.py --model colqwen2 --task Vidore2ESGReportsRetrieval
# Use Fast-Plaid index
python vidore_v2_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
# Rebuild index
python vidore_v2_benchmark.py --model colqwen2 --rebuild-index
"""
import argparse
import json
import os
from typing import Optional
from datasets import load_dataset
from leann_multi_vector import (
ViDoReBenchmarkEvaluator,
_ensure_repo_paths_importable,
)
_ensure_repo_paths_importable(__file__)
# Language name to dataset language field value mapping
# Dataset uses ISO 639-3 + ISO 15924 format (e.g., "eng-Latn")
LANGUAGE_MAPPING = {
"english": "eng-Latn",
"french": "fra-Latn",
"spanish": "spa-Latn",
"german": "deu-Latn",
}
# ViDoRe v2 task configurations
# Prompts match MTEB task metadata prompts
VIDORE_V2_TASKS = {
"Vidore2ESGReportsRetrieval": {
"dataset_path": "vidore/esg_reports_v2",
"revision": "0542c0d03da0ec1c8cbc517c8d78e7e95c75d3d3",
"languages": ["french", "spanish", "english", "german"],
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"Vidore2EconomicsReportsRetrieval": {
"dataset_path": "vidore/economics_reports_v2",
"revision": "b3e3a04b07fbbaffe79be49dabf92f691fbca252",
"languages": ["french", "spanish", "english", "german"],
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"Vidore2BioMedicalLecturesRetrieval": {
"dataset_path": "vidore/biomedical_lectures_v2",
"revision": "a29202f0da409034d651614d87cd8938d254e2ea",
"languages": ["french", "spanish", "english", "german"],
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"Vidore2ESGReportsHLRetrieval": {
"dataset_path": "vidore/esg_reports_human_labeled_v2",
"revision": "6d467dedb09a75144ede1421747e47cf036857dd",
# Note: This dataset doesn't have language filtering - all queries are English
"languages": None, # No language filtering needed
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
}
def load_vidore_v2_data(
dataset_path: str,
revision: Optional[str] = None,
split: str = "test",
language: Optional[str] = None,
):
"""
Load ViDoRe v2 dataset.
Returns:
corpus: dict mapping corpus_id to PIL Image
queries: dict mapping query_id to query text
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
"""
print(f"Loading dataset: {dataset_path} (split={split}, language={language})")
# Load queries
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
# Check if dataset has language field before filtering
has_language_field = len(query_ds) > 0 and "language" in query_ds.column_names
if language and has_language_field:
# Map language name to dataset language field value (e.g., "english" -> "eng-Latn")
dataset_language = LANGUAGE_MAPPING.get(language, language)
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == dataset_language)
# Check if filtering resulted in empty dataset
if len(query_ds_filtered) == 0:
print(
f"Warning: No queries found after filtering by language '{language}' (mapped to '{dataset_language}')."
)
# Try with original language value (dataset might use simple names like 'english')
print(f"Trying with original language value '{language}'...")
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == language)
if len(query_ds_filtered) == 0:
# Try to get a sample to see actual language values
try:
sample_ds = load_dataset(
dataset_path, "queries", split=split, revision=revision
)
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
sample_langs = set(sample_ds["language"])
print(f"Available language values in dataset: {sample_langs}")
except Exception:
pass
else:
print(
f"Found {len(query_ds_filtered)} queries using original language value '{language}'"
)
query_ds = query_ds_filtered
queries = {}
for row in query_ds:
query_id = f"query-{split}-{row['query-id']}"
queries[query_id] = row["query"]
# Load corpus (images)
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
corpus = {}
for row in corpus_ds:
corpus_id = f"corpus-{split}-{row['corpus-id']}"
# Extract image from the dataset row
if "image" in row:
corpus[corpus_id] = row["image"]
elif "page_image" in row:
corpus[corpus_id] = row["page_image"]
else:
raise ValueError(
f"No image field found in corpus. Available fields: {list(row.keys())}"
)
# Load qrels (relevance judgments)
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
qrels = {}
for row in qrels_ds:
query_id = f"query-{split}-{row['query-id']}"
corpus_id = f"corpus-{split}-{row['corpus-id']}"
if query_id not in qrels:
qrels[query_id] = {}
qrels[query_id][corpus_id] = int(row["score"])
print(
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
)
# Filter qrels to only include queries that exist
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
# Filter out queries without any relevant documents (matching MTEB behavior)
# This is important for correct NDCG calculation
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
queries_filtered = {
qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered
}
print(
f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings"
)
return corpus, queries_filtered, qrels_filtered
def evaluate_task(
task_name: str,
model_name: str,
index_path: str,
use_fast_plaid: bool = False,
fast_plaid_index_path: Optional[str] = None,
language: Optional[str] = None,
rebuild_index: bool = False,
top_k: int = 100,
first_stage_k: int = 500,
k_values: Optional[list[int]] = None,
output_dir: Optional[str] = None,
):
"""
Evaluate a single ViDoRe v2 task.
"""
print(f"\n{'=' * 80}")
print(f"Evaluating task: {task_name}")
print(f"{'=' * 80}")
# Get task config
if task_name not in VIDORE_V2_TASKS:
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V2_TASKS.keys())}")
task_config = VIDORE_V2_TASKS[task_name]
dataset_path = task_config["dataset_path"]
revision = task_config["revision"]
# Determine language
if language is None:
# Use first language if multiple available
languages = task_config.get("languages")
if languages is None:
# Task doesn't support language filtering (e.g., Vidore2ESGReportsHLRetrieval)
language = None
elif len(languages) == 1:
language = languages[0]
else:
language = None
# Initialize k_values if not provided
if k_values is None:
k_values = [1, 3, 5, 10, 100]
# Load data
corpus, queries, qrels = load_vidore_v2_data(
dataset_path=dataset_path,
revision=revision,
split="test",
language=language,
)
# Check if we have any queries
if len(queries) == 0:
print(
f"\nWarning: No queries found for task {task_name} with language {language}. Skipping evaluation."
)
# Return zero scores
scores = {}
for k in k_values:
scores[f"ndcg_at_{k}"] = 0.0
scores[f"map_at_{k}"] = 0.0
scores[f"recall_at_{k}"] = 0.0
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
# Initialize evaluator
evaluator = ViDoReBenchmarkEvaluator(
model_name=model_name,
use_fast_plaid=use_fast_plaid,
top_k=top_k,
first_stage_k=first_stage_k,
k_values=k_values,
)
# Build or load index
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
if index_path_full is None:
index_path_full = f"./indexes/{task_name}_{model_name}"
if use_fast_plaid:
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
corpus=corpus,
index_path=index_path_full,
rebuild=rebuild_index,
)
# Search queries
task_prompt = task_config.get("prompt")
results = evaluator.search_queries(
queries=queries,
corpus_ids=corpus_ids_ordered,
index_or_retriever=index_or_retriever,
fast_plaid_index_path=fast_plaid_index_path,
task_prompt=task_prompt,
)
# Evaluate
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
# Print results
print(f"\n{'=' * 80}")
print(f"Results for {task_name}:")
print(f"{'=' * 80}")
for metric, value in scores.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.5f}")
# Save results
if output_dir:
os.makedirs(output_dir, exist_ok=True)
results_file = os.path.join(output_dir, f"{task_name}_results.json")
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
print(f"\nSaved results to: {results_file}")
with open(scores_file, "w") as f:
json.dump(scores, f, indent=2)
print(f"Saved scores to: {scores_file}")
return scores
def main():
parser = argparse.ArgumentParser(
description="Evaluate ViDoRe v2 benchmark using LEANN/Fast-Plaid indexing"
)
parser.add_argument(
"--model",
type=str,
default="colqwen2",
choices=["colqwen2", "colpali"],
help="Model to use",
)
parser.add_argument(
"--task",
type=str,
default=None,
help="Specific task to evaluate (or 'all' for all tasks)",
)
parser.add_argument(
"--tasks",
type=str,
default="all",
help="Tasks to evaluate: 'all' or comma-separated list",
)
parser.add_argument(
"--index-path",
type=str,
default=None,
help="Path to LEANN index (auto-generated if not provided)",
)
parser.add_argument(
"--use-fast-plaid",
action="store_true",
help="Use Fast-Plaid instead of LEANN",
)
parser.add_argument(
"--fast-plaid-index-path",
type=str,
default=None,
help="Path to Fast-Plaid index (auto-generated if not provided)",
)
parser.add_argument(
"--rebuild-index",
action="store_true",
help="Rebuild index even if it exists",
)
parser.add_argument(
"--language",
type=str,
default=None,
help="Language to evaluate (default: first available)",
)
parser.add_argument(
"--top-k",
type=int,
default=100,
help="Top-k results to retrieve",
)
parser.add_argument(
"--first-stage-k",
type=int,
default=500,
help="First stage k for LEANN search",
)
parser.add_argument(
"--k-values",
type=str,
default="1,3,5,10,100",
help="Comma-separated k values for evaluation (e.g., '1,3,5,10,100')",
)
parser.add_argument(
"--output-dir",
type=str,
default="./vidore_v2_results",
help="Output directory for results",
)
args = parser.parse_args()
# Parse k_values
k_values = [int(k.strip()) for k in args.k_values.split(",")]
# Determine tasks to evaluate
if args.task:
tasks_to_eval = [args.task]
elif args.tasks.lower() == "all":
tasks_to_eval = list(VIDORE_V2_TASKS.keys())
else:
tasks_to_eval = [t.strip() for t in args.tasks.split(",")]
print(f"Tasks to evaluate: {tasks_to_eval}")
# Evaluate each task
all_scores = {}
for task_name in tasks_to_eval:
try:
scores = evaluate_task(
task_name=task_name,
model_name=args.model,
index_path=args.index_path,
use_fast_plaid=args.use_fast_plaid,
fast_plaid_index_path=args.fast_plaid_index_path,
language=args.language,
rebuild_index=args.rebuild_index,
top_k=args.top_k,
first_stage_k=args.first_stage_k,
k_values=k_values,
output_dir=args.output_dir,
)
all_scores[task_name] = scores
except Exception as e:
print(f"\nError evaluating {task_name}: {e}")
import traceback
traceback.print_exc()
continue
# Print summary
if all_scores:
print(f"\n{'=' * 80}")
print("SUMMARY")
print(f"{'=' * 80}")
for task_name, scores in all_scores.items():
print(f"\n{task_name}:")
# Print main metrics
for metric in ["ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "map_at_10", "recall_at_10"]:
if metric in scores:
print(f" {metric}: {scores[metric]:.5f}")
if __name__ == "__main__":
main()

View File

@@ -1,183 +0,0 @@
#!/usr/bin/env python3
import re
import sys
from datetime import datetime, timedelta
from pathlib import Path
from leann import LeannSearcher
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
class TimeParser:
def __init__(self):
# Main pattern: captures optional fuzzy modifier, number, unit, and optional "ago"
self.pattern = r"(?:(around|about|roughly|approximately)\s+)?(\d+)\s+(hour|day|week|month|year)s?(?:\s+ago)?"
# Compile for performance
self.regex = re.compile(self.pattern, re.IGNORECASE)
# Stop words to remove before regex parsing
self.stop_words = {
"in",
"at",
"of",
"by",
"as",
"me",
"the",
"a",
"an",
"and",
"any",
"find",
"search",
"list",
"ago",
"back",
"past",
"earlier",
}
def clean_text(self, text):
"""Remove stop words from text"""
words = text.split()
cleaned = " ".join(word for word in words if word.lower() not in self.stop_words)
return cleaned
def parse(self, text):
"""Extract all time expressions from text"""
# Clean text first
cleaned_text = self.clean_text(text)
matches = []
for match in self.regex.finditer(cleaned_text):
fuzzy = match.group(1) # "around", "about", etc.
number = int(match.group(2))
unit = match.group(3).lower()
matches.append(
{
"full_match": match.group(0),
"fuzzy": bool(fuzzy),
"number": number,
"unit": unit,
"range": self.calculate_range(number, unit, bool(fuzzy)),
}
)
return matches
def calculate_range(self, number, unit, is_fuzzy):
"""Convert to actual datetime range and return ISO format strings"""
units = {
"hour": timedelta(hours=number),
"day": timedelta(days=number),
"week": timedelta(weeks=number),
"month": timedelta(days=number * 30),
"year": timedelta(days=number * 365),
}
delta = units[unit]
now = datetime.now()
target = now - delta
if is_fuzzy:
buffer = delta * 0.2 # 20% buffer for fuzzy
start = (target - buffer).isoformat()
end = (target + buffer).isoformat()
else:
start = target.isoformat()
end = now.isoformat()
return (start, end)
def search_files(query, top_k=15):
"""Search the index and return results"""
# Parse time expressions
parser = TimeParser()
time_matches = parser.parse(query)
# Remove time expressions from query for semantic search
clean_query = query
if time_matches:
for match in time_matches:
clean_query = clean_query.replace(match["full_match"], "").strip()
# Check if clean_query is less than 4 characters
if len(clean_query) < 4:
print("Error: add more input for accurate results.")
return
# Single query to vector DB
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search(
clean_query if clean_query else query, top_k=top_k, recompute_embeddings=False
)
# Filter by time if time expression found
if time_matches:
time_range = time_matches[0]["range"] # Use first time expression
start_time, end_time = time_range
filtered_results = []
for result in results:
# Access metadata attribute directly (not .get())
metadata = result.metadata if hasattr(result, "metadata") else {}
if metadata:
# Check modification date first, fall back to creation date
date_str = metadata.get("modification_date") or metadata.get("creation_date")
if date_str:
# Convert strings to datetime objects for proper comparison
try:
file_date = datetime.fromisoformat(date_str)
start_dt = datetime.fromisoformat(start_time)
end_dt = datetime.fromisoformat(end_time)
# Compare dates properly
if start_dt <= file_date <= end_dt:
filtered_results.append(result)
except (ValueError, TypeError):
# Handle invalid date formats
print(f"Warning: Invalid date format in metadata: {date_str}")
continue
results = filtered_results
# Print results
print(f"\nSearch results for: '{query}'")
if time_matches:
print(
f"Time filter: {time_matches[0]['number']} {time_matches[0]['unit']}(s) {'(fuzzy)' if time_matches[0]['fuzzy'] else ''}"
)
print(
f"Date range: {time_matches[0]['range'][0][:10]} to {time_matches[0]['range'][1][:10]}"
)
print("-" * 80)
for i, result in enumerate(results, 1):
print(f"\n[{i}] Score: {result.score:.4f}")
print(f"Content: {result.text}")
# Show metadata if present
metadata = result.metadata if hasattr(result, "metadata") else None
if metadata:
if "creation_date" in metadata:
print(f"Created: {metadata['creation_date']}")
if "modification_date" in metadata:
print(f"Modified: {metadata['modification_date']}")
print("-" * 80)
if __name__ == "__main__":
if len(sys.argv) < 2:
print('Usage: python search_index.py "<search query>" [top_k]')
sys.exit(1)
query = sys.argv[1]
top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 15
search_files(query, top_k)

View File

@@ -1,82 +0,0 @@
#!/usr/bin/env python3
import json
import sys
from pathlib import Path
from leann import LeannBuilder
def process_json_items(json_file_path):
"""Load and process JSON file with metadata items"""
with open(json_file_path, encoding="utf-8") as f:
items = json.load(f)
# Guard against empty JSON
if not items:
print("⚠️ No items found in the JSON file. Exiting gracefully.")
return
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
builder = LeannBuilder(backend_name="hnsw", is_recompute=False)
total_items = len(items)
items_added = 0
print(f"Processing {total_items} items...")
for idx, item in enumerate(items):
try:
# Create embedding text sentence
embedding_text = f"{item.get('Name', 'unknown')} located at {item.get('Path', 'unknown')} and size {item.get('Size', 'unknown')} bytes with content type {item.get('ContentType', 'unknown')} and kind {item.get('Kind', 'unknown')}"
# Prepare metadata with dates
metadata = {}
if "CreationDate" in item:
metadata["creation_date"] = item["CreationDate"]
if "ContentChangeDate" in item:
metadata["modification_date"] = item["ContentChangeDate"]
# Add to builder
builder.add_text(embedding_text, metadata=metadata)
items_added += 1
except Exception as e:
print(f"\n⚠️ Warning: Failed to process item {idx}: {e}")
continue
# Show progress
progress = (idx + 1) / total_items * 100
sys.stdout.write(f"\rProgress: {idx + 1}/{total_items} ({progress:.1f}%)")
sys.stdout.flush()
print() # New line after progress
# Guard against no successfully added items
if items_added == 0:
print("⚠️ No items were successfully added to the index. Exiting gracefully.")
return
print(f"\n✅ Successfully processed {items_added}/{total_items} items")
print("Building index...")
try:
builder.build_index(INDEX_PATH)
print(f"✓ Index saved to {INDEX_PATH}")
except ValueError as e:
if "No chunks added" in str(e):
print("⚠️ No chunks were added to the builder. Index not created.")
else:
raise
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python build_index.py <json_file>")
sys.exit(1)
json_file = sys.argv[1]
if not Path(json_file).exists():
print(f"Error: File {json_file} not found")
sys.exit(1)
process_json_items(json_file)

View File

@@ -1,265 +0,0 @@
#!/usr/bin/env python3
"""
Spotlight Metadata Dumper for Vector DB
Extracts only essential metadata for semantic search embeddings
Output is optimized for vector database storage with minimal fields
"""
import json
import sys
from datetime import datetime
# Check platform before importing macOS-specific modules
if sys.platform != "darwin":
print("This script requires macOS (uses Spotlight)")
sys.exit(1)
from Foundation import NSDate, NSMetadataQuery, NSPredicate, NSRunLoop
# EDIT THIS LIST: Add or remove folders to search
# Can be either:
# - Folder names relative to home directory (e.g., "Desktop", "Downloads")
# - Absolute paths (e.g., "/Applications", "/System/Library")
SEARCH_FOLDERS = [
"Desktop",
"Downloads",
"Documents",
"Music",
"Pictures",
"Movies",
# "Library", # Uncomment to include
# "/Applications", # Absolute path example
# "Code/Projects", # Subfolder example
# Add any other folders here
]
def convert_to_serializable(obj):
"""Convert NS objects to Python serializable types"""
if obj is None:
return None
# Handle NSDate
if hasattr(obj, "timeIntervalSince1970"):
return datetime.fromtimestamp(obj.timeIntervalSince1970()).isoformat()
# Handle NSArray
if hasattr(obj, "count") and hasattr(obj, "objectAtIndex_"):
return [convert_to_serializable(obj.objectAtIndex_(i)) for i in range(obj.count())]
# Convert to string
try:
return str(obj)
except Exception:
return repr(obj)
def dump_spotlight_data(max_items=10, output_file="spotlight_dump.json"):
"""
Dump Spotlight data using public.item predicate
"""
# Build full paths from SEARCH_FOLDERS
import os
home_dir = os.path.expanduser("~")
search_paths = []
print("Search locations:")
for folder in SEARCH_FOLDERS:
# Check if it's an absolute path or relative
if folder.startswith("/"):
full_path = folder
else:
full_path = os.path.join(home_dir, folder)
if os.path.exists(full_path):
search_paths.append(full_path)
print(f"{full_path}")
else:
print(f"{full_path} (not found)")
if not search_paths:
print("No valid search paths found!")
return []
print(f"\nDumping {max_items} items from Spotlight (public.item)...")
# Create query with public.item predicate
query = NSMetadataQuery.alloc().init()
predicate = NSPredicate.predicateWithFormat_("kMDItemContentTypeTree CONTAINS 'public.item'")
query.setPredicate_(predicate)
# Set search scopes to our specific folders
query.setSearchScopes_(search_paths)
print("Starting query...")
query.startQuery()
# Wait for gathering to complete
run_loop = NSRunLoop.currentRunLoop()
print("Gathering results...")
# Let it gather for a few seconds
for i in range(50): # 5 seconds max
run_loop.runMode_beforeDate_(
"NSDefaultRunLoopMode", NSDate.dateWithTimeIntervalSinceNow_(0.1)
)
# Check gathering status periodically
if i % 10 == 0:
current_count = query.resultCount()
if current_count > 0:
print(f" Found {current_count} items so far...")
# Continue while still gathering (up to 2 more seconds)
timeout = NSDate.dateWithTimeIntervalSinceNow_(2.0)
while query.isGathering() and timeout.timeIntervalSinceNow() > 0:
run_loop.runMode_beforeDate_(
"NSDefaultRunLoopMode", NSDate.dateWithTimeIntervalSinceNow_(0.1)
)
query.stopQuery()
total_results = query.resultCount()
print(f"Found {total_results} total items")
if total_results == 0:
print("No results found")
return []
# Process items
items_to_process = min(total_results, max_items)
results = []
# ONLY relevant attributes for vector embeddings
# These provide essential context for semantic search without bloat
attributes = [
"kMDItemPath", # Full path for file retrieval
"kMDItemFSName", # Filename for display & embedding
"kMDItemFSSize", # Size for filtering/ranking
"kMDItemContentType", # File type for categorization
"kMDItemKind", # Human-readable type for embedding
"kMDItemFSCreationDate", # Temporal context
"kMDItemFSContentChangeDate", # Recency for ranking
]
print(f"Processing {items_to_process} items...")
for i in range(items_to_process):
try:
item = query.resultAtIndex_(i)
metadata = {}
# Extract ONLY the relevant attributes
for attr in attributes:
try:
value = item.valueForAttribute_(attr)
if value is not None:
# Keep the attribute name clean (remove kMDItem prefix for cleaner JSON)
clean_key = attr.replace("kMDItem", "").replace("FS", "")
metadata[clean_key] = convert_to_serializable(value)
except (AttributeError, ValueError, TypeError):
continue
# Only add if we have at least a path
if metadata.get("Path"):
results.append(metadata)
except Exception as e:
print(f"Error processing item {i}: {e}")
continue
# Save to JSON
with open(output_file, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"\n✓ Saved {len(results)} items to {output_file}")
# Show summary
print("\nSample items:")
import os
home_dir = os.path.expanduser("~")
for i, item in enumerate(results[:3]):
print(f"\n[Item {i + 1}]")
print(f" Path: {item.get('Path', 'N/A')}")
print(f" Name: {item.get('Name', 'N/A')}")
print(f" Type: {item.get('ContentType', 'N/A')}")
print(f" Kind: {item.get('Kind', 'N/A')}")
# Handle size properly
size = item.get("Size")
if size:
try:
size_int = int(size)
if size_int > 1024 * 1024:
print(f" Size: {size_int / (1024 * 1024):.2f} MB")
elif size_int > 1024:
print(f" Size: {size_int / 1024:.2f} KB")
else:
print(f" Size: {size_int} bytes")
except (ValueError, TypeError):
print(f" Size: {size}")
# Show dates
if "CreationDate" in item:
print(f" Created: {item['CreationDate']}")
if "ContentChangeDate" in item:
print(f" Modified: {item['ContentChangeDate']}")
# Count by type
type_counts = {}
for item in results:
content_type = item.get("ContentType", "unknown")
type_counts[content_type] = type_counts.get(content_type, 0) + 1
print(f"\nTotal items saved: {len(results)}")
if type_counts:
print("\nTop content types:")
for ct, count in sorted(type_counts.items(), key=lambda x: x[1], reverse=True)[:5]:
print(f" {ct}: {count} items")
# Count by folder
folder_counts = {}
for item in results:
path = item.get("Path", "")
for folder in SEARCH_FOLDERS:
# Build the full folder path
if folder.startswith("/"):
folder_path = folder
else:
folder_path = os.path.join(home_dir, folder)
if path.startswith(folder_path):
folder_counts[folder] = folder_counts.get(folder, 0) + 1
break
if folder_counts:
print("\nItems by location:")
for folder, count in sorted(folder_counts.items(), key=lambda x: x[1], reverse=True):
print(f" {folder}: {count} items")
return results
def main():
# Parse arguments
if len(sys.argv) > 1:
try:
max_items = int(sys.argv[1])
except ValueError:
print("Usage: python spot.py [number_of_items]")
print("Default: 10 items")
sys.exit(1)
else:
max_items = 10
output_file = sys.argv[2] if len(sys.argv) > 2 else "spotlight_dump.json"
# Run dump
dump_spotlight_data(max_items=max_items, output_file=output_file)
if __name__ == "__main__":
main()

View File

@@ -1 +0,0 @@
# Slack MCP data integration for LEANN

View File

@@ -1,511 +0,0 @@
#!/usr/bin/env python3
"""
Slack MCP Reader for LEANN
This module provides functionality to connect to Slack MCP servers and fetch message data
for indexing in LEANN. It supports various Slack MCP server implementations and provides
flexible message processing options.
"""
import ast
import asyncio
import json
import logging
from typing import Any, Optional
logger = logging.getLogger(__name__)
class SlackMCPReader:
"""
Reader for Slack data via MCP (Model Context Protocol) servers.
This class connects to Slack MCP servers to fetch message data and convert it
into a format suitable for LEANN indexing.
"""
def __init__(
self,
mcp_server_command: str,
workspace_name: Optional[str] = None,
concatenate_conversations: bool = True,
max_messages_per_conversation: int = 100,
max_retries: int = 5,
retry_delay: float = 2.0,
):
"""
Initialize the Slack MCP Reader.
Args:
mcp_server_command: Command to start the MCP server (e.g., 'slack-mcp-server')
workspace_name: Optional workspace name to filter messages
concatenate_conversations: Whether to group messages by channel/thread
max_messages_per_conversation: Maximum messages to include per conversation
max_retries: Maximum number of retries for failed operations
retry_delay: Initial delay between retries in seconds
"""
self.mcp_server_command = mcp_server_command
self.workspace_name = workspace_name
self.concatenate_conversations = concatenate_conversations
self.max_messages_per_conversation = max_messages_per_conversation
self.max_retries = max_retries
self.retry_delay = retry_delay
self.mcp_process = None
async def start_mcp_server(self):
"""Start the MCP server process."""
try:
self.mcp_process = await asyncio.create_subprocess_exec(
*self.mcp_server_command.split(),
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
logger.info(f"Started MCP server: {self.mcp_server_command}")
except Exception as e:
logger.error(f"Failed to start MCP server: {e}")
raise
async def stop_mcp_server(self):
"""Stop the MCP server process."""
if self.mcp_process:
self.mcp_process.terminate()
await self.mcp_process.wait()
logger.info("Stopped MCP server")
async def send_mcp_request(self, request: dict[str, Any]) -> dict[str, Any]:
"""Send a request to the MCP server and get response."""
if not self.mcp_process:
raise RuntimeError("MCP server not started")
request_json = json.dumps(request) + "\n"
self.mcp_process.stdin.write(request_json.encode())
await self.mcp_process.stdin.drain()
response_line = await self.mcp_process.stdout.readline()
if not response_line:
raise RuntimeError("No response from MCP server")
return json.loads(response_line.decode().strip())
async def initialize_mcp_connection(self):
"""Initialize the MCP connection."""
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-slack-reader", "version": "1.0.0"},
},
}
response = await self.send_mcp_request(init_request)
if "error" in response:
raise RuntimeError(f"MCP initialization failed: {response['error']}")
logger.info("MCP connection initialized successfully")
async def list_available_tools(self) -> list[dict[str, Any]]:
"""List available tools from the MCP server."""
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
response = await self.send_mcp_request(list_request)
if "error" in response:
raise RuntimeError(f"Failed to list tools: {response['error']}")
return response.get("result", {}).get("tools", [])
def _is_cache_sync_error(self, error: dict) -> bool:
"""Check if the error is related to users cache not being ready."""
if isinstance(error, dict):
message = error.get("message", "").lower()
return (
"users cache is not ready" in message or "sync process is still running" in message
)
return False
async def _retry_with_backoff(self, func, *args, **kwargs):
"""Retry a function with exponential backoff, especially for cache sync issues."""
last_exception = None
for attempt in range(self.max_retries + 1):
try:
return await func(*args, **kwargs)
except Exception as e:
last_exception = e
# Check if this is a cache sync error
error_dict = {}
if hasattr(e, "args") and e.args and isinstance(e.args[0], dict):
error_dict = e.args[0]
elif "Failed to fetch messages" in str(e):
# Try to extract error from the exception message
import re
match = re.search(r"'error':\s*(\{[^}]+\})", str(e))
if match:
try:
error_dict = ast.literal_eval(match.group(1))
except (ValueError, SyntaxError):
pass
else:
# Try alternative format
match = re.search(r"Failed to fetch messages:\s*(\{[^}]+\})", str(e))
if match:
try:
error_dict = ast.literal_eval(match.group(1))
except (ValueError, SyntaxError):
pass
if self._is_cache_sync_error(error_dict):
if attempt < self.max_retries:
delay = self.retry_delay * (2**attempt) # Exponential backoff
logger.info(
f"Cache sync not ready, waiting {delay:.1f}s before retry {attempt + 1}/{self.max_retries}"
)
await asyncio.sleep(delay)
continue
else:
logger.warning(
f"Cache sync still not ready after {self.max_retries} retries, giving up"
)
break
else:
# Not a cache sync error, don't retry
break
# If we get here, all retries failed or it's not a retryable error
raise last_exception
async def fetch_slack_messages(
self, channel: Optional[str] = None, limit: int = 100
) -> list[dict[str, Any]]:
"""
Fetch Slack messages using MCP tools with retry logic for cache sync issues.
Args:
channel: Optional channel name to filter messages
limit: Maximum number of messages to fetch
Returns:
List of message dictionaries
"""
return await self._retry_with_backoff(self._fetch_slack_messages_impl, channel, limit)
async def _fetch_slack_messages_impl(
self, channel: Optional[str] = None, limit: int = 100
) -> list[dict[str, Any]]:
"""
Internal implementation of fetch_slack_messages without retry logic.
"""
# This is a generic implementation - specific MCP servers may have different tool names
# Common tool names might be: 'get_messages', 'list_messages', 'fetch_channel_history'
tools = await self.list_available_tools()
logger.info(f"Available tools: {[tool.get('name') for tool in tools]}")
message_tool = None
# Look for a tool that can fetch messages - prioritize conversations_history
message_tool = None
# First, try to find conversations_history specifically
for tool in tools:
tool_name = tool.get("name", "").lower()
if "conversations_history" in tool_name:
message_tool = tool
logger.info(f"Found conversations_history tool: {tool}")
break
# If not found, look for other message-fetching tools
if not message_tool:
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(
keyword in tool_name
for keyword in ["conversations_search", "message", "history"]
):
message_tool = tool
break
if not message_tool:
raise RuntimeError("No message fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {"limit": "180d"} # Use 180 days to get older messages
if channel:
# For conversations_history, use channel_id parameter
if message_tool["name"] == "conversations_history":
tool_params["channel_id"] = channel
else:
# Try common parameter names for channel specification
for param_name in ["channel", "channel_id", "channel_name"]:
tool_params[param_name] = channel
break
logger.info(f"Tool parameters: {tool_params}")
fetch_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {"name": message_tool["name"], "arguments": tool_params},
}
response = await self.send_mcp_request(fetch_request)
if "error" in response:
raise RuntimeError(f"Failed to fetch messages: {response['error']}")
# Extract messages from response - format may vary by MCP server
result = response.get("result", {})
if "content" in result and isinstance(result["content"], list):
# Some MCP servers return content as a list
content = result["content"][0] if result["content"] else {}
if "text" in content:
try:
messages = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, try to parse as CSV format (Slack MCP server format)
messages = self._parse_csv_messages(content["text"], channel)
else:
messages = result["content"]
else:
# Direct message format
messages = result.get("messages", [result])
return messages if isinstance(messages, list) else [messages]
def _parse_csv_messages(self, csv_text: str, channel: str) -> list[dict[str, Any]]:
"""Parse CSV format messages from Slack MCP server."""
import csv
import io
messages = []
try:
# Split by lines and process each line as a CSV row
lines = csv_text.strip().split("\n")
if not lines:
return messages
# Skip header line if it exists
start_idx = 0
if lines[0].startswith("MsgID,UserID,UserName"):
start_idx = 1
for line in lines[start_idx:]:
if not line.strip():
continue
# Parse CSV line
reader = csv.reader(io.StringIO(line))
try:
row = next(reader)
if len(row) >= 7: # Ensure we have enough columns
message = {
"ts": row[0],
"user": row[1],
"username": row[2],
"real_name": row[3],
"channel": row[4],
"thread_ts": row[5],
"text": row[6],
"time": row[7] if len(row) > 7 else "",
"reactions": row[8] if len(row) > 8 else "",
"cursor": row[9] if len(row) > 9 else "",
}
messages.append(message)
except Exception as e:
logger.warning(f"Failed to parse CSV line: {line[:100]}... Error: {e}")
continue
except Exception as e:
logger.warning(f"Failed to parse CSV messages: {e}")
# Fallback: treat entire text as one message
messages = [{"text": csv_text, "channel": channel or "unknown"}]
return messages
def _format_message(self, message: dict[str, Any]) -> str:
"""Format a single message for indexing."""
text = message.get("text", "")
user = message.get("user", message.get("username", "Unknown"))
channel = message.get("channel", message.get("channel_name", "Unknown"))
timestamp = message.get("ts", message.get("timestamp", ""))
# Format timestamp if available
formatted_time = ""
if timestamp:
try:
import datetime
if isinstance(timestamp, str) and "." in timestamp:
dt = datetime.datetime.fromtimestamp(float(timestamp))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
elif isinstance(timestamp, (int, float)):
dt = datetime.datetime.fromtimestamp(timestamp)
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
else:
formatted_time = str(timestamp)
except (ValueError, TypeError):
formatted_time = str(timestamp)
# Build formatted message
parts = []
if channel:
parts.append(f"Channel: #{channel}")
if user:
parts.append(f"User: {user}")
if formatted_time:
parts.append(f"Time: {formatted_time}")
if text:
parts.append(f"Message: {text}")
return "\n".join(parts)
def _create_concatenated_content(self, messages: list[dict[str, Any]], channel: str) -> str:
"""Create concatenated content from multiple messages in a channel."""
if not messages:
return ""
# Sort messages by timestamp if available
try:
messages.sort(key=lambda x: float(x.get("ts", x.get("timestamp", 0))))
except (ValueError, TypeError):
pass # Keep original order if timestamps aren't numeric
# Limit messages per conversation
if len(messages) > self.max_messages_per_conversation:
messages = messages[-self.max_messages_per_conversation :]
# Create header
content_parts = [
f"Slack Channel: #{channel}",
f"Message Count: {len(messages)}",
f"Workspace: {self.workspace_name or 'Unknown'}",
"=" * 50,
"",
]
# Add messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
content_parts.append(formatted_msg)
content_parts.append("-" * 30)
content_parts.append("")
return "\n".join(content_parts)
async def get_all_channels(self) -> list[str]:
"""Get list of all available channels."""
try:
channels_list_request = {
"jsonrpc": "2.0",
"id": 4,
"method": "tools/call",
"params": {"name": "channels_list", "arguments": {}},
}
channels_response = await self.send_mcp_request(channels_list_request)
if "result" in channels_response:
result = channels_response["result"]
if "content" in result and isinstance(result["content"], list):
content = result["content"][0] if result["content"] else {}
if "text" in content:
# Parse the channels from the response
channels = []
lines = content["text"].split("\n")
for line in lines:
if line.strip() and ("#" in line or "C" in line[:10]):
# Extract channel ID or name
parts = line.split()
for part in parts:
if part.startswith("C") and len(part) > 5:
channels.append(part)
elif part.startswith("#"):
channels.append(part[1:]) # Remove #
logger.info(f"Found {len(channels)} channels: {channels}")
return channels
return []
except Exception as e:
logger.warning(f"Failed to get channels list: {e}")
return []
async def read_slack_data(self, channels: Optional[list[str]] = None) -> list[str]:
"""
Read Slack data and return formatted text chunks.
Args:
channels: Optional list of channel names to fetch. If None, fetches from all available channels.
Returns:
List of formatted text chunks ready for LEANN indexing
"""
try:
await self.start_mcp_server()
await self.initialize_mcp_connection()
all_texts = []
if channels:
# Fetch specific channels
for channel in channels:
try:
messages = await self.fetch_slack_messages(channel=channel, limit=1000)
if messages:
if self.concatenate_conversations:
text_content = self._create_concatenated_content(messages, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
else:
# Fetch from all available channels
logger.info("Fetching from all available channels...")
all_channels = await self.get_all_channels()
if not all_channels:
# Fallback to common channel names if we can't get the list
all_channels = ["general", "random", "announcements", "C0GN5BX0F"]
logger.info(f"Using fallback channels: {all_channels}")
for channel in all_channels:
try:
logger.info(f"Searching channel: {channel}")
messages = await self.fetch_slack_messages(channel=channel, limit=1000)
if messages:
if self.concatenate_conversations:
text_content = self._create_concatenated_content(messages, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
return all_texts
finally:
await self.stop_mcp_server()
async def __aenter__(self):
"""Async context manager entry."""
await self.start_mcp_server()
await self.initialize_mcp_connection()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.stop_mcp_server()

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python3
"""
Slack RAG Application with MCP Support
This application enables RAG (Retrieval-Augmented Generation) on Slack messages
by connecting to Slack MCP servers to fetch live data and index it in LEANN.
Usage:
python -m apps.slack_rag --mcp-server "slack-mcp-server" --query "What did the team discuss about the project?"
"""
import argparse
import asyncio
from apps.base_rag_example import BaseRAGExample
from apps.slack_data.slack_mcp_reader import SlackMCPReader
class SlackMCPRAG(BaseRAGExample):
"""
RAG application for Slack messages via MCP servers.
This class provides a complete RAG pipeline for Slack data, including
MCP server connection, data fetching, indexing, and interactive chat.
"""
def __init__(self):
super().__init__(
name="Slack MCP RAG",
description="RAG application for Slack messages via MCP servers",
default_index_name="slack_messages",
)
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add Slack MCP-specific arguments."""
parser.add_argument(
"--mcp-server",
type=str,
required=True,
help="Command to start the Slack MCP server (e.g., 'slack-mcp-server' or 'npx slack-mcp-server')",
)
parser.add_argument(
"--workspace-name",
type=str,
help="Slack workspace name for better organization and filtering",
)
parser.add_argument(
"--channels",
nargs="+",
help="Specific Slack channels to index (e.g., general random). If not specified, fetches from all available channels",
)
parser.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Group messages by channel/thread for better context (default: True)",
)
parser.add_argument(
"--no-concatenate-conversations",
action="store_true",
help="Process individual messages instead of grouping by channel",
)
parser.add_argument(
"--max-messages-per-channel",
type=int,
default=100,
help="Maximum number of messages to include per channel (default: 100)",
)
parser.add_argument(
"--test-connection",
action="store_true",
help="Test MCP server connection and list available tools without indexing",
)
parser.add_argument(
"--max-retries",
type=int,
default=5,
help="Maximum number of retries for failed operations (default: 5)",
)
parser.add_argument(
"--retry-delay",
type=float,
default=2.0,
help="Initial delay between retries in seconds (default: 2.0)",
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
try:
reader = SlackMCPReader(
mcp_server_command=args.mcp_server,
workspace_name=args.workspace_name,
concatenate_conversations=not args.no_concatenate_conversations,
max_messages_per_conversation=args.max_messages_per_channel,
max_retries=args.max_retries,
retry_delay=args.retry_delay,
)
async with reader:
tools = await reader.list_available_tools()
print("Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
name = tool.get("name", "Unknown")
description = tool.get("description", "No description available")
print(f"\n{i}. {name}")
print(
f" Description: {description[:100]}{'...' if len(description) > 100 else ''}"
)
# Show input schema if available
schema = tool.get("inputSchema", {})
if schema.get("properties"):
props = list(schema["properties"].keys())[:3] # Show first 3 properties
print(
f" Parameters: {', '.join(props)}{'...' if len(schema['properties']) > 3 else ''}"
)
return True
except Exception as e:
print(f"Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the MCP server is installed and accessible")
print("2. Check if the server command is correct")
print("3. Ensure you have proper authentication/credentials configured")
print("4. Try running the MCP server command directly to test it")
return False
async def load_data(self, args) -> list[str]:
"""Load Slack messages via MCP server."""
print(f"Connecting to Slack MCP server: {args.mcp_server}")
if args.workspace_name:
print(f"Workspace: {args.workspace_name}")
# Filter out empty strings from channels
channels = [ch for ch in args.channels if ch.strip()] if args.channels else None
if channels:
print(f"Channels: {', '.join(channels)}")
else:
print("Fetching from all available channels")
concatenate = not args.no_concatenate_conversations
print(
f"Processing mode: {'Concatenated conversations' if concatenate else 'Individual messages'}"
)
try:
reader = SlackMCPReader(
mcp_server_command=args.mcp_server,
workspace_name=args.workspace_name,
concatenate_conversations=concatenate,
max_messages_per_conversation=args.max_messages_per_channel,
max_retries=args.max_retries,
retry_delay=args.retry_delay,
)
texts = await reader.read_slack_data(channels=channels)
if not texts:
print("No messages found! This could mean:")
print("- The MCP server couldn't fetch messages")
print("- The specified channels don't exist or are empty")
print("- Authentication issues with the Slack workspace")
return []
print(f"Successfully loaded {len(texts)} text chunks from Slack")
# Show sample of what was loaded
if texts:
sample_text = texts[0][:200] + "..." if len(texts[0]) > 200 else texts[0]
print("\nSample content:")
print("-" * 40)
print(sample_text)
print("-" * 40)
return texts
except Exception as e:
print(f"Error loading Slack data: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Authentication problems")
print("- Network connectivity issues")
print("- Incorrect channel names")
raise
async def run(self):
"""Main entry point with MCP connection testing."""
args = self.parser.parse_args()
# Test connection if requested
if args.test_connection:
success = await self.test_mcp_connection(args)
if not success:
return
print(
"MCP server is working! You can now run without --test-connection to start indexing."
)
return
# Run the standard RAG pipeline
await super().run()
async def main():
"""Main entry point for the Slack MCP RAG application."""
app = SlackMCPRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1 +0,0 @@
# Twitter MCP data integration for LEANN

View File

@@ -1,295 +0,0 @@
#!/usr/bin/env python3
"""
Twitter MCP Reader for LEANN
This module provides functionality to connect to Twitter MCP servers and fetch bookmark data
for indexing in LEANN. It supports various Twitter MCP server implementations and provides
flexible bookmark processing options.
"""
import asyncio
import json
import logging
from typing import Any, Optional
logger = logging.getLogger(__name__)
class TwitterMCPReader:
"""
Reader for Twitter bookmark data via MCP (Model Context Protocol) servers.
This class connects to Twitter MCP servers to fetch bookmark data and convert it
into a format suitable for LEANN indexing.
"""
def __init__(
self,
mcp_server_command: str,
username: Optional[str] = None,
include_tweet_content: bool = True,
include_metadata: bool = True,
max_bookmarks: int = 1000,
):
"""
Initialize the Twitter MCP Reader.
Args:
mcp_server_command: Command to start the MCP server (e.g., 'twitter-mcp-server')
username: Optional Twitter username to filter bookmarks
include_tweet_content: Whether to include full tweet content
include_metadata: Whether to include tweet metadata (likes, retweets, etc.)
max_bookmarks: Maximum number of bookmarks to fetch
"""
self.mcp_server_command = mcp_server_command
self.username = username
self.include_tweet_content = include_tweet_content
self.include_metadata = include_metadata
self.max_bookmarks = max_bookmarks
self.mcp_process = None
async def start_mcp_server(self):
"""Start the MCP server process."""
try:
self.mcp_process = await asyncio.create_subprocess_exec(
*self.mcp_server_command.split(),
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
logger.info(f"Started MCP server: {self.mcp_server_command}")
except Exception as e:
logger.error(f"Failed to start MCP server: {e}")
raise
async def stop_mcp_server(self):
"""Stop the MCP server process."""
if self.mcp_process:
self.mcp_process.terminate()
await self.mcp_process.wait()
logger.info("Stopped MCP server")
async def send_mcp_request(self, request: dict[str, Any]) -> dict[str, Any]:
"""Send a request to the MCP server and get response."""
if not self.mcp_process:
raise RuntimeError("MCP server not started")
request_json = json.dumps(request) + "\n"
self.mcp_process.stdin.write(request_json.encode())
await self.mcp_process.stdin.drain()
response_line = await self.mcp_process.stdout.readline()
if not response_line:
raise RuntimeError("No response from MCP server")
return json.loads(response_line.decode().strip())
async def initialize_mcp_connection(self):
"""Initialize the MCP connection."""
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-twitter-reader", "version": "1.0.0"},
},
}
response = await self.send_mcp_request(init_request)
if "error" in response:
raise RuntimeError(f"MCP initialization failed: {response['error']}")
logger.info("MCP connection initialized successfully")
async def list_available_tools(self) -> list[dict[str, Any]]:
"""List available tools from the MCP server."""
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
response = await self.send_mcp_request(list_request)
if "error" in response:
raise RuntimeError(f"Failed to list tools: {response['error']}")
return response.get("result", {}).get("tools", [])
async def fetch_twitter_bookmarks(self, limit: Optional[int] = None) -> list[dict[str, Any]]:
"""
Fetch Twitter bookmarks using MCP tools.
Args:
limit: Maximum number of bookmarks to fetch
Returns:
List of bookmark dictionaries
"""
tools = await self.list_available_tools()
bookmark_tool = None
# Look for a tool that can fetch bookmarks
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(keyword in tool_name for keyword in ["bookmark", "saved", "favorite"]):
bookmark_tool = tool
break
if not bookmark_tool:
raise RuntimeError("No bookmark fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {}
if limit or self.max_bookmarks:
tool_params["limit"] = limit or self.max_bookmarks
if self.username:
tool_params["username"] = self.username
fetch_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {"name": bookmark_tool["name"], "arguments": tool_params},
}
response = await self.send_mcp_request(fetch_request)
if "error" in response:
raise RuntimeError(f"Failed to fetch bookmarks: {response['error']}")
# Extract bookmarks from response
result = response.get("result", {})
if "content" in result and isinstance(result["content"], list):
content = result["content"][0] if result["content"] else {}
if "text" in content:
try:
bookmarks = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, treat as plain text
bookmarks = [{"text": content["text"], "source": "twitter"}]
else:
bookmarks = result["content"]
else:
bookmarks = result.get("bookmarks", result.get("tweets", [result]))
return bookmarks if isinstance(bookmarks, list) else [bookmarks]
def _format_bookmark(self, bookmark: dict[str, Any]) -> str:
"""Format a single bookmark for indexing."""
# Extract tweet information
text = bookmark.get("text", bookmark.get("content", ""))
author = bookmark.get(
"author", bookmark.get("username", bookmark.get("user", {}).get("username", "Unknown"))
)
timestamp = bookmark.get("created_at", bookmark.get("timestamp", ""))
url = bookmark.get("url", bookmark.get("tweet_url", ""))
# Extract metadata if available
likes = bookmark.get("likes", bookmark.get("favorite_count", 0))
retweets = bookmark.get("retweets", bookmark.get("retweet_count", 0))
replies = bookmark.get("replies", bookmark.get("reply_count", 0))
# Build formatted bookmark
parts = []
# Header
parts.append("=== Twitter Bookmark ===")
if author:
parts.append(f"Author: @{author}")
if timestamp:
# Format timestamp if it's a standard format
try:
import datetime
if "T" in str(timestamp): # ISO format
dt = datetime.datetime.fromisoformat(timestamp.replace("Z", "+00:00"))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
else:
formatted_time = str(timestamp)
parts.append(f"Date: {formatted_time}")
except (ValueError, TypeError):
parts.append(f"Date: {timestamp}")
if url:
parts.append(f"URL: {url}")
# Tweet content
if text and self.include_tweet_content:
parts.append("")
parts.append("Content:")
parts.append(text)
# Metadata
if self.include_metadata and any([likes, retweets, replies]):
parts.append("")
parts.append("Engagement:")
if likes:
parts.append(f" Likes: {likes}")
if retweets:
parts.append(f" Retweets: {retweets}")
if replies:
parts.append(f" Replies: {replies}")
# Extract hashtags and mentions if available
hashtags = bookmark.get("hashtags", [])
mentions = bookmark.get("mentions", [])
if hashtags or mentions:
parts.append("")
if hashtags:
parts.append(f"Hashtags: {', '.join(hashtags)}")
if mentions:
parts.append(f"Mentions: {', '.join(mentions)}")
return "\n".join(parts)
async def read_twitter_bookmarks(self) -> list[str]:
"""
Read Twitter bookmark data and return formatted text chunks.
Returns:
List of formatted text chunks ready for LEANN indexing
"""
try:
await self.start_mcp_server()
await self.initialize_mcp_connection()
print(f"Fetching up to {self.max_bookmarks} bookmarks...")
if self.username:
print(f"Filtering for user: @{self.username}")
bookmarks = await self.fetch_twitter_bookmarks()
if not bookmarks:
print("No bookmarks found")
return []
print(f"Processing {len(bookmarks)} bookmarks...")
all_texts = []
processed_count = 0
for bookmark in bookmarks:
try:
formatted_bookmark = self._format_bookmark(bookmark)
if formatted_bookmark.strip():
all_texts.append(formatted_bookmark)
processed_count += 1
except Exception as e:
logger.warning(f"Failed to format bookmark: {e}")
continue
print(f"Successfully processed {processed_count} bookmarks")
return all_texts
finally:
await self.stop_mcp_server()
async def __aenter__(self):
"""Async context manager entry."""
await self.start_mcp_server()
await self.initialize_mcp_connection()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.stop_mcp_server()

View File

@@ -1,195 +0,0 @@
#!/usr/bin/env python3
"""
Twitter RAG Application with MCP Support
This application enables RAG (Retrieval-Augmented Generation) on Twitter bookmarks
by connecting to Twitter MCP servers to fetch live data and index it in LEANN.
Usage:
python -m apps.twitter_rag --mcp-server "twitter-mcp-server" --query "What articles did I bookmark about AI?"
"""
import argparse
import asyncio
from apps.base_rag_example import BaseRAGExample
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
class TwitterMCPRAG(BaseRAGExample):
"""
RAG application for Twitter bookmarks via MCP servers.
This class provides a complete RAG pipeline for Twitter bookmark data, including
MCP server connection, data fetching, indexing, and interactive chat.
"""
def __init__(self):
super().__init__(
name="Twitter MCP RAG",
description="RAG application for Twitter bookmarks via MCP servers",
default_index_name="twitter_bookmarks",
)
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add Twitter MCP-specific arguments."""
parser.add_argument(
"--mcp-server",
type=str,
required=True,
help="Command to start the Twitter MCP server (e.g., 'twitter-mcp-server' or 'npx twitter-mcp-server')",
)
parser.add_argument(
"--username", type=str, help="Twitter username to filter bookmarks (without @)"
)
parser.add_argument(
"--max-bookmarks",
type=int,
default=1000,
help="Maximum number of bookmarks to fetch (default: 1000)",
)
parser.add_argument(
"--no-tweet-content",
action="store_true",
help="Exclude tweet content, only include metadata",
)
parser.add_argument(
"--no-metadata",
action="store_true",
help="Exclude engagement metadata (likes, retweets, etc.)",
)
parser.add_argument(
"--test-connection",
action="store_true",
help="Test MCP server connection and list available tools without indexing",
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
try:
reader = TwitterMCPReader(
mcp_server_command=args.mcp_server,
username=args.username,
include_tweet_content=not args.no_tweet_content,
include_metadata=not args.no_metadata,
max_bookmarks=args.max_bookmarks,
)
async with reader:
tools = await reader.list_available_tools()
print("\n✅ Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
name = tool.get("name", "Unknown")
description = tool.get("description", "No description available")
print(f"\n{i}. {name}")
print(
f" Description: {description[:100]}{'...' if len(description) > 100 else ''}"
)
# Show input schema if available
schema = tool.get("inputSchema", {})
if schema.get("properties"):
props = list(schema["properties"].keys())[:3] # Show first 3 properties
print(
f" Parameters: {', '.join(props)}{'...' if len(schema['properties']) > 3 else ''}"
)
return True
except Exception as e:
print(f"\n❌ Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the Twitter MCP server is installed and accessible")
print("2. Check if the server command is correct")
print("3. Ensure you have proper Twitter API credentials configured")
print("4. Verify your Twitter account has bookmarks to fetch")
print("5. Try running the MCP server command directly to test it")
return False
async def load_data(self, args) -> list[str]:
"""Load Twitter bookmarks via MCP server."""
print(f"Connecting to Twitter MCP server: {args.mcp_server}")
if args.username:
print(f"Username filter: @{args.username}")
print(f"Max bookmarks: {args.max_bookmarks}")
print(f"Include tweet content: {not args.no_tweet_content}")
print(f"Include metadata: {not args.no_metadata}")
try:
reader = TwitterMCPReader(
mcp_server_command=args.mcp_server,
username=args.username,
include_tweet_content=not args.no_tweet_content,
include_metadata=not args.no_metadata,
max_bookmarks=args.max_bookmarks,
)
texts = await reader.read_twitter_bookmarks()
if not texts:
print("❌ No bookmarks found! This could mean:")
print("- You don't have any bookmarks on Twitter")
print("- The MCP server couldn't access your bookmarks")
print("- Authentication issues with Twitter API")
print("- The username filter didn't match any bookmarks")
return []
print(f"✅ Successfully loaded {len(texts)} bookmarks from Twitter")
# Show sample of what was loaded
if texts:
sample_text = texts[0][:300] + "..." if len(texts[0]) > 300 else texts[0]
print("\nSample bookmark:")
print("-" * 50)
print(sample_text)
print("-" * 50)
return texts
except Exception as e:
print(f"❌ Error loading Twitter bookmarks: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Twitter API authentication problems")
print("- Network connectivity issues")
print("- Rate limiting from Twitter API")
raise
async def run(self):
"""Main entry point with MCP connection testing."""
args = self.parser.parse_args()
# Test connection if requested
if args.test_connection:
success = await self.test_mcp_connection(args)
if not success:
return
print(
"\n🎉 MCP server is working! You can now run without --test-connection to start indexing."
)
return
# Run the standard RAG pipeline
await super().run()
async def main():
"""Main entry point for the Twitter MCP RAG application."""
app = TwitterMCPRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 KiB

View File

View File

@@ -1,23 +0,0 @@
BM25 vs DiskANN Baselines
```bash
aws s3 sync s3://powerrag-diskann-rpj-wiki-20250824-224037-194d640c/bm25_rpj_wiki/index_en_only/ benchmarks/data/indices/bm25_index/
aws s3 sync s3://powerrag-diskann-rpj-wiki-20250824-224037-194d640c/diskann_rpj_wiki/ benchmarks/data/indices/diskann_rpj_wiki/
```
- Dataset: `benchmarks/data/queries/nq_open.jsonl` (Natural Questions)
- Machine-specific; results measured locally with the current repo.
DiskANN (NQ queries, search-only)
- Command: `uv run --script benchmarks/bm25_diskann_baselines/run_diskann.py`
- Settings: `recompute_embeddings=False`, embeddings precomputed (excluded from timing), batching off, caching off (`cache_mechanism=2`, `num_nodes_to_cache=0`)
- Result: avg 0.011093 s/query, QPS 90.15 (p50 0.010731 s, p95 0.015000 s)
BM25
- Command: `uv run --script benchmarks/bm25_diskann_baselines/run_bm25.py`
- Settings: `k=10`, `k1=0.9`, `b=0.4`, queries=100
- Result: avg 0.028589 s/query, QPS 34.97 (p50 0.026060 s, p90 0.043695 s, p95 0.053260 s, p99 0.055257 s)
Notes
- DiskANN measures search-only latency on real NQ queries (embeddings computed beforehand and excluded from timing).
- Use `benchmarks/bm25_diskann_baselines/run_diskann.py` for DiskANN; `benchmarks/bm25_diskann_baselines/run_bm25.py` for BM25.

Before

Width:  |  Height:  |  Size: 1.3 KiB

View File

@@ -1,183 +0,0 @@
# /// script
# dependencies = [
# "pyserini"
# ]
# ///
# sudo pacman -S jdk21-openjdk
# export JAVA_HOME=/usr/lib/jvm/java-21-openjdk
# sudo archlinux-java status
# sudo archlinux-java set java-21-openjdk
# set -Ux JAVA_HOME /usr/lib/jvm/java-21-openjdk
# fish_add_path --global $JAVA_HOME/bin
# set -Ux LD_LIBRARY_PATH $JAVA_HOME/lib/server $LD_LIBRARY_PATH
# which javac # Should be /usr/lib/jvm/java-21-openjdk/bin/javac
import argparse
import json
import os
import sys
import time
from statistics import mean
def load_queries(path: str, limit: int | None) -> list[str]:
queries: list[str] = []
# Try JSONL with a 'query' or 'text' field; fallback to plain text (one query per line)
_, ext = os.path.splitext(path)
if ext.lower() in {".jsonl", ".json"}:
with open(path, encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
except json.JSONDecodeError:
# Not strict JSONL? treat the whole line as the query
queries.append(line)
continue
q = obj.get("query") or obj.get("text") or obj.get("question")
if q:
queries.append(str(q))
else:
with open(path, encoding="utf-8") as f:
for line in f:
s = line.strip()
if s:
queries.append(s)
if limit is not None and limit > 0:
queries = queries[:limit]
return queries
def percentile(values: list[float], p: float) -> float:
if not values:
return 0.0
s = sorted(values)
k = (len(s) - 1) * (p / 100.0)
f = int(k)
c = min(f + 1, len(s) - 1)
if f == c:
return s[f]
return s[f] + (s[c] - s[f]) * (k - f)
def main():
ap = argparse.ArgumentParser(description="Standalone BM25 latency benchmark (Pyserini)")
ap.add_argument(
"--bm25-index",
default="benchmarks/data/indices/bm25_index",
help="Path to Pyserini Lucene index directory",
)
ap.add_argument(
"--queries",
default="benchmarks/data/queries/nq_open.jsonl",
help="Path to queries file (JSONL with 'query'/'text' or plain txt one-per-line)",
)
ap.add_argument("--k", type=int, default=10, help="Top-k to retrieve (default: 10)")
ap.add_argument("--k1", type=float, default=0.9, help="BM25 k1 (default: 0.9)")
ap.add_argument("--b", type=float, default=0.4, help="BM25 b (default: 0.4)")
ap.add_argument("--limit", type=int, default=100, help="Max queries to run (default: 100)")
ap.add_argument(
"--warmup", type=int, default=5, help="Warmup queries not counted in latency (default: 5)"
)
ap.add_argument(
"--fetch-docs", action="store_true", help="Also fetch doc contents (slower; default: off)"
)
ap.add_argument("--report", type=str, default=None, help="Optional JSON report path")
args = ap.parse_args()
try:
from pyserini.search.lucene import LuceneSearcher
except Exception:
print("Pyserini not found. Install with: pip install pyserini", file=sys.stderr)
raise
if not os.path.isdir(args.bm25_index):
print(f"Index directory not found: {args.bm25_index}", file=sys.stderr)
sys.exit(1)
queries = load_queries(args.queries, args.limit)
if not queries:
print("No queries loaded.", file=sys.stderr)
sys.exit(1)
print(f"Loaded {len(queries)} queries from {args.queries}")
print(f"Opening BM25 index: {args.bm25_index}")
searcher = LuceneSearcher(args.bm25_index)
# Some builds of pyserini require explicit set_bm25; others ignore
try:
searcher.set_bm25(k1=args.k1, b=args.b)
except Exception:
pass
latencies: list[float] = []
total_searches = 0
# Warmup
for i in range(min(args.warmup, len(queries))):
_ = searcher.search(queries[i], k=args.k)
t0 = time.time()
for i, q in enumerate(queries):
t1 = time.time()
hits = searcher.search(q, k=args.k)
t2 = time.time()
latencies.append(t2 - t1)
total_searches += 1
if args.fetch_docs:
# Optional doc fetch to include I/O time
for h in hits:
try:
_ = searcher.doc(h.docid)
except Exception:
pass
if (i + 1) % 50 == 0:
print(f"Processed {i + 1}/{len(queries)} queries")
t1 = time.time()
total_time = t1 - t0
if latencies:
avg = mean(latencies)
p50 = percentile(latencies, 50)
p90 = percentile(latencies, 90)
p95 = percentile(latencies, 95)
p99 = percentile(latencies, 99)
qps = total_searches / total_time if total_time > 0 else 0.0
else:
avg = p50 = p90 = p95 = p99 = qps = 0.0
print("BM25 Latency Report")
print(f" queries: {total_searches}")
print(f" k: {args.k}, k1: {args.k1}, b: {args.b}")
print(f" avg per query: {avg:.6f} s")
print(f" p50/p90/p95/p99: {p50:.6f}/{p90:.6f}/{p95:.6f}/{p99:.6f} s")
print(f" total time: {total_time:.3f} s, qps: {qps:.2f}")
if args.report:
payload = {
"queries": total_searches,
"k": args.k,
"k1": args.k1,
"b": args.b,
"avg_s": avg,
"p50_s": p50,
"p90_s": p90,
"p95_s": p95,
"p99_s": p99,
"total_time_s": total_time,
"qps": qps,
"index_dir": os.path.abspath(args.bm25_index),
"fetch_docs": bool(args.fetch_docs),
}
with open(args.report, "w", encoding="utf-8") as f:
json.dump(payload, f, indent=2)
print(f"Saved report to {args.report}")
if __name__ == "__main__":
main()

View File

@@ -1,124 +0,0 @@
# /// script
# dependencies = [
# "leann-backend-diskann"
# ]
# ///
import argparse
import json
import time
from pathlib import Path
import numpy as np
def load_queries(path: Path, limit: int | None) -> list[str]:
out: list[str] = []
with open(path, encoding="utf-8") as f:
for line in f:
obj = json.loads(line)
out.append(obj["query"])
if limit and len(out) >= limit:
break
return out
def main() -> None:
ap = argparse.ArgumentParser(
description="DiskANN baseline on real NQ queries (search-only timing)"
)
ap.add_argument(
"--index-dir",
default="benchmarks/data/indices/diskann_rpj_wiki",
help="Directory containing DiskANN files",
)
ap.add_argument("--index-prefix", default="ann")
ap.add_argument("--queries-file", default="benchmarks/data/queries/nq_open.jsonl")
ap.add_argument("--num-queries", type=int, default=200)
ap.add_argument("--top-k", type=int, default=10)
ap.add_argument("--complexity", type=int, default=62)
ap.add_argument("--threads", type=int, default=1)
ap.add_argument("--beam-width", type=int, default=1)
ap.add_argument("--cache-mechanism", type=int, default=2)
ap.add_argument("--num-nodes-to-cache", type=int, default=0)
args = ap.parse_args()
index_dir = Path(args.index_dir).resolve()
if not index_dir.is_dir():
raise SystemExit(f"Index dir not found: {index_dir}")
qpath = Path(args.queries_file).resolve()
if not qpath.exists():
raise SystemExit(f"Queries file not found: {qpath}")
queries = load_queries(qpath, args.num_queries)
print(f"Loaded {len(queries)} queries from {qpath}")
# Compute embeddings once (exclude from timing)
from leann.api import compute_embeddings as _compute
embs = _compute(
queries,
model_name="facebook/contriever-msmarco",
mode="sentence-transformers",
use_server=False,
).astype(np.float32)
if embs.ndim != 2:
raise SystemExit("Embedding compute failed or returned wrong shape")
# Build searcher
from leann_backend_diskann.diskann_backend import DiskannSearcher as _DiskannSearcher
index_prefix_path = str(index_dir / args.index_prefix)
searcher = _DiskannSearcher(
index_prefix_path,
num_threads=int(args.threads),
cache_mechanism=int(args.cache_mechanism),
num_nodes_to_cache=int(args.num_nodes_to_cache),
)
# Warmup (not timed)
_ = searcher.search(
embs[0:1],
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=0.0,
recompute_embeddings=False,
batch_recompute=False,
dedup_node_dis=False,
)
# Timed loop
times: list[float] = []
for i in range(embs.shape[0]):
t0 = time.time()
_ = searcher.search(
embs[i : i + 1],
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=0.0,
recompute_embeddings=False,
batch_recompute=False,
dedup_node_dis=False,
)
times.append(time.time() - t0)
times_sorted = sorted(times)
avg = float(sum(times) / len(times))
p50 = times_sorted[len(times) // 2]
p95 = times_sorted[max(0, int(len(times) * 0.95) - 1)]
print("\nDiskANN (NQ, search-only) Report")
print(f" queries: {len(times)}")
print(
f" k: {args.top_k}, complexity: {args.complexity}, beam_width: {args.beam_width}, threads: {args.threads}"
)
print(f" avg per query: {avg:.6f} s")
print(f" p50/p95: {p50:.6f}/{p95:.6f} s")
print(f" QPS: {1.0 / avg:.2f}")
if __name__ == "__main__":
main()

View File

File diff suppressed because it is too large Load Diff

View File

File diff suppressed because one or more lines are too long

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,484 @@
=== Prompt Dump for TRIVIA + HNSW ===
Total prompts: 50
Showing first 20 prompts:
==================================================
PROMPT #1:
==================================================
Jason Lee also portrays David Seville in live action/CGI films starring Alvin and the Chipmunks, which use a combination of live-action acting and computer animation. While Ross Bagdasarian Jr. does not do any voices for the film series, the films are all produced in association with Bagdasarian Productions, which owns the rights to all of the characters. Portrayed by Filmography Films Television See also References Fictional characters introduced in 1958 Alter egos Alvin and the Chipmunks Fictional managers Fictional producers American male characters in televisionRoss Dickran Bagdasarian (born May 6, 1949) is an American actor, animator and producer, known for his work on the Alvin and the Chipmunks franchise. He is the son of the franchise's creator, Ross Bagdasarian. Early life Bagdasarian was born in Fresno, California, the son of Armenian-American parents Armenuhi Bagdasarian (née Kulhanjian) and Ross Bagdasarian (19191972). As a child, he worked with his father on The Alvin Show by helping edit and coordinate the soundtracks and falsetto voice-overs of the Chipmunks. Career Bagdasarian graduated from law school. He succeeded his father as president of Bagdasarian Productions in 1972 after the death of the elder Bagdasarian. The company had fallen into obscurity after significant success between 1958 and the late 1960s. Bagdasarian was also admitted to the California bar as an attorney in 1975. Under Bagdasarian's supervision, new Chipmunks records were created shortly after his marriage to Karman, including Chipmunk Punk. In 1981, the Chipmunks returned to television in the cartoon special A Chipmunk Christmas. Two years later, Ruby-Spears Productions' Alvin and the Chipmunks Saturday morning cartoon series debuted on NBC. Based on that series, a feature film, The Chipmunk Adventure was released in 1987. Bagdasarian voices Alvin, Simon, and Dave Seville, and Karman voices Theodore and the Chipettes (Brittany, Jeanette, and Eleanor). Bagdasarian and Karman hold tight creative and financial control over the Chipmunk franchise, reviewing each and every business contract in great detail. In the mid-90s, Bagdasarian bought out his brother's and sister's portions of the Chipmunk rights, to take complete control of the franchise.Alvin and the Chipmunks, originally David Seville and the Chipmunks or simply The Chipmunks, are an American animated virtual band and media franchise first created by Ross Bagdasarian for novelty records in 1958. The group consists of three singing animated anthropomorphic chipmunks named Alvin, Simon, and Theodore who are originally managed by their human adoptive father, David "Dave" Seville. Bagdasarian provided the group's voices by producing sped-up recordings of his own, a technique pioneered on the successful "Witch Doctor". Later in 1958, Bagdasarian released the similarly-engineered "The Chipmunk Song" for which he came up with the chipmunk characters and their human father, attributing the track to them. David Seville and the Chipmunks released several more records over the following decade until Bagdasarian's death in 1972. The franchise was revived in 1979 with the characters' voices provided by his son Ross Bagdasarian Jr. and the latter's wife Janice Karman. Through the successful franchise, the Chipmunks have become one of the most successful children's artists of all time. It has garnered two number-one singles on the Billboard Hot 100 and won five Grammy Awards, having four Top 10 albums on the Billboard 200 and three certified platinum albums. "The Chipmunk Song" became one of the best-selling singles of all time at 5 million physical copies sold. The Chipmunks were first depicted in animated form in The Alvin Show (1961). The characters have since featured in several television series and films, as well as other media. In 2019, The Chipmunks received a star on the Hollywood Walk of Fame.
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Rita Coolidge sang the title song for which Bond film??
A: Octopussy
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Who was the man behind The Chipmunks?
A:
==================================================
==================================================
PROMPT #2:
==================================================
and the drum set. Their film counterparts are Michelle and Eleni. Production history Broadway (2015-2019) Auditions began on January 19, 2015 for children ages nine through fifteen. Some recruiting was done through the School of Rock after-school educational program (which predated the film by several years) and open calls were held in New York at the Winter Garden, in Chicago and in Los Angeles. The production closed on January 20, 2019, after 1,309 performances. West End (20162020) On 7 December 2015, following the show's Broadway opening, it was announced by Andrew Lloyd Webber that the show would transfer to London's West End in autumn 2016, with the intention to open at the London Palladium. On 20 May 2016, the musical was confirmed at the Gillian Lynne Theatre instead of the Palladium with previews starting on 24 October 2016, opening night on 14 November 2016, and public booking opening on 25 May 2016. Lloyd Webber revealed that the production was able to open several months earlier than anticipated due to finding the child musician actors easily. Anna Louizos' scenery has been modified to fit the architecture of the Gillian Lynne Theatre from the traditional proscenium arch stage at Winter Garden Theatre. Changes include the removal of the pre-show curtain, the use of a revolving stage and action taking place in the aisles of the stalls. While the show remains to be set in America, the script has been adapted to include some minor references for a British audience. The original London cast includes David Fynn as DeweyThe Sound of Music, Camelot and Fiddler on the Roof played at the theatre in the early 1980s. In 1984, the interior was extensively modified by the introduction of a 'race track' that ran through the audience, for the show Starlight Express with performers on roller skates. The show premièred on 27 March, composed by Andrew Lloyd Webber and directed by Trevor Nunn and ran for 7,406 performances, over 18 years. With the removal of the 'tracks', the interior was extensively restored by architects Jaques Muir and Partners. This included the removal of 3,500 incandescent lamps that had become difficult to maintain and consumed a considerable amount of power. These were replaced by 88,000 low power LEDs specially designed for the theatre, creating the first auditorium completely lit in this way. Another Lloyd Webber production followed, Bombay Dreams premièred on 19 June 2002. It was created by A. R. Rahman with lyrics by Don Black and was directed by Steven Pimlott, closing after 1,500 performances on 13 June 2004. This was followed by the return to the West End of the Bee Gee's musical Saturday Night Fever on 6 July 2004, closing 22 October 2005 to tour. This was followed on 10 April 2006 by the jukebox musical Movin' Out, featuring the music of Billy Joel. This starred James Fox but ran for only two months. The Broadway musical Wicked received its London première at the venue on 27 September 2006 with a cast featuring Idina Menzel as Elphaba, Helen Dallimore as Glinda, Nigel Planer asand also starred comedian Tim Minchin as Judas Iscariot, former Spice Girl Melanie C as Mary Magdalene and BBC Radio 1 DJ Chris Moyles as King Herod. Tickets for most venues went on sale on 18 May 2012. In 2013, Lloyd Webber reunited with Christopher Hampton and Don Black on Stephen Ward the Musical. For his next project, a 2015 musical adaptation of the 2003 film School of Rock, auditions were held for children aged nine to fifteen in cooperation with the School of Rock music education program, which predated the film by several years. In April 2016, the English National Opera staged a revival of Sunset Boulevard at the London Coliseum. The limited run, semi-staged production directed by Lonny Price brought Glenn Close to reprise her star turn as "Norma Desmond", which was her first time performing the role in London; she had originated the role in Los Angeles in December 1993 and then on Broadway in November 1994 (which won her the 1995 Tony Award for Best Actress in a Musical). The 2016 London revival was so well-received that the production transferred to the Palace Theatre on Broadway in February 2017, making Lloyd Webber the first musical-theatre composer since 1953 to have four musicals running simultaneously on Broadway a feat that his heroes Rodgers and Hammerstein had previously achieved. Lloyd Webber's memoir, Unmasked, was published in 2018. On 9 September 2018, Lloyd Webber, along with Tim Rice and John Legend each won an Emmy for Jesus Christ Superstar Live in Concert. With this
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Rita Coolidge sang the title song for which Bond film??
A: Octopussy
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993?
A:
==================================================
==================================================
PROMPT #3:
==================================================
Cabinet Louis Botha, Prime Minister of the Union of South Africa (19101919) Behind Churchill are: George Barnes, leader of the National Democratic and Labour Party Sir Robert Borden, Prime Minister of Canada (19111920) To their right are: Arthur Balfour, 1st Earl of Balfour, former Prime Minister of the United Kingdom (19021905); First Lord of the Admiralty (19151916) and Foreign Secretary (19161919) (standing adlocutio in a black suit) H. H. Asquith, 1st Earl of Oxford and Asquith, Prime Minister of the United Kingdom (19081916) (sitting in front) Sir Eric Geddes, First Lord of the Admiralty (19171919) (behind, cleanshaven) Bonar Law, Leader of the Opposition (United Kingdom) (19111915), Secretary of State for the Colonies (19151916), Chancellor of the Exchequer (19161919) (later Prime Minister of the United Kingdom, 19221923) (dark moustache) Edward Morris, 1st Baron Morris, Prime Minister of Newfoundland (19091917) (white moustache, in the shadows) Herbert Kitchener, 1st Earl Kitchener, Secretary of State for War (19141916) (in the shadows) Bailey decided that the painting should include British and Dominion civilian leaders in office at the beginning and the end of the First World War. It includes Prime Ministers of Australia, Canada, Newfoundland, and New Zealand, and the Prime Ministers, Foreign Secretaries, Secretaries of War, and First Lords of the Admiralty of the United Kingdom, together with two leaders of the British Conservative and Labour parties. The Maharaja of Bikaner, a member of the Imperial War Cabinet and the Indian delegate to the Versailles Peace Conference, stands to the left next to Botha, both in military uniform. Kitchener standsArthur James Balfour, 1st Earl of Balfour, (, ; 25 July 184819 March 1930), also known as Lord Balfour, was a British Conservative statesman who served as Prime Minister of the United Kingdom from 1902 to 1905. As foreign secretary in the Lloyd George ministry, he issued the Balfour Declaration of 1917 on behalf of the cabinet, which supported a "home for the Jewish people" in Palestine. Entering Parliament in 1874, Balfour achieved prominence as Chief Secretary for Ireland, in which position he suppressed agrarian unrest whilst taking measures against absentee landlords. He opposed Irish Home Rule, saying there could be no half-way house between Ireland remaining within the United Kingdom or becoming independent. From 1891 he led the Conservative Party in the House of Commons, serving under his uncle, Lord Salisbury, whose government won large majorities in 1895 and 1900. An esteemed debater, he was bored by the mundane tasks of party management. In July 1902, he succeeded his uncle as prime minister. In domestic policy he passed the Land Purchase (Ireland) Act 1903, which bought out most of the Anglo-Irish land owners. The Education Act 1902 had a major long-term impact in modernising the school system in England and Wales and provided financial support for schools operated by the Church of England and by the Catholic Church. Nonconformists were outraged and mobilised their voters, but were unable to reverse it. In foreign and defence policy, he oversaw reform of British defence policy and supported Jackie Fisher's naval innovations. He secured the Entente Cordiale withthe county of Haddington. In October 1922 he, with most of the Conservative leadership, resigned with Lloyd George's government following the Carlton Club meeting, a Conservative back-bench revolt against continuance of the coalition. Bonar Law became prime minister. Like many Coalition leaders, he did not hold office in the Conservative governments of 19221924, but as an elder statesman, he was consulted by the King in the choice of Stanley Baldwin as Bonar Law's successor as Conservative leader in May 1923. His advice was strongly in favour of Baldwin, ostensibly due to Baldwin's being an MP but in reality motivated by his personal dislike of Curzon. Later that evening, he met a mutual friend who asked 'Will dear George be chosen?' to which he replied with 'feline Balfourian satisfaction,' 'No, dear George will not.' His hostess replied, 'Oh, I am so sorry to hear that. He will be terribly disappointed.' Balfour retorted, 'Oh, I don't know. After all, even if he has lost the hope of glory he still possesses the means of Grace.' Balfour was not initially included in Baldwin's second government in 1924, but in 1925, he returned to the Cabinet, in place of the late Lord Curzon as Lord President of the Council, until the government ended in 1929. With 28 years of government service, Balfour had one of the longest ministerial careers in modern British politics, second only to Winston Churchill . Last years Lord Balfour had generally good health until 1928 and remained until then a regular tennis player. Four years previously
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Rita Coolidge sang the title song for which Bond film??
A: Octopussy
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Who was the next British Prime Minister after Arthur Balfour?
A:
==================================================
==================================================
PROMPT #4:
==================================================
classic '70s pop song." In 1992, Mexican trio Pandora released a cover version titled "Pierdo el Control" on their album Ilegal. In 1979 Ginger Rogers sang this song on The Love Boat in the episode "Critical Success / The Love Lamp Is Lit / Take My Boyfriend, Please / Rent a Family / The Man in Her Life: Parts 1 & 2" In 2001, the film Get Over It featured a dance to this song at the beginning by some of the cast. References 1973 songs 1975 debut singles Songs written by Neil Sedaka Songs with lyrics by Howard Greenfield Neil Sedaka songs Captain & Tennille songs Andy Williams songs Number-one singles in Australia Billboard Hot 100 number-one singles Cashbox number-one singles RPM Top Singles number-one singles Grammy Award for Record of the Year A&M Records singles Juno Award for Best Selling Single singlesMusic Week rated the song four out of five, concluding, "A third huge hit for the boys." Tracklisting CD single "Kiss You All Over" (Radio Edit) - 4:31 "Kiss You All Over" (Club Mix) - 5:53 "Bonita" (Radio Edit) - 3:54 "Bonita" (Club Mix) - 7:08 Charts Release history References 1978 songs 1978 singles 1997 singles 1998 singles Billboard Hot 100 number-one singles Cashbox number-one singles Exile (American band) songs Number-one singles in New Zealand Number-one singles in South Africa Number-one singles in Australia Songs written by Mike Chapman Song recordings produced by Frank Farian Song recordings produced by Mike Chapman Songs written by Nicky Chinn RAK Records singles Curb Records singles Hilltak Records singles Warner Records singles Arista Records singles No Mercy (pop band) songs Songs about kissing Phyllis Hyman songs"Kiss You All Over" is a 1978 song performed by American group Exile, written by Mike Chapman and Nicky Chinn. It was included on the band's third album, Mixed Emotions (1978), and featured lead vocalist Jimmy Stokley and guitarist J.P. Pennington on vocals. On the American Top 40 broadcast of May 26, 1979, Casey Kasem reported that Chapman stated his source of inspiration for "Kiss You All Over" was "It's Ecstasy When You Lay Down Next to Me" by Barry White. The song was a number one single in the United States, but proved to be Exile's only big hit in the pop market (they would later have great success on the country music charts). It held the number one spot on the Billboard Hot 100 for four weeks (starting September 30), and Billboard ranked it as the No. 5 song for 1978. The track also reached number-one in at least three other nations. In the United Kingdom, the song was released on Mickie Most's RAK Records, and peaked at number 6 on the UK Singles Chart. The strings are played with a synthesizer in a backing track. In 2010, Billboard ranked the song tenth on its list of "The 50 Sexiest Songs of All Time". Lead vocalist on the number, Stokley was ousted from the band in 1979, his health declining thereafter until he died at the age of 41 in 1985. After the success of soft rock singles from the albums Mixed Emotions and All There Is, the band moved into country music in
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Rita Coolidge sang the title song for which Bond film??
A: Octopussy
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Who had a 70s No 1 hit with Kiss You All Over?
A:
==================================================
==================================================
PROMPT #5:
==================================================
21st century world: "We dislike low-lying voices, for one thing— contraltos now sound freakish and headmistressy, and even the majority of mezzo-sopranos should more accurately be categorised as almost-sopranos". However, she was "a singer of, and for, her time — a time of grief and weariness, national self-respect and a belief in human nobility". In this context "her artistry stands upright, austere, unfussy, fundamental and sincere". Shortly after Ferrier's death an appeal was launched by Barbirolli, Walter, Myra Hess and others, to establish a cancer research fund in Ferrier's name. Donations were received from all over the world. To publicise the fund a special concert was given at the Royal Festival Hall on 7 May 1954, at which Barbirolli and Walter shared the conducting duties without payment. Among the items was a rendition of Purcell's When I am laid in earth, which Ferrier had often sung; on this occasion the vocal part was played by a solo cor anglais. The Kathleen Ferrier Cancer Research Fund helped establish the Kathleen Ferrier Chair of Clinical Oncology at University College Hospital, in 1984. , it was continuing to fund oncology research. As the result of a separate appeal, augmented by the sales proceeds of a memoir edited by Neville Cardus, the Kathleen Ferrier Memorial Scholarship Fund was created to encourage young British and Commonwealth singers of either sex. The Fund, which has operated from 1956 under the auspices of the Royal Philharmonic Society, initially provided an annual award covering the cost of a year's study to a single prizewinner.In the course of her professional life the English contralto Kathleen Ferrier made a large number of recordings. In the summer of 1944 she signed a contract with Columbia, which lasted until February 1946. She then transferred to Decca, and remained with them until her death in October 1953. Apart from her studio recordings, many of her live performances and broadcast recitals were recorded, sometimes privately. Some of these were later issued as commercial recordings; others are held by individuals or in the archives of broadcasting companies. The following list is neither up to date nor entirely accurate, particularly in regard to a CD issue, entitled 'Kathleen Ferrier Remembered', released in June 2017, on SOMM264, comprising 26 tracks, 19 of which have never previously been issued. Most of these 19 are not listed below. They include Lieder by Schubert, Brahms, Wolf and Mahler and songs by Stanford, Parry, Jacobson and Rubbra, all taken from BBC broadcasts between 1947 and 1952. In April 2019, a recording of Ferrier singing in Bach's 'Magnificat' during the 1950 Vienna International Bach Festival was issued for the first time. The CD catalogue number is SOMM Ariadne 5004 and it also features Irmgard Seefried and Friedl Riegler (sopranos), Hugo Meyer-Welfing (tenor) and Otto Edelmann (bass). The Vienna Philharmonic Orchestra and Chorus of the Vienna State Opera are conducted by Volkmar Andreae. The existence of this recording was not known until a vinyl disc was offered for sale on an internet auction site in 2018. In superb recorded sound, this discovery is aKathleen Mary Ferrier, CBE (22 April 19128 October 1953) was an English contralto singer who achieved an international reputation as a stage, concert and recording artist, with a repertoire extending from folksong and popular ballads to the classical works of Bach, Brahms, Mahler and Elgar. Her death from cancer, at the height of her fame, was a shock to the musical world and particularly to the general public, which was kept in ignorance of the nature of her illness until after her death. The daughter of a Lancashire village schoolmaster, Ferrier showed early talent as a pianist, and won numerous amateur piano competitions while working as a telephonist with the General Post Office. She did not take up singing seriously until 1937, when after winning a prestigious singing competition at the Carlisle Festival she began to receive offers of professional engagements as a vocalist. Thereafter she took singing lessons, first with J.E. Hutchinson and later with Roy Henderson. After the outbreak of the Second World War Ferrier was recruited by the Council for the Encouragement of Music and the Arts (CEMA), and in the following years sang at concerts and recitals throughout the UK. In 1942 her career was boosted when she met the conductor Malcolm Sargent, who recommended her to the influential Ibbs and Tillett concert management agency. She became a regular performer at leading London and provincial venues, and made numerous BBC radio broadcasts. In 1946, Ferrier made her stage debut, in the Glyndebourne Festival premiere of Benjamin Britten's opera The Rape of Lucretia.
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: Rita Coolidge sang the title song for which Bond film??
A: Octopussy
Q: What claimed the life of singer Kathleen Ferrier?
A:
==================================================
==================================================
PROMPT #6:
==================================================
"You Only Live Twice", performed by Nancy Sinatra, is the theme song to the 1967 James Bond film of the same name. The music was by veteran Bond film composer John Barry, with lyrics by Leslie Bricusse. The song is widely recognized for its striking opening bars, featuring a simple 2-bar theme in the high octaves of the violins and lush harmonies from French horns. It is considered by some to be among the best James Bond theme songs, and has become one of Nancy Sinatra's best known hits. Shortly after Barry's production, Sinatra's producer Lee Hazlewood released a more guitar-based single version. The song has been covered by many artists including Coldplay, Soft Cell, Björk and Shirley Bassey. In 1998, Robbie Williams re-recorded portions of the song (including the opening strings) for use in his UK number-one single "Millennium". Background James Bond veteran John Barry returned to the franchise to produce the score. The lyrics were by Leslie Bricusse, who had previously cowritten the lyrics for the theme to Goldfinger. An initial version of the song was performed by Julie Rogers and recorded with a 50 or 60 piece orchestra at CTS Studios. However, this version was not used since Barry decided to re-write and re-record the song: "It was usually the producers that said 'this isn't working, there's a certain something that it needed'. If that energy wasn't there, if that mysterioso kind of thing wasn't there, then it wasn't going to work for the movie." The Rogers song shares only two lines withBassey belting out the fantastic title song." He added that the remastered edition's sound quality was "impeccable". Chart positions Track listing Credits Project manager: Herb Agner Creative director: Michelle Azzopardi Composer, conductor, primary artist: John Barry Primary artist, vocals: Shirley Bassey Liner notes: Jeff Bond Composer, lyricist: Leslie Bricusse Project manager: Wendy Brueder Producer, reissue producer: Frank Collura Remastering: Bob Fisher Guitar, soloist: Vic Flick Art direction, design: Peter Grant Orchestra contractor: Sid Margo Lyricist: Anthony Newley A&R: Gregg Ogorzelec Engineer: John Richards Saxophone, soloist: John Scott Source: Aftermath Following the success of her performance on the title track, Shirley Bassey sang the title songs for two later Bond films, Diamonds Are Forever and Moonraker. John Barry used the Goldfinger theme on his 1965 John Barry Plays Goldfinger album that featured Robert Brownjohn artwork. References Footnotes Citations Bibliography Soundtrack albums from James Bond films Soundtrack 1964 soundtrack albums EMI Records soundtracks John Barry (composer) soundtracksJames Bond (Roger Moore), and the title evidently refers to the key aerial sequences featured in the movie. Prior to Rita Coolidge being assigned the Octopussy theme, Mari Wilson was a contender, a British singer whose retro-image evoked the mid-'60s when the Bond series originated; but Wilson's lack of a US-profile led to a negative decision. In January 1983, the producer of Octopussy: Cubby Broccoli, stated that he hoped to have current hitmaker Laura Branigan sing the movie's theme song, an artist choice which both Barry and Rice have stated would have pleased them. However, on March 29, 1983 Rita Coolidge was revealed as the singer, a seemingly surprising choice in that Coolidge's career peak had occurred some six years previously. Coolidge recalls that Barbara Broccoli, daughter of Cubby Broccoli and herself the assistant director of Octopussy, was a fan of Coolidge and made a point of playing Coolidge records around her father until "one day [he said], "Who is that? That's the voice I want for the movie." Rice still had to complete his contribution as the singer arrived in the studio, with Coolidge stating that "we were waiting for the lyrics as the instrumental track had already been done." The chorus of "All Time High" features a lyric similar to that of Coolidge's #2 hit "(Your Love Has Lifted Me) Higher and Higher" whose lyric "When you wrap your loving arms around me I can stand up and face the world again" is echoed by the "All Time High" lyric "We'll take on the
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Rita Coolidge sang the title song for which Bond film?
A:
==================================================
==================================================
PROMPT #7:
==================================================
which allowed the first legal beer sales since the beginning of Prohibition on January 16, 1920. In 1933 state conventions ratified the Twenty-first Amendment, which repealed Prohibition. The Amendment was fully ratified on December 5, 1933. Federal laws enforcing Prohibition were then repealed. Dry counties Following repeal some states continued prohibition within their own jurisdictions. Almost two-thirds of the states adopted some form of local option which enabled residents in political subdivisions to vote for or against local prohibition. For a time, 38 percent of Americans lived in areas with Prohibition. By 1966, however, all states had repealed their statewide prohibition laws, with Mississippi the last state to do so. Notes Sources Walker, Robert S. and Samuel C. Patterson, Oklahoma Goes Wet: The Repeal of Prohibiton, Eagleton Institute, Rutgers University, (1961). External links Repeal Day is December Fifth See more related images by selecting the "Alcohol" subject at the Persuasive Cartography, The PJ Mode Collection, Cornell University Library Prohibition in the United States Economic history of the United States 1933 in the United States Articles containing video clipsimportation of alcoholic beverages in the United States. The resolution was sent to the states for ratification and became the Eighteenth Amendment to the U.S. Constitution. On January 8, 1918, Mississippi became the first state to ratify the amendment and on January 16, 1919, Nebraska became the 36th state to do so, securing its passage with the required three-fourths of the states. By the end of February 1919, only three states remained as hold-outs to ratification: New Jersey, Connecticut and Rhode Island. The National Prohibition Act, also known as the Volstead Act, was enacted on October 18, 1919. Prohibition in the United States went into effect on January 17, 1920. Nationwide prohibition was repealed in 1933 with the passage of the Twenty-first Amendment on February 20 and its ratification on December 5. List of formerly dry states This table lists the effective dates each state went dry and any dates of repeal that do not coincide with the end of national prohibition in 1933. See also Dry county Alcoholic beverage control state List of alcohol laws of the United States by state Notes Alcohol law in the United States Prohibition in the United StatesAugust 19. PPS functionals were completed August 21. GATV 5006 was then transferred to complex 14 for mating with the Atlas. July 27, 1966 (Wednesday) Following the announcement of his austerity programme, British Prime Minister Harold Wilson survived a vote of censure in the House of Commons, as members of his Labour Party (with an 88-seat majority) supported him. The final result was 246 votes in favor, and 325 against. On the same day, the nation's chief labor union, the Trades Union Congress, voted 20 to 12 in support of a resolution pledging to halt strikes that had been threatened during the six-month freeze against raising wages. For the first time in 58 years, liquor was legally served in Mississippi, the last of the United States to have repealed its prohibition laws. Effective July 1, individual local governments were allowed to hold referendum elections on whether to allow the sale of liquor at state-approved resorts, and Harrison County voters had endorsed the measure. At 6:55 p.m., after police cars escorted a liquor delivery truck into Biloxi. The first drink in the state was poured at the Broadwater Beach Hotel, and Louis Cobb, the first legal bartender in Mississippi, sold a glass of scotch whiskey to hotel manager T.M. Dorsett. Biloxi Mayor Dan Guice then cut the ribbon to open the entrance to the hotel's bar.Died: Brenda Sue Brown, 11, was beaten to death after walking with her sister to summer school in Shelby, North Carolina. Police were unable to charge a suspect with the crime, until
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: What was the last US state to reintroduce alcohol after prohibition?
A:
==================================================
==================================================
PROMPT #8:
==================================================
to New York City for work in summer stock theatre shortly before winning a supporting role in MGM's These Glamour Girls (1939) opposite Lana Turner and Lew Ayres. The role of Betty was said to have been written especially with Hunt in mind. Other roles in major studio productions soon followed, including supporting roles as Mary Bennet in MGM's version of Pride and Prejudice (1940) with Laurence Olivier, and as Martha Scott's surrogate child Hope Thompson in Cheers for Miss Bishop (1941). Years at MGM In 1941, Hunt signed a contract with MGM, where she remained for the next six years. While filming Blossoms in the Dust, film director Mervyn LeRoy lauded Hunt for her heartfelt and genuine acting ability. During this period she had starring roles in 21 films, including The Penalty (1941) opposite Lionel Barrymore, Panama Hattie (1942) opposite Ann Sothern and Red Skelton, and the war drama Pilot No. 5 (1943) in which she was cast as the love interest of Franchot Tone, and The Valley of Decision (1945). In 1944 she polled seventh in a list by exhibitors of "Stars of Tomorrow". She previously did a screen test to play Melanie Hamilton in Gone with the Wind (1939) and was told by David O. Selznick she would play the role, but to "keep it a secret for now." Three days later, it was announced that Olivia de Havilland was cast. In 1944, she appeared in None Shall Escape, a film that is now regarded as the first about the Holocaust. She playedMiss America 1941, the 15th Miss America pageant, was held at the Boardwalk Hall in Atlantic City, New Jersey on September 6, 1941. Shortly after the crowning of Miss California, Rosemary LaPlanche, who had been first runner-up in 1940, the pageant committee adopted this rule: "No contestant can compete in Atlantic City for the title of Miss America more than once", thus eliminating future state winners with more than one attempt at the national title. LaPlanche became a film actress, as did her sister, Louise LaPlanche. 1941 was also the first year that the special award, “Miss Congeniality” was created. It went to Mifaunwy Shunatona, a member of the Otoe and Pawnee tribes — she was also the first American Indian contestant in the pageants history. Results Awards Preliminary awards Other awards Contestants References Secondary sources External links Miss America official website 1941 1941 in the United States 1941 in New Jersey September 1941 events Events in Atlantic City, New JerseyMiss America 1942, the 16th Miss America pageant, was held at the Warner Theater in Atlantic City, New Jersey on September 12, 1942. Miss Texas, Jo-Carroll Dennison won the title after winning the swimsuit and talent categories. She was the first Miss Texas to win the Miss America title. Dennison became an actress and had roles in films such as Winged Victory. She was married at one time to comedian Phil Silvers. Results Awards Preliminary awards Other awards Contestants References Secondary sources External links Miss America (1942) 1942 1942 in the United States 1942 in New Jersey September 1942 events Events in Atlantic City, New Jersey
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Which actress was voted Miss Greenwich Village in 1942?
A:
==================================================
==================================================
PROMPT #9:
==================================================
De Tokyo Stock Price Index (Japans: 東証株価指数) of TOPIX is een belangrijke aandelenindex van de Tokyo Stock Exchange. Berekening In deze index zijn alle bedrijven opgenomen die op de beurs van Tokio staan genoteerd in de First Section. Dit zijn de grootste en meest liquide aandelen die op de beurs worden verhandeld. Tot medio 2006 werd het gewicht van de individuele bedrijven in de index bepaald op basis van de marktkapitalisatie, hierna wordt ook de free float in de berekening meegenomen. Het effect van deze verandering was significant, daar veel Japanse bedrijven aandelen houden in andere Japanse bedrijven, ook wel bekend als crossholdings, om daarmee de langdurige zakenrelatie te onderstrepen. Deze belangen worden voor lange tijd gehouden en worden niet tot de free float gerekend. De index heeft 4 januari 1968 als startdatum, maar ging op 1 juli 1969 daadwerkelijk van start. Een andere belangrijke beursindex in Japan is de Nikkei 225. In deze index zijn 225 bedrijven opgenomen en dit is een prijsgewogen index. Samenstelling Eind maart 2021 bestond de index uit 2187 aandelen. Door het grote aantal aandelen is het gewicht van de individuele namen zeer klein. De top 10 aandelen hebben een gezamenlijk gewicht in de index van slechts 18,4% en de lijst zag er als volgt uit, met de gewichten tussen de haakjes: De belangrijkste drie sectoren zijn: elektronische apparatuur, informatie technologie en chemie. Deze drie vertegenwoordigen tezamen zo'n 34% van de index, waarvan de sector elektronische apparatuur het grootst is met een gewicht van 17,5%. Koershistorie De hoogste stand van deTOPIX steht für Tōkyō Stock Price Index (jap. , Tōshō kabuka shisū) und ist neben dem Nikkei 225 ein Kursindex der Tokioter Börse. Berechnet wird der TOPIX seit dem 1. Juli 1969. Die Index-Basis liegt bei 100 Punkten per 4. Januar 1968. Er enthält alle japanischen Aktien, welche im amtlichen Handel zugelassen sind. Die Gewichtung der einzelnen Unternehmen im Index erfolgt anhand der Marktkapitalisierung. Gegenwärtig (8. September 2021) setzt sich der Index aus 2.189 Aktien zusammen. Wegen dieser hohen Zahl an vertretenen Unternehmen wird der TOPIX als aussagekräftiger für den Zustand der japanischen Wirtschaft angesehen als der Nikkei 225. Weblinks Beschreibung des TOPIX (engl.) TOPIX in Echtzeit Jährliche Entwicklung des TOPIX seit 1949 (Daten vor 1969 dem Einführungsjahr des TOPIX sind rückgerechnet; XLS-Format, 31,5 KB; abgerufen am 12. Oktober 2017) Einzelnachweise Aktienindex Wirtschaft (Japan) Abkürzung, commonly known as TOPIX, along with the Nikkei 225, is an important stock market index for the Tokyo Stock Exchange (TSE) in Japan, tracking all domestic companies of the exchange's Prime market division. It is calculated and published by the TSE. , there were 1,669 companies listed on the First Section of the TSE, and the market value for the index was ¥197.4 trillion. The index transitioned from a system where a company's weighting is based on the total number of shares outstanding to a weighting based on the number of shares available for trading (called the free float). This transition took place in three phases starting in October 2005 and was completed in June 2006. Although the change is a technicality, it had a significant effect on the weighting of many companies in the index, because many companies in Japan hold a significant number of shares of their business partners as a part of intricate business alliances, and such shares are no longer included in calculating the weight of companies in the index. The TOPIX index is traded as a future on the Osaka Exchange under the ticker symbol JTPX. The CQG contract specifications for the TOPIX Index are listed below. TSE currently calculates and distributes TOPIX every second and further plans to launch a new High-Speed Index dissemination service provided at the millisecond level starting from February 28, 2011. History of TOPIX 1969-07-01 TSE to begin calculating and publishing “TOPIX” and “TOPIX Sector Indices” 1969-08-18 TSE to begin calculating and publishing “Tokyo Stock
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: What is the Japanese share index called?
A:
==================================================
==================================================
PROMPT #10:
==================================================
Man in the Music: The Creative Life and Work of Michael Jackson is a non-fiction book written by Joseph Vogel, published in June 2011 by the Sterling Publishing. Reception Man in the Music: The Creative Life and Work of Michael Jackson, was described by the Associated Press as "a fascinating read and really a must have for any fan of Jackson." Filmmaker Spike Lee characterized it as having "brilliantly cracked the DNA, the code, the artistry of Michael Joseph Jackson." References Works about Michael Jackson 2011 non-fiction books Sterling Publishing booksMoonwalk is a 1988 autobiography written by American recording artist Michael Jackson. The book was first published by Doubleday on February 1, 1988, five months after the release of Jackson's 1987 Bad album, and named after Jackson's signature dance move, the moonwalk. The book contains a foreword by Jacqueline Onassis. It reached number one on the New York Times Best Seller list. The book was reissued by Doubleday on October 13, 2009, following Jackson's death on June 25, 2009. Production Jacqueline Onassis, who was an editor at Doubleday, secured the book deal and paid Jackson a $300,000 advance. As part of the deal Jackson wanted Onassis to write a foreword, which she initially refused not wanting her name on any books she worked on but agreed to three paragraphs. She also edited the book. The first manuscript of the book was written by Robert Hilburn and was refused by the publishers, Doubleday, because it lacked "juicy details". A second manuscript was written by Stephen Davis, which Jackson drastically edited. Jackson finally decided to write the book himself, with help from Shaye Areheart. Due to the public interest in Jackson, Moonwalk was prepared for publication in secret. Relatives of Doubleday employees were hired as couriers, to deliver portions of the book from the company's head office in Manhattan to the printing plant in Fairfield, Pennsylvania. At the printing plant, the book was given the code name "Neil Armstrong", after the first "moonwalker". Narrative Dedicated to Fred Astaire, the book discusses Jackson's show business friends, girlfriends and hisMichael Jackson: Unauthorized in a 1994 biography of the late pop star Michael Jackson, written by celebrity biographer Christopher Andersen. Development According to Andersen, work started on the book in early 1991 when he received a call from a fellow journalist, who told him that two workers at Jackson's Neverland Ranch allegedly witnessed Jackson fondling a young celebrity. Andersen tried to interview Jackson several times, but was turned down. When Michael was publicly accused of child molestation in 1993, Andersen was told that he was under surveillance from investigators. Reception The book was largely overlooked by the public. Dana Kennedy of Entertainment Weekly felt that, with its "killer material", Anderson "probably could have retired from the celebrity-bio grind for good" had it been released five years before. People magazine found it to be a "sad book", considering its dark revelations about Jackson's behaviour. References 1994 non-fiction books Unauthorized biographies Works about the Michael Jackson sexual abuse allegations Biographies about musicians
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: What was the name of Michael Jackson's autobiography written in 1988?
A:
==================================================
==================================================
PROMPT #11:
==================================================
including popular titles by Sérgio Mendes and Herb Alpert were released with this audio process starting in September 1968. Other record labels soon followed suit, and an estimated 10% of all stereophonic albums released during the late 1960s and early 1970s employed the system. Other labels known to have used the system include Warner Bros. Records and Reprise Records. One of the biggest selling albums using the process is The Association's Greatest Hits, released in 1968. This recording has sold more than 2 million copies in the United States. The process was also used on the 1968 Frank Sinatra album Cycles as well as on most of the studio recordings on Wheels of Fire by Cream. Early 1968 copies of Neil Young's self-titled debut album also used the system. Use of Haeco-CSG in promotional recordings for radio The original intention of using Haeco-CSG on commercial LP releases was rather short lived, however, use of the process continued well into the mid-1970s on promotional records sent to radio stations. Many commercial FM Rock stations did not transition from mono to stereo broadcasting until the mid to late 1970s. AM Pop music stations continued to broadcast in mono, as AM stereo broadcasting was not introduced until 1982 and was never widely adopted. Many promotional singles and some commercial singles from the Warner/Reprise/Atlantic label group from this era had "CSG Mono Process" or "CSG Process" printed on the labels. Artists included Frank Sinatra, Gordon Lightfoot, James Taylor, Seals and Crofts. Warner subsidiary labels such as Atlantic issued a serieswas introduced to the public on December 13, 1957, at the Times Auditorium in New York City. 500 copies of this initial demonstration record were pressed. On December 16, 1957, Frey advertised in the trade magazine Billboard that he would send a free copy to anyone in the industry who wrote to him on company letterhead. Frey became known as "Mr. Stereo" during that era. Stereophonic sound was not entirely new to the public. In 1952 sound engineer Emory Cook developed a "Binaural" disk that used two separate grooves and playback needles to produce stereophonic sound; the following year he had a catalog of about 25 disks available for audiophiles. Multi-channel sound was integral to the widescreen motion picture processes Cinerama (1952) and CinemaScope (1953). Stereophonic audio tapes had been commercially available to audiophiles, although expensive, since the early-1950s. After the release of the Audio Fidelity demonstration disks, the other spur to the popularity of stereo disks was the reduction in price of a stereo magnetic cartridge, for playing the disks, from $250 to $29.95 in June 1958. The first four stereo discs available to the general public were released by Audio Fidelity in March, 1958--Johnny Puleo and his Harmonica Gang Volume 1 (AFSD 5830), Railroad - Sounds of a Vanishing Era (AFSD 5843), Lionel - Lionel Hampton and his Orchestra (AFSD 5849) and Marching Along with the Dukes of Dixieland Volume 3 (AFSD 5851). By the end of March the company had four more stereo LPs available. In the summer of 1958, Audio Fidelity recordedin 1957, with his Essex Records office manager George Phillips, he founded Somerset Records and Somerset Stereo Fidelity Records budget albums. His greatest claim to fame was selling large amounts of cheaply priced albums, with Somerset claiming to have manufactured the first stereo budget albums. The name of Somerset high fidelity albums was suggested by Miller International's West Coast distributor, Jimmy Warren, with the name of Stereo Fidelity (stereo albums) thought of by Wally Hill to capitalize on the public's interest in both high fidelity and stereophonic sound. The economy came from Miller starting his own record factory in Swarthmore, Pennsylvania, using public domain music and non union musicians from outside the United States to record cover versions of hit songs of the time. Many original tunes were written by Monty Kelly, Robert Lowden, and Joseph Kuhn with the music published by Miller's own music publisher, Chesdel Music created in 1962. Miller had his own distribution channels of his records in supermarkets and drugstores with the cheap albums being sold in metal racks similar to those holding paperback books or cardboard record holders called "dumps" that could be placed anywhere. Miller's record albums were sold wholesale for 93 cents to salesmen who sold them to merchants who sold them to the public for $1.98. Somerset Records used artist Anthony "Chic" Laganella to create attractive eye catching album covers. Miller used the name 101 Strings for several German orchestras; their first album appearing in September 1957. In 1958 Somerset released 24 101 Strings titles. Miller International's philosophy
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: In which decade did stereo records first go on sale?
A:
==================================================
==================================================
PROMPT #12:
==================================================
Flack in 1896) to win gold medals in both the 800 m and 1500 m in the same Olympics. Billy Mills, an unfancied runner, became the only American to win the gold in the men's 10,000 m. Bob Hayes won the 100 metre title in a time of 10.06 seconds, equaling the world record, and set the current record for the fastest relay leg in the 4×100 m. Joe Frazier, future heavyweight champion of the world, won a gold medal in heavyweight boxing while competing with a broken thumb. This was the last Summer Olympics to use a cinder running track for athletic events, and the first to use fiberglass poles for pole vaulting. Zambia declared its independence on the day of the closing ceremony of the 1964 Summer Olympics, thereby becoming the first country ever to have entered an Olympic games as one country, and left it as another. This was celebrated in the ceremony itself by the team using a placard with "Zambia" instead of the "Northern Rhodesia" placard from the opening ceremony. Zambia was the only team to use a placard in the closing ceremony. The start of operations for the first Japanese "bullet train" (the Tōkaidō Shinkansen) between Tokyo Station and Shin-Ōsaka Station was scheduled to coincide with the Olympic games. The first regularly scheduled train ran on 1 October 1964, just nine days before the opening of the games, transporting passengers in about four hours, and connecting the three major metropolitan areas of Tokyo, Nagoya, and Osaka. Ranatunge Karunananda who representedsystems were used: official hand timing, hand started photo-finish times, and the Gustavus Town Kirby timing device, which was designed by Kirby to determine the correct order of finish in horse races. The official report for 1932 Olympics states: "In addition to hand timing, two auxiliary electrical timing devices were used. Both were started by an attachment to the starters gun. One was stopped by hand at the time the runners hit the tape. The other was provided with a motion picture camera which photographed the runner at the tape and the dial of the time indicator simultaneously." Kirby's system was also used at the 1932 US. Olympic Trials, where Ralph Metcalfe's winning time of 10.62 in the 100 meters is considered possibly the first automatically timed world record. FAT was also used in 1936, but very few times have been found. In 1948, Bulova began developing the Phototimer, a unique combination of photo-finish camera and precision electronic timing instrument. The Phototimer was the first automatic timing device to be used in competitive sports. It was used extensively in North America, including at the 1948 US Olympic trials. The Bulova device was activated by the sound of the starting gun firing, rather than by a direct connection, which means that the times were around 0.02 seconds faster than reality. The 1948 Olympics, however, continued to use Omega timing with a device called the 'Magic Eye', developed by British Race Finish Recording Co. Ltd. The automatic times produced in the 1948 Olympics have never been released, butWhile the most notable story coming out of 1968 was socio-political, politics involved with the Olympics was not something unique to this year. However, the year marked the beginning of several emerging elements of contemporary track and field. Automatic timing While timing to the 100th of a second had been experimented with for many years, the 1968 Summer Olympics were the first to use Fully Automatic Timing, in not only athletics, but in canoeing, rowing, cycling, equestrian and swimming competitions. Subsequently, systems to record such times became more common and thus the accuracy of Fully Automatic Timing became mandated for World Record acceptance. While this rule was officially put into place in 1977, many 1968 records still stood as the first Automatically timed record. All weather tracks This technology too had been developing, but Tartan tracks were used as the competition surface for the first time at an Olympics. Since then an all-weather running track was required for all top-level competition. Subsequently, the inconsistency of the running surface became a significantly smaller factor in athletic performance. Altitude With the Olympics happening in Mexico City, at high altitude, the effect of the thin air on athletic performance became a factor on world records. This was already a known phenomenon, and the American team was selected by holding the Olympic Trials at high altitude at Echo Summit, California. In 1955, Lou Jones set the world record in the 400 meters at altitude in Mexico City. Following the 1968 Summer Olympics the: Men's 100 meters record, set by Jim
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: In what year's Olympics were electric timing devices and a public-address system used for the first time?
A:
==================================================
==================================================
PROMPT #13:
==================================================
A list of stratovolcanoes follows below. Africa Cameroon Mount Cameroon Democratic Republic of Congo Mount Nyiragongo, Goma; designated as a Decade Volcano It contains an active lava lake inside its crater which overflowed due to cracks in 2002. Mount Mikeno Eritrea Alid Volcano Dubbi Volcano Nabro Volcano Ethiopia Adwa Borawli, Afar Region Dabbahu Volcano Mount Fentale Kenya Mount Kenya, which contains several volcanic plugs on its peak. Mount Longonot Rwanda Mount Bisoke, on the border between Rwanda and the Democratic Republic of the Congo. Mount Gahinga, on the border between Rwanda and Uganda. Mount Karisimbi, on the border between Rwanda and the Democratic Republic of the Congo. Mount Muhabura, on the border between Rwanda and Uganda. Mount Sabyinyo, marks the border between Rwanda, Uganda, and the Democratic Republic of the Congo. Tanzania Ol Doinyo Lengai, the Earth's only active carbonatite lava-producing volcano. Mount Kilimanjaro, a dormant stratovolcano. It is the highest point of Africa. Mount Meru Mid-Atlantic Ridge Mount Pico in Pico Island, Azores, Portugal Teide in Tenerife, Canary Islands, Spain; designated as a Decade Volcano Cumbre Vieja in La Palma, Canary Islands, Spain Mount Fogo in Fogo, Cape Verde Green Mountain, Ascension Island Pico de las Nieves in Gran Canaria, Canary Islands, Spain Americas Caribbean La Grande Soufrière on Basse-Terre Island, Guadeloupe Soufriere Hills on the island Montserrat Its 1995 eruptions resulted in the abandonment of its capital city, Plymouth. Soufrière on the island Saint Vincent Mount Pelée on the island Martinique Its devastating eruption on 8 May 1902 resulted in the complete destruction ofMount Kilimanjaro is a volcano in Tanzania and the highest mountain in Africa. Kilimanjaro may also refer to: Tanzania Kilimanjaro National Park comprises the whole of Mount Kilimanjaro above the tree line and six forest corridors stretching down Kilimanjaro Region, a region in Tanzania Kilimanjaro (ward), a ward in the Moshi Urban district of Kilimanjaro Region, Tanzania Kilimanjaro International Airport in Tanzania a Tanzanian beer, see Beer in Africa#Eastern Africa a Tanzanite jewellery brand owned by F. Hinds Music Killamanjaro, a Jamaican reggae sound system Albums Kilimanjaro, an album by German artist Superpitcher Kilimanjaro (The Rippingtons album), a 1988 album by The Rippingtons Kilimanjaro (The Teardrop Explodes album), an album by The Teardrop Explodes Songs "Kilimanjaro", song by The Del Vikings 1962 "Kilimanjaro", song by Manhattan Brothers 1955 "Kilimanjaro", song by The Teardrop Explodes 1980 "Kilimanjaro", song by Juluka 1984 "Kilimandjaro" (song), a 1966 French-language song by French singer Pascal Danel "Kilimanjaro" (song), a 2010 song by A.R. Rahman from the film Enthiran "Kilimanjaro", a song by KSI from the 2016 extended play Keep Up Film Kilimanjaro (film), a 2013 American film Nigeria Kilimanjaro restaurant, a fast-food chain in Nigeria. See also The Snows of Kilimanjaro (disambiguation)Mount Kilimanjaro () is a dormant volcano located in Kilimanjaro Region of Tanzania. It has three volcanic cones: Kibo, Mawenzi, and Shira. It is the highest mountain in Africa and the highest single free-standing mountain above sea level in the world: above sea level and about above its plateau base. It is the highest volcano in Africa and the Eastern Hemisphere. Kilimanjaro is the fourth most topographically prominent peak on Earth. It is part of Kilimanjaro National Park and is a major hiking and climbing destination. Because of its shrinking glaciers and ice fields, which are projected to disappear between 2025 and 2035, it has been the subject of many scientific studies. Toponymy The origin of the name Kilimanjaro is not known, but a number of theories exist. European explorers had adopted the name by 1860 and reported that Kilimanjaro was the mountain's Kiswahili name. The 1907 edition of The Nuttall Encyclopædia also records the name of the mountain as Kilima-Njaro. Johann Ludwig Krapf wrote in 1860 that Swahilis along the coast called the mountain Kilimanjaro. Although he did not offer any support, he claimed that Kilimanjaro meant either mountain of greatness or mountain of caravans. Under the latter meaning, kilima meant mountain and jaro meant caravans. Jim Thompson claimed in 1885, again without support, that the term Kilima-Njaro "has generally been understood to mean" the mountain (kilima) of greatness (njaro). He also suggested "though not improbably it may mean" the white mountain. Njaro is an ancient Kiswahili word for shining. Similarly, Krapf wrote that a
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Which volcano in Tanzania is the highest mountain in Africa?
A:
==================================================
==================================================
PROMPT #14:
==================================================
of the Libyan Draft Constitutional Charter for the Transitional Stage: The national flag shall have the following shape and dimensions: Its length shall be double its width, its shall be divided into three parallel coloured stripes, the uppermost being red, the centre black and lowest green, the black stripe shall be equal in area to the other two stripes together and shall bear in its centre a white crescent, between the two extremities of which there shall be a five-pointed white star. On 10 March 2011, France was the first country to recognise the council as the official government of Libya, as well as the first to allow the Libyan embassy staff to raise the flag. On 21 March, the flag was flown by the Permanent Mission of Libya to the United Nations and appeared on their official website, and thereafter in late August by the Arab League and by Libya's own telecommunications authority, the Libya Telecom & Technology, on its own website. In the following months many other Libyan embassies replaced the green flag of Gaddafi with the tricolour flag. This original flag of Libya is now the only flag used by the United Nations to represent Libya, according to the following UN statement: "Following the adoption by the General Assembly of resolution 66/1, the Permanent Mission of Libya to the United Nations formally notified the United Nations of a Declaration by the National Transitional Council of 3 August 2011 changing the official name of the Libyan Arab Jamahiriya to 'Libya' as well as athe flag's colours and symbols. According to Omar Faiek Shennib, "red was selected for the blood sacrificed for the freedom of Libya, black to remember the dark days that Libyans lived under the occupation of the Italians and green to represent its primary wealth, agriculture, [Libya once being referred to as the 'agricultural basket' or 'breadbasket' of the Ottoman Empire] and the future prosperity of the country. The star and crescent were placed within the black central strip of the flag as a reference to the Senussi flag and the role of King Idris in leading the country to independence". The flag's colours also echo the colours of the flags of the three regions of Libya: Fezzan (red), Cyrenaica (black), and Tripolitania (green). Under Muammar Gaddafi's dictatorship, Libya had a red-white-black flag from 1969 to 1977, and it was replaced by the all-green flag from 1977 to 2011, during which it was the only flag in the world to have one color and no design. During the Libyan Civil War against the rule of Muammar Gaddafi, the 195169 flag as well as various makeshift versions without the crescent and star symbol, or without the green stripe came back into use in areas held by the Libyan opposition and by protesters at several Libyan diplomatic missions abroad. The National Transitional Council, formed on 27 February 2011, adopted the flag previously used in the Kingdom of Libya between 1951 and 1969 as the "emblem of the Libyan Republic". The flag was officially defined in article threeThe flag of Libya from 1977 to 2011 was used by the Socialist People's Libyan Arab Jamahiriya from 1977 to 1986 and later the Great Socialist People's Libyan Arab Jamahiriya until 2011. The design is a green field in 1:2 ratio and was considered the only solid colour national flag in the world during its time. In 2011, after the collapse of Gaddafi's government, the 19511969 flag from the Kingdom of Libya was re-adopted but the flag introduced by Gaddafi remained in use by Pro-Gaddafists and Gaddafi loyalists. Before 1977, the country was called the Libyan Arab Republic from 1969 to 1977 and used a red-white-black flag similar to most traditional Arab national flags bearing a resemblance to the modern flag of Yemen. in 1977 after the Egyptian-Libyan War, the blank green flag was introduced to replace the red-white-black flag to avoid similarities with Egypt. History of Libya under Muammar Gaddafi Flags introduced in 1977 1977 establishments in Libya 2011 disestablishments in Libya
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: The flag of Libya is a plain rectangle of which color?
A:
==================================================
==================================================
PROMPT #15:
==================================================
la Francophonie. Places of worship Niger being a predominantly Muslim country, mosques are the most common places of worship, with the Grande Mosquée being the largest in the city. There are also various Christian churches, most notably Our Lady of Perpetual Help Cathedral and the Cathedral de Maourey. Governance Administration Niamey makes up a special capital district of Niger, which is surrounded by the Region of Tillabéri. The city of Niamey itself is governed as an autonomous first-level administrative block, the Niamey Urban Community (Fr. Communauté Urbaine de Niamey, or CUN). It includes five Urban Communes, divided into 44 "Districts" and 99 "Quartiers", including formerly independent towns. It is a co-equal first division subdivision with the seven Regions of Niger. The Niamey Urban Community includes an administration and Governor appointed by national leaders. Like the rest of Niger, Niamey has seen a decentralisation of governance since 2000. Government Ordinance n°201056 and Presidential Decree n°2010-679 of September 2010 mandated an elected City Council for the city of Niamey, subsumed under the CUN. This excludes some outlying areas of the CUN. Forty-five councillors are popularly elected and in turn elect the Mayor of the City of Niamey. In July 2011, the first Mayor under the new system, Oumarou Dogari Moumouni, was installed by the Governor of the CUN Mrs. Aïchatou Boulama Kané and the City Council. The City Council and Mayor have limited roles compared to the CUN Governor. Niamey has a third layer of government in the Commune system. Each Commune elects its own council, and outsidein Niger Niamey NigerNiamey () is the capital and largest city of Niger. Niamey lies on the Niger River, primarily situated on the east bank. Niamey's population was counted as 1,026,848 as of the 2012 census. As of 2017, population projections show the capital district growing at a slower rate than the country as a whole, which has the world's highest fertility rate. The city is located in a pearl millet growing region, while manufacturing industries include bricks, ceramic goods, cement, and weaving. History Niamey was probably founded in the 18th century and originated as a cluster of small villages (Gaweye, Kalley, Maourey, Zongo and Foulani Koira). Niamey was of little importance until the French developed it as a colonial centre in the late 1890s. The town, then with an estimated population of some 1,800, was chosen as the capital of the newly created Military Territory of Niger in 1905, however, the capital was shifted to the more established city of Zinder in 1912. Zinder's proximity to the Nigerian border and distance from French-controlled ports prompted the French to move the capital back to Niamey in 1926, by which time the city had some 3,000 inhabitants. A series of devastating droughts prompted significant population growth during this period, and by 1945 the population was about 8,000. Prior to 1926-27 the Upper Volta-Niger border ran along the Niger river, meaning that Niamey lay directly on the boundary. At the time of independence in 1960 the population had grown to around 30,000. The period from 1970 to 1988 was one in
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Of which African country is Niamey the capital?
A:
==================================================
==================================================
PROMPT #16:
==================================================
James Walter McCord Jr. (January 26, 1924 June 15, 2017) was an American CIA officer, later head of security for President Richard Nixon's 1972 reelection campaign. He was involved as an electronics expert in the burglaries which precipitated the Watergate scandal. Career McCord was born in Waurika, Oklahoma. He served as a bombardier with the rank of second lieutenant in the Army Air Forces during World War II. He briefly attended Baylor University before receiving a B.B.A. from the University of Texas at Austin in 1949. In 1965, he received an M.S. in international affairs from George Washington University. After beginning his career at the Federal Bureau of Investigation (FBI), McCord worked for the Central Intelligence Agency (CIA), ultimately ascending to the GS-15 directorship of the Agency's Office of Security. For a period of time, he was in charge of physical security at the Agency's Langley headquarters. L. Fletcher Prouty, a former colonel in the United States Air Force, claimed then-Director of Central Intelligence Allen Dulles introduced McCord to him as "my top man.". In 1961, under his direction, a counter-intelligence program was launched against the Fair Play for Cuba Committee. He also held the rank of lieutenant colonel in the United States Air Force Reserve. Watergate scandal Shortly after resigning from the CIA, McCord was interviewed and then hired by Jack Caulfield in January 1972 "for strict, solely defensive security work at the Republican National Committee (RNC) and the Committee to Re-Elect the President (CRP)." Some of the money from this contract came fromadministration as assistant director of the Bureau of the Budget, devoting most of his time to Defense matters. In 1971, President Nixon appointed Schlesinger a member of the Atomic Energy Commission (AEC) and designated him as chairman. Serving in this position for about a year and a half, Schlesinger instituted extensive organizational and management changes in an effort to improve the AEC's regulatory performance. CIA Director Schlesinger was CIA Director from February 2, 1973, to July 2, 1973. He was succeeded by William Colby. Schlesinger was extremely unpopular with CIA staff, as he reduced CIA staff by 7%, and was considered a Nixon loyalist seeking to make the agency more obedient to Nixon. He had a CCTV camera installed near his official portrait at the CIA headquarters in Langley, Va., as it was believed that vandalism of the portrait by disgruntled staff was likely. Secretary of Defense (19731975) Schlesinger left the CIA to become Secretary of Defense on July 2, aged 44. As a university professor, researcher at Rand, and government official in three agencies, he had acquired an impressive resume in national security affairs. Nuclear strategy Shortly after assuming office, Schlesinger outlined the basic objectives that would guide his administration: maintain a "strong defense establishment"; "assure the military balance so necessary to deterrence and a more enduring peace"; obtain for members of the military "the respect, dignity and support that are their due"; assume "an . . . obligation to use our citizens' resources wisely"; and "become increasingly competitive with potential adversaries.... [W]e must nota conventional North Vietnamese assault in 1975. The CORDS model and its approach influenced U.S. strategy and thinking on counterinsurgency in the 2000s in Iraq and Afghanistan. CIA HQ: Director Colby returned to Washington in July 1971 and became executive director of CIA. After long-time DCI Richard Helms was dismissed by President Nixon in 1973, James Schlesinger assumed the helm at the Agency. A strong believer in reform of the CIA and the intelligence community more broadly, Schlesinger had written a 1971 Bureau of the Budget report outlining his views on the subject. Colby, who had had a somewhat unorthodox career in the CIA focused on political action and counterinsurgency, agreed with Schlesinger's reformist approach. Schlesinger appointed him head of the clandestine branch in early 1973. When Nixon reshuffled his agency heads and made Schlesinger secretary of defense, Colby emerged as a natural candidate for DCI—apparently on the basis of the recommendation that he was a professional who would not make waves. Colby was known as a media-friendly CIA director. His tenure as DCI, which lasted two and a half tumultuous years, was overshadowed by the Church and Pike congressional investigations into alleged U.S. intelligence malfeasance over the preceding 25 years, including 1975, the so-called Year of Intelligence. Colby's time as DCI was also eventful on the world stage. Shortly after he assumed leadership, the Yom Kippur War broke out, an event that surprised not only the American intelligence agencies but also the Israelis. This intelligence surprise reportedly affected Colby's credibility with the Nixon administration. Colby
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Who was the director of the CIA from 1976-81?
A:
==================================================
==================================================
PROMPT #17:
==================================================
"On the Street Where You Live" is a song with music by Frederick Loewe and lyrics by Alan Jay Lerner from the 1956 Broadway musical My Fair Lady. It is sung in the musical by the character Freddy Eynsford-Hill, who was portrayed by John Michael King in the original production. In the 1964 film version, it was sung by Bill Shirley, dubbing for actor Jeremy Brett. Recorded versions The most popular single of the song was recorded by Vic Damone in 1956 for Columbia Records. It reached No. 4 on the Billboard chart and No. 6 on Cashbox magazine's chart. It was a No. 1 hit in the UK Singles Chart in 1958. Eddie Fisher also had a top 20 Billboard hit with the song in 1956, reaching No. 18. Lawrence Welk and His Orchestra released a version that went to No. 96 in 1956. Andy Williams' recording appeared in the Billboard top 40 in 1964, reaching No. 3 on the adult contemporary chart and No. 28 on the Billboard Hot 100. The song has been recorded by a wide variety of other performers, including Ray Conniff and Bing Crosby, who recorded the song in 1956 for use on his radio show and it was subsequently included in the boxed set The Bing Crosby CBS Radio Recordings (195456) issued by Mosaic Records (catalog MD7-245) in 2009, Lawrence Welk (whose band also performed it on his weekly TV series numerous times), Shirley Horn, Doris Day, George Shearing, Frank Chacksfield, Alfie Boe, Bobby Darin, Dean Martin, Mario Lanza,The Times praised it as "Alan Jay Lerner's terrific autobiography". The Street Where I Live was reissued in 1989 by Columbus Books and in 1994 by the Da Capo Press. In 2000, BBC radio broadcast a serialization of the book, read by Henry Goodman, which The Times called "one of the delights of the evening schedule". References Sources Non-fiction books about musical theatre"On the Street Where You Live" is a song from the 1956 Broadway musical My Fair Lady. On the Street Where You Live may also refer to: On the Street Where You Live (TV series), an Irish documentary television series On The Street Where You Live, a 2001 novel by Mary Higgins Clark
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Which musical featured the song The Street Where You Live?
A:
==================================================
==================================================
PROMPT #18:
==================================================
engineers were ordered to end construction work. The Allies were unaware of this and mounted further attacks on the site as part of the United States Army Air Forces experimental Operation Aphrodite, involving radio-controlled B-24 Liberators packed with explosives. Two such attacks were mounted but failed; in the second such attack, on 12 August, Lt Joseph P. Kennedy, Jr. the elder brother of future US President John F. Kennedy was killed when the drone aircraft exploded prematurely. By the end of the bombing campaign, over 4,100 tons of bombs had been dropped on Mimoyecques, more than on any other V-weapons site. The Mimoyecques site was never formally abandoned, but German forces left it at the start of September 1944 as the Allies advanced northeast from Normandy towards the Pas de Calais. It was captured on 5 September by the Canadian 3rd Infantry Division. Subsequent investigations and attempted demolition In September 1944, Duncan Sandys ordered the constitution of a Technical Inter-Services Mission under Colonel T.R.B. Sanders. It was given the task of investigating the V-weapons sites at Mimoyecques, Siracourt, Watten, and Wizernes, collectively known to the Allies as the "Heavy Crossbow" sites. Sanders' report was submitted to the War Cabinet on 19 March 1945. Even at this stage the true purpose of the site was unclear. Claims that it had been intended to be used for "electro-magnetic projectors" (railguns), firing huge shells at London, were debunked by Lord Cherwell, Winston Churchill's scientific adviser, who calculated that it would take sixty times the output of Battersearesearched at a facility in Peenemünde along with the V-1 flying bomb. The V-2's first target was Paris on 8 September 1944. The program while advanced proved to be an impediment to the war economy. The large capital investment was not repaid in military effectiveness. The rockets were built at an underground factory at Mittelwerk. Labor to build the A4 rockets came from the Mittelbau-Dora concentration camp. Of the 60,000 people who ended up at the camp 20,000 died, due to the appalling conditions. On 14 April 1944, Speer lost control of Organisation Todt to his Deputy, Franz Xaver Dorsch. He opposed the assassination attempt against Hitler on 20 July 1944. He was not involved in the plot, and played a minor role in the regime's efforts to regain control over Berlin after Hitler survived. After the plot Speer's rivals attacked some of his closest allies and his management system fell out of favor with radicals in the party. He lost yet more authority. Defeat of Nazi Germany Losses of territory and a dramatic expansion of the Allied strategic bombing campaign caused the collapse of the German economy from late 1944. Air attacks on the transport network were particularly effective, as they cut the main centres of production off from essential coal supplies. In January 1945, Speer told Goebbels that armaments production could be sustained for at least a year. However, he concluded that the war was lost after Soviet forces captured the important Silesian industrial region later that month. Nevertheless, Speer believed that Germany shouldof 1944 the Allies continued their gains in the Mediterranean Theatre and massed men and materiel for a European invasion along the French channel coastline. The conspirators began to organize for another attempt to assassinate Hitler and take over both German civil government and its military. The von Stauffenberg bomb attempt and aftermath By the summer of 1944 unrest in the German military and diplomatic ranks was widespread. The Allied landing at Normandy in June and failed German response raised the specter of doom among the upper ranks even of German field marshals. The Schwarze Kapelle responded by organizing a deadly attempt on Hitler's life at his Wolf's Lair compound in East Prussia. Undertaken by an aristocratic member of a hereditarily military family, Colonel Claus von Stauffenberg, the July 20 Plot nearly succeeded. Although surrounded by fatalities from the bomb Hitler escaped with a concussion and various injuries. In the aftermath he was determined to get vengeance upon the plotters. The Gestapo rounded up the members of the Schwarze Kapelle and many, many more it believed were either implicated in or sympathetic to it; according to its records it put 7,000 of them to death. Stauffenberg and three others were summarily shot that night. Most of the conspirators were put on trial in the Volksgerichtshof (People's Court) between August 1944 to February 1945. Many were executed the day after their convictions by hanging from meat hooks at Plötzensee Prison. Architect of the 1943 bomb plot on Hitler's plane Fabian von Schlabrendorff only escaped death because an
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: "Who was the target of the failed ""Bomb Plot"" of 1944?"
A:
==================================================
==================================================
PROMPT #19:
==================================================
propelling him into the first rank of international superstars. The album contained the number-one hit "All Night Long", a Caribbean-flavored dance number that was promoted by a colorful music video produced by former Monkee Michael Nesmith. In 1984, he performed "All Night Long" at the ending ceremony of the XXIII Olympic Games in Los Angeles. Several more Top 10 hits followed, the most successful of which was the ballad "Hello" (1984), a sentimental love song that showed how far he had moved from his R&B roots. Richie had three more top ten hits in 1984, "Stuck on You" (No. 3), "Running with the Night" (No. 7) and "Penny Lover" (No. 8), as well as writing and producing "Missing You" for former labelmate and duet partner Diana Ross (No. 10 Pop, No. 1 R&B). In 1985, he wrote and performed "Say You, Say Me" for the film White Nights. The song won an Academy Award and reached No. 1 on the U.S. charts, staying there for four weeks, making it the number-two song of 1986 according to Billboards Year-End Hot 100 chart, behind the charity single "That's What Friends Are For" by Dionne and Friends. He also collaborated with Michael Jackson on the charity single "We Are the World" by USA for Africa, another number-one hit. In 1986, Richie released Dancing on the Ceiling, his last widely popular album, which produced a run of five US and UK hits, "Say You, Say Me" (U.S. No. 1), "Dancing on the Ceiling" (U.S. No. 2), "Love Will Conquer All"top 20 US R&B chart hit in 1972. Their first few recordings were released on Buddah Records, including "Hold Back the Night", which was a hit on the Billboard R&B chart in 1973, before a re-release saw it climb in the UK two years later. Several R&B hits followed during a stay with Philadelphia International subsidiary Golden Fleece (run by Baker-Harris-Young) before they signed to Atlantic Records. Their single "Disco Inferno" (1976), which was included on the Grammy Award-winning Saturday Night Fever: The Original Movie Sound Track in 1977, reached No. 11 on the Billboard Hot 100 chart in May 1978. Other major hits included "Hold Back the Night" (1975) (UK No. 5) and "That's Where the Happy People Go" (1976). In late 1977, the Trammps released the song "The Night the Lights Went Out" to commemorate the electrical blackout that affected New York City on July 1314, 1977. Their signature song "Disco Inferno" has been covered by Tina Turner and Cyndi Lauper. In addition, Graham Parker covered "Hold Back the Night" on "The Pink Parker EP" in 1977, and reached No. 24 in the UK Singles Chart, and top 60 in the US. In 2021, "Disco Inferno" was certified Silver by the British Phonographic Industry, together with "Can We Come Together" (from the album Where the Happy People Go). Dissolution and aftermath On September 19, 2005, the group's "Disco Inferno" was inducted into the Dance Music Hall of Fame at a ceremony held in New York. The song was part-written by Ron Kersey, a producer-arranger"Hold On to the Nights" is a power ballad written and performed by American rock singer/songwriter/musician Richard Marx. This was the fourth and final single released from his self-titled debut album, and his first to reach number one on the US Billboard Hot 100 chart. The song has been re-released on numerous albums and is included on Marx's live performance DVD A Night Out with Friends (2012). Release "Hold On to the Nights" reached the Billboard Hot 100 number 1 position on July 23, 1988, preventing Def Leppard's "Pour Some Sugar on Me" from reaching the top spot that same week. The song was on the chart for twenty-one weeks, and left the chart at number 91. The song also reached at number three on the Billboard Adult Contemporary chart. Chart performance Charts Personnel Richard Marx vocals, keyboards, acoustic piano Michael Landau guitars Patrick O'Hearn bass Tris Imboden drums Paulinho da Costa percussion Other performances Marx appeared as lounge singer/piano player Buddy Daquiri in the "Poison Fire Teats Universe" episode of the TV series Life in Pieces in 2017, in which he played the song on the piano while whistling. References 1987 songs 1988 singles Richard Marx songs Billboard Hot 100 number-one singles Songs written by Richard Marx Pop ballads Rock ballads EMI Records singles Songs about nights
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Who had an 80s No 1 hit with Hold On To The Nights?
A:
==================================================
==================================================
PROMPT #20:
==================================================
Turner Classic Movies in November 2006 features directors Steven Spielberg, Clint Eastwood, and Martin Scorsese, who suggest that the string of classic films Ford directed during 1936 to 1941 was due in part to an intense six-month extramarital affair with Katharine Hepburn, the star of Mary of Scotland (1936), an Elizabethan costume drama. 19391941 Stagecoach (1939) was Ford's first western since 3 Bad Men in 1926, and it was his first with sound. Orson Welles claimed that he watched Stagecoach forty times in preparation for making Citizen Kane. It remains one of the most admired and imitated of all Hollywood movies, not least for its climactic stagecoach chase and the hair-raising horse-jumping scene, performed by the stuntman Yakima Canutt. The Dudley NicholsBen Hecht screenplay was based on an Ernest Haycox story that Ford had spotted in Collier's magazine and he purchased the screen rights for just $2500. Production chief Walter Wanger urged Ford to hire Gary Cooper and Marlene Dietrich for the lead roles, but eventually accepted Ford's decision to cast Claire Trevor as Dallas and a virtual unknown, his friend John Wayne, as Ringo; Wanger reportedly had little further influence over the production. In making Stagecoach, Ford faced entrenched industry prejudice about the now-hackneyed genre which he had helped to make so popular. Although low-budget western features and serials were still being churned out in large numbers by "Poverty Row" studios, the genre had fallen out of favor with the big studios during the 1930s and they were regarded as B-grade "pulp" movies at best.Stagecoach is a 1986 American made-for-television Western action drama film and remake of the classic 1939 film Stagecoach, directed by Ted Post and starring Kris Kristofferson as the Ringo Kid, the role originally played by John Wayne. Willie Nelson portrays famous gunslinger and dentist Doc Holliday, Johnny Cash portrays Marshal Curly Wilcox and Waylon Jennings plays the gambler Hatfield. The four main stars of the film (Nelson, Kristofferson, Cash and Jennings) were associated as members of the country music supergroup The Highwaymen. The supporting cast features Elizabeth Ashley, Anthony Newley, Tony Franciosa, Mary Crosby, June Carter Cash and Jessi Colter. Plot In 1880, a group of strangers boards the east-bound stagecoach from Tonto, Arizona Territory, to Lordsburg, New Mexico Territory. The travelers seem ordinary, but many have secrets from which they are running. Among them are Dallas, a prostitute, who is being driven out of town; an alcoholic dentist, Doc Holliday; pregnant Lucy Mallory, who is meeting her cavalry officer husband; and whiskey salesman Trevor Peacock. As the stage sets out, U.S. Cavalry Lieutenant Blanchard announces that Geronimo and his Apaches are on the warpath; his small troop will provide an escort to Dry Fork. Cast Willie Nelson as Doc Holliday Kris Kristofferson as Ringo / Ringo Kid / Bill Williams Johnny Cash as Marshal Curly Wilcox Waylon Jennings as Hatfield (Gambler) John Schneider as Buck (Overland Stage Driver) Elizabeth Ashley as Dallas Anthony Newley as Trevor Peacock (Old John's Whiskey Salesman) Tony Franciosa as Henry Gatewood (Tonto Banker) Merritt Butrick as Lieutenant Blanchard Mary CrosbyStagecoach is a 1939 American Western film directed by John Ford and starring Claire Trevor and John Wayne in his breakthrough role. The screenplay by Dudley Nichols is an adaptation of "The Stage to Lordsburg", a 1937 short story by Ernest Haycox. The film follows a group of strangers riding on a stagecoach through dangerous Apache territory. The film has long been recognized as an important work that transcends the Western genre. Philosopher Robert B. Pippin has observed that both the collection of characters and their journey "are archetypal rather than merely individual" and that the film is a "mythic representation of the American aspiration toward a form of politically meaningful equality." In 1995, the film was deemed "culturally, historically, or aesthetically significant" by the United States Library of Congress and selected for preservation in their National Film Registry. Still, Stagecoach has not avoided controversy. Like most Westerns of the era, its depiction of Native Americans as simplistic savages has been criticized. Stagecoach was the first of many Westerns that Ford shot in Monument Valley, on the ArizonaUtah border in the American Southwest. Many of the movies Ford shot there also starred John Wayne. Scenes from Stagecoach, including a sequence introducing John Wayne's character the Ringo Kid, blended shots of Monument Valley with shots filmed on the Iverson Movie Ranch in Chatsworth, California, RKO Encino Movie Ranch, and other locations. Geographic incongruities are visible throughout the film, including the closing scene where Ringo (Wayne) and Dallas (Trevor) depart Lordsburg, in southwestern New Mexico, by way of
Think hard, but answer shortly and concisely. Only give direct answers to the questions. No additional explanations. Directly answer these questions:
Q: Who was the man behind The Chipmunks??
A: David Seville
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??
A: Sunset Boulevard
Q: Who was the next British Prime Minister after Arthur Balfour??
A: Campbell-Bannerman
Q: Who had a 70s No 1 hit with Kiss You All Over??
A: Exile
Q: What claimed the life of singer Kathleen Ferrier??
A: Cancer
Q: Who directed the classic 30s western Stagecoach?
A:
==================================================

View File

@@ -1,141 +0,0 @@
# Enron Emails Benchmark
A comprehensive RAG benchmark for evaluating LEANN search and generation on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation with Recall@3 and generation timing.
- Dataset: Enron email CSV (e.g., Kaggle wcukierski/enron-email-dataset) for passages
- Queries: corbt/enron_emails_sample_questions (filtered for realistic questions)
- Metrics: Recall@3 vs FAISS Flat baseline + Generation evaluation with Qwen3-8B
## Layout
benchmarks/enron_emails/
- setup_enron_emails.py: Prepare passages, build LEANN index, build FAISS baseline
- evaluate_enron_emails.py: Evaluate retrieval recall (Stages 2-5) + generation with Qwen3-8B
- data/: Generated passages, queries, embeddings-related files
- baseline/: FAISS Flat baseline files
- llm_utils.py: LLM utilities for Qwen3-8B generation (in parent directory)
## Quickstart
1) Prepare the data and index
cd benchmarks/enron_emails
python setup_enron_emails.py --data-dir data
Notes:
- If `--emails-csv` is omitted, the script attempts to download from Kaggle dataset `wcukierski/enron-email-dataset` using Kaggle API (requires `KAGGLE_USERNAME` and `KAGGLE_KEY`).
Alternatively, pass a local path to `--emails-csv`.
Notes:
- The script parses emails, chunks header/body into passages, builds a compact LEANN index, and then builds a FAISS Flat baseline from the same passages and embedding model.
- Optionally, it will also create evaluation queries from HuggingFace dataset `corbt/enron_emails_sample_questions`.
2) Run recall evaluation (Stage 2)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2
3) Complexity sweep (Stage 3)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 3 --target-recall 0.90 --max-queries 200
Stage 3 uses binary search over complexity to find the minimal value achieving the target Recall@3 (assumes recall is non-decreasing with complexity). The search expands the upper bound as needed and snaps complexity to multiples of 8.
4) Index comparison (Stage 4)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --complexity 88 --max-queries 100 --output results.json
5) Generation evaluation (Stage 5)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 5 --complexity 88 --llm-backend hf --model-name Qwen/Qwen3-8B
6) Combined index + generation evaluation (Stages 4+5, recommended)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 45 --complexity 88 --llm-backend hf
Notes:
- Minimal CLI: you can run from repo root with only `--index`, defaults match financebench/laion patterns:
- `--stage` defaults to `all` (runs 2, 3, 4, 5)
- `--baseline-dir` defaults to `baseline`
- `--queries` defaults to `data/evaluation_queries.jsonl` (or falls back to the index directory)
- `--llm-backend` defaults to `hf` (HuggingFace), can use `vllm`
- `--model-name` defaults to `Qwen/Qwen3-8B`
- Fail-fast behavior: no silent fallbacks. If compact index cannot run with recompute, it errors out.
- Stage 5 requires Stage 4 retrieval results. Use `--stage 45` to run both efficiently.
Optional flags:
- --queries data/evaluation_queries.jsonl (custom queries file)
- --baseline-dir baseline (where FAISS baseline lives)
- --complexity 88 (LEANN complexity parameter, optimal for 90% recall)
- --llm-backend hf|vllm (LLM backend for generation)
- --model-name Qwen/Qwen3-8B (LLM model for generation)
- --max-queries 1000 (limit number of queries for evaluation)
## Files Produced
- data/enron_passages_preview.jsonl: Small preview of passages used (for inspection)
- data/enron_index_hnsw.leann.*: LEANN index files
- baseline/faiss_flat.index + baseline/metadata.pkl: FAISS baseline with passage IDs
- data/evaluation_queries.jsonl: Query file (id + query; includes GT IDs for reference)
## Notes
- Evaluates both retrieval Recall@3 and generation timing with Qwen3-8B thinking model.
- The emails CSV must contain a column named "message" (raw RFC822 email) and a column named "file" for source identifier. Message-ID headers are parsed as canonical message IDs when present.
- Qwen3-8B requires special handling for thinking models with chat templates and <think></think> tag processing.
## Stages Summary
- Stage 2 (Recall@3):
- Compares LEANN vs FAISS Flat baseline on Recall@3.
- Compact index runs with `recompute_embeddings=True`.
- Stage 3 (Binary Search for Complexity):
- Builds a non-compact index (`<index>_noncompact.leann`) and runs binary search with `recompute_embeddings=False` to find the minimal complexity achieving target Recall@3 (default 90%).
- Stage 4 (Index Comparison):
- Reports .index-only sizes for compact vs non-compact.
- Measures timings on queries by default: non-compact (no recompute) vs compact (with recompute).
- Stores retrieval results for Stage 5 generation evaluation.
- Fails fast if compact recompute cannot run.
- If `--complexity` is not provided, the script tries to use the best complexity from Stage 3:
- First from the current run (when running `--stage all`), otherwise
- From `enron_stage3_results.json` saved next to the index during the last Stage 3 run.
- If neither exists, Stage 4 will error and ask you to run Stage 3 or pass `--complexity`.
- Stage 5 (Generation Evaluation):
- Uses Qwen3-8B thinking model for RAG generation on retrieved documents from Stage 4.
- Supports HuggingFace (`hf`) and vLLM (`vllm`) backends.
- Measures generation timing separately from search timing.
- Requires Stage 4 results (no additional searching performed).
## Example Results
These are sample results obtained on Enron data using all-mpnet-base-v2 and Qwen3-8B.
- Stage 3 (Binary Search):
- Minimal complexity achieving 90% Recall@3: 88
- Sampled points:
- C=8 → 59.9% Recall@3
- C=72 → 89.4% Recall@3
- C=88 → 90.2% Recall@3
- C=96 → 90.7% Recall@3
- C=112 → 91.1% Recall@3
- C=136 → 91.3% Recall@3
- C=256 → 92.0% Recall@3
- Stage 4 (Index Sizes, .index only):
- Compact: ~2.2 MB
- Non-compact: ~82.0 MB
- Storage saving by compact: ~97.3%
- Stage 4 (Search Timing, 988 queries, complexity=88):
- Non-compact (no recompute): ~0.0075 s avg per query
- Compact (with recompute): ~1.981 s avg per query
- Speed ratio (non-compact/compact): ~0.0038x
- Stage 5 (RAG Generation, 988 queries, Qwen3-8B):
- Average generation time: ~22.302 s per query
- Total queries processed: 988
- LLM backend: HuggingFace transformers
- Model: Qwen/Qwen3-8B (thinking model with <think></think> processing)
Full JSON output is saved by the script (see `--output`), e.g.:
`benchmarks/enron_emails/results_enron_stage45.json`.

View File

@@ -1 +0,0 @@
downloads/

View File

@@ -1,614 +0,0 @@
"""
Enron Emails Benchmark Evaluation - Retrieval Recall@3 (Stages 2/3/4)
Follows the style of FinanceBench/LAION: Stage 2 recall vs FAISS baseline,
Stage 3 complexity sweep to target recall, Stage 4 index comparison.
On errors, fail fast without fallbacks.
"""
import argparse
import json
import logging
import os
import pickle
from pathlib import Path
import numpy as np
from leann import LeannBuilder, LeannSearcher
from leann_backend_hnsw import faiss
from ..llm_utils import generate_hf, generate_vllm, load_hf_model, load_vllm_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.passage_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
# No fallbacks here; if embedding server is needed but fails, the caller will see the error.
def evaluate_recall_at_3(
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 using FAISS Flat as ground truth"""
from leann.api import compute_embeddings
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
for i, query in enumerate(queries):
# Compute query embedding with the same model/mode as the index
q_emb = compute_embeddings(
[query],
self.searcher.embedding_model,
mode=self.searcher.embedding_mode,
use_server=False,
).astype(np.float32)
# Search FAISS Flat ground truth
n = q_emb.shape[0]
k = 3
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(q_emb),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
# Search with LEANN (may require embedding server depending on index configuration)
results = self.searcher.search(
query,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {r.id for r in results}
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0
total_recall += recall
if i < 3:
print(f" Q{i + 1}: '{query[:60]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS: {list(baseline_ids)}")
print(f" LEANN: {list(test_ids)}")
print(f" ∩: {list(intersection)}")
avg = total_recall / max(1, len(queries))
print(f"📊 Average Recall@3: {avg:.3f} ({avg * 100:.1f}%)")
return avg
def cleanup(self):
if hasattr(self, "searcher"):
self.searcher.cleanup()
class EnronEvaluator:
def __init__(self, index_path: str):
self.index_path = index_path
self.searcher = LeannSearcher(index_path)
def load_queries(self, queries_file: str) -> list[str]:
queries: list[str] = []
with open(queries_file, encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data = json.loads(line)
if "query" in data:
queries.append(data["query"])
print(f"📊 Loaded {len(queries)} queries from {queries_file}")
return queries
def cleanup(self):
if self.searcher:
self.searcher.cleanup()
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes (.index only), similar to LAION bench."""
print("📏 Analyzing index sizes (.index only)...")
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem
sizes: dict[str, float] = {}
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json"
passages_file = index_dir / f"{index_path.name}.passages.jsonl"
passages_idx_file = index_dir / f"{index_path.name}.passages.idx"
sizes["index_only_mb"] = (
index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
)
sizes["metadata_mb"] = (
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
)
sizes["passages_text_mb"] = (
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
)
sizes["passages_index_mb"] = (
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
)
print(f" 📁 .index size: {sizes['index_only_mb']:.1f} MB")
return sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison using current passages and embeddings."""
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source and embedding model
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
# Load all passages and ids
ids: list[str] = []
texts: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
ids.append(str(data["id"]))
texts.append(data["text"])
# Compute embeddings using the same method as LEANN
from leann.api import compute_embeddings
embeddings = compute_embeddings(
texts,
meta["embedding_model"],
mode=meta.get("embedding_mode", "sentence-transformers"),
use_server=False,
).astype(np.float32)
# Build non-compact index with same passages and embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=False,
is_compact=False,
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact"]
},
)
# Persist a pickle for build_index_from_embeddings
pkl_path = current_index_dir / f"{Path(non_compact_index_path).stem}_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings), pf)
print(
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
)
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
# Analyze the non-compact index size
temp_evaluator = EnronEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_queries: list[str], complexity: int
) -> dict:
"""Compare search speed for non-compact vs compact indexes."""
import time
results: dict = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
"retrieval_results": [], # Store retrieval results for Stage 5
}
print("⚡ Comparing search performance between indexes...")
# Non-compact (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for q in test_queries:
t0 = time.time()
_ = non_compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=False
)
results["non_compact"]["search_times"].append(time.time() - t0)
# Compact (with recompute). Fail fast if it cannot run.
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for q in test_queries:
t0 = time.time()
docs = compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=True
)
results["compact"]["search_times"].append(time.time() - t0)
# Store retrieval results for Stage 5
results["retrieval_results"].append(
{"query": q, "retrieved_docs": [{"id": doc.id, "text": doc.text} for doc in docs]}
)
compact_searcher.cleanup()
if results["non_compact"]["search_times"]:
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
if results["compact"]["search_times"]:
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
if results["avg_search_times"].get("compact", 0) > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = 0.0
non_compact_searcher.cleanup()
return results
def evaluate_complexity(
self,
recall_eval: "RecallEvaluator",
queries: list[str],
target: float = 0.90,
c_min: int = 8,
c_max: int = 256,
max_iters: int = 10,
recompute: bool = False,
) -> dict:
"""Binary search minimal complexity achieving target recall (monotonic assumption)."""
def round_c(x: int) -> int:
# snap to multiple of 8 like other benches typically do
return max(1, int((x + 7) // 8) * 8)
metrics: list[dict] = []
lo = round_c(c_min)
hi = round_c(c_max)
print(
f"🧪 Binary search complexity in [{lo}, {hi}] for target Recall@3>={int(target * 100)}%..."
)
# Ensure upper bound can reach target; expand if needed (up to a cap)
r_lo = recall_eval.evaluate_recall_at_3(
queries, complexity=lo, recompute_embeddings=recompute
)
metrics.append({"complexity": lo, "recall_at_3": r_lo})
r_hi = recall_eval.evaluate_recall_at_3(
queries, complexity=hi, recompute_embeddings=recompute
)
metrics.append({"complexity": hi, "recall_at_3": r_hi})
cap = 1024
while r_hi < target and hi < cap:
lo = hi
r_lo = r_hi
hi = round_c(hi * 2)
r_hi = recall_eval.evaluate_recall_at_3(
queries, complexity=hi, recompute_embeddings=recompute
)
metrics.append({"complexity": hi, "recall_at_3": r_hi})
if r_hi < target:
print(f"⚠️ Max complexity {hi} did not reach target recall {target:.2f}.")
print("📈 Observations:")
for m in metrics:
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
return {"metrics": metrics, "best_complexity": None, "target_recall": target}
# Binary search within [lo, hi]
best = hi
iters = 0
while lo < hi and iters < max_iters:
mid = round_c((lo + hi) // 2)
r_mid = recall_eval.evaluate_recall_at_3(
queries, complexity=mid, recompute_embeddings=recompute
)
metrics.append({"complexity": mid, "recall_at_3": r_mid})
if r_mid >= target:
best = mid
hi = mid
else:
lo = mid + 8 # move past mid, respecting multiple-of-8 step
iters += 1
print("📈 Binary search results (sampled points):")
# Print unique complexity entries ordered by complexity
for m in sorted(
{m["complexity"]: m for m in metrics}.values(), key=lambda x: x["complexity"]
):
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
print(f"✅ Minimal complexity achieving {int(target * 100)}% recall: {best}")
return {"metrics": metrics, "best_complexity": best, "target_recall": target}
def main():
parser = argparse.ArgumentParser(description="Enron Emails Benchmark Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument(
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "5", "all", "45"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="LEANN search complexity")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument(
"--max-queries", type=int, help="Limit number of queries to evaluate", default=1000
)
parser.add_argument(
"--target-recall", type=float, default=0.90, help="Target Recall@3 for Stage 3"
)
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument("--llm-backend", choices=["hf", "vllm"], default="hf", help="LLM backend")
parser.add_argument("--model-name", default="Qwen/Qwen3-8B", help="Model name")
args = parser.parse_args()
# Resolve queries file: if default path not found, fall back to index's directory
if not os.path.exists(args.queries):
from pathlib import Path
idx_dir = Path(args.index).parent
fallback_q = idx_dir / "evaluation_queries.jsonl"
if fallback_q.exists():
args.queries = str(fallback_q)
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_enron_emails.py first to build the baseline")
raise SystemExit(1)
results_out: dict = {}
if args.stage in ("2", "all"):
print("🚀 Starting Stage 2: Recall@3 evaluation")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
queries = queries[:10]
print(f"🧪 Using first {len(queries)} queries")
complexity = args.complexity or 64
r = evaluator.evaluate_recall_at_3(queries, complexity)
results_out["stage2"] = {"complexity": complexity, "recall_at_3": r}
evaluator.cleanup()
enron_eval.cleanup()
print("✅ Stage 2 completed!\n")
if args.stage in ("3", "all"):
print("🚀 Starting Stage 3: Binary search for target recall (no recompute)")
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
queries = queries[: args.max_queries]
print(f"🧪 Using first {len(queries)} queries")
# Build non-compact index for fast binary search (recompute_embeddings=False)
from pathlib import Path
index_path = Path(args.index)
non_compact_index_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
enron_eval.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact evaluator for binary search with recompute=False
evaluator_nc = RecallEvaluator(non_compact_index_path, args.baseline_dir)
sweep = enron_eval.evaluate_complexity(
evaluator_nc, queries, target=args.target_recall, recompute=False
)
results_out["stage3"] = sweep
# Persist default stage 3 results near the index for Stage 4 auto-pickup
from pathlib import Path
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
with open(default_stage3_path, "w", encoding="utf-8") as f:
json.dump({"stage3": sweep}, f, indent=2)
print(f"📝 Saved Stage 3 summary to {default_stage3_path}")
evaluator_nc.cleanup()
enron_eval.cleanup()
print("✅ Stage 3 completed!\n")
if args.stage in ("4", "all", "45"):
print("🚀 Starting Stage 4: Index size + performance comparison")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
test_q = queries[: min(args.max_queries, len(queries))]
current_sizes = enron_eval.analyze_index_sizes()
# Build non-compact index for comparison (no fallback)
from pathlib import Path
index_path = Path(args.index)
non_compact_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
non_compact_sizes = enron_eval.create_non_compact_index_for_comparison(non_compact_path)
nc_eval = EnronEvaluator(non_compact_path)
if (
current_sizes.get("index_only_mb", 0) > 0
and non_compact_sizes.get("index_only_mb", 0) > 0
):
storage_saving_percent = max(
0.0,
100.0 * (1.0 - current_sizes["index_only_mb"] / non_compact_sizes["index_only_mb"]),
)
else:
storage_saving_percent = 0.0
if args.complexity is None:
# Prefer in-session Stage 3 result
if "stage3" in results_out and results_out["stage3"].get("best_complexity") is not None:
complexity = results_out["stage3"]["best_complexity"]
print(f"📥 Using best complexity from Stage 3 in-session: {complexity}")
else:
# Try to load last saved Stage 3 result near index
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
if default_stage3_path.exists():
with open(default_stage3_path, encoding="utf-8") as f:
prev = json.load(f)
complexity = prev.get("stage3", {}).get("best_complexity")
if complexity is None:
raise SystemExit(
"❌ Stage 4: No --complexity and no best_complexity found in saved Stage 3 results"
)
print(f"📥 Using best complexity from saved Stage 3: {complexity}")
else:
raise SystemExit(
"❌ Stage 4 requires --complexity if Stage 3 hasn't been run. Run stage 3 first or pass --complexity."
)
else:
complexity = args.complexity
comp = enron_eval.compare_index_performance(
non_compact_path, args.index, test_q, complexity=complexity
)
results_out["stage4"] = {
"current_index": current_sizes,
"non_compact_index": non_compact_sizes,
"storage_saving_percent": storage_saving_percent,
"performance_comparison": comp,
}
nc_eval.cleanup()
evaluator.cleanup()
enron_eval.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage in ("5", "all"):
print("🚀 Starting Stage 5: Generation evaluation with Qwen3-8B")
# Check if Stage 4 results exist
if "stage4" not in results_out or "performance_comparison" not in results_out["stage4"]:
print("❌ Stage 5 requires Stage 4 retrieval results")
print("💡 Run Stage 4 first or use --stage all")
raise SystemExit(1)
retrieval_results = results_out["stage4"]["performance_comparison"]["retrieval_results"]
if not retrieval_results:
print("❌ No retrieval results found from Stage 4")
raise SystemExit(1)
print(f"📁 Using {len(retrieval_results)} retrieval results from Stage 4")
# Load LLM
try:
if args.llm_backend == "hf":
tokenizer, model = load_hf_model(args.model_name)
def llm_func(prompt):
return generate_hf(tokenizer, model, prompt)
else: # vllm
llm, sampling_params = load_vllm_model(args.model_name)
def llm_func(prompt):
return generate_vllm(llm, sampling_params, prompt)
# Run generation using stored retrieval results
import time
from llm_utils import create_prompt
generation_times = []
responses = []
print("🤖 Running generation on pre-retrieved results...")
for i, item in enumerate(retrieval_results):
query = item["query"]
retrieved_docs = item["retrieved_docs"]
# Prepare context from retrieved docs
context = "\n\n".join([doc["text"] for doc in retrieved_docs])
prompt = create_prompt(context, query, "emails")
# Time generation only
gen_start = time.time()
response = llm_func(prompt)
gen_time = time.time() - gen_start
generation_times.append(gen_time)
responses.append(response)
if i < 3:
print(f" Q{i + 1}: Gen={gen_time:.3f}s")
avg_gen_time = sum(generation_times) / len(generation_times)
print("\n📊 Generation Results:")
print(f" Total Queries: {len(retrieval_results)}")
print(f" Avg Generation Time: {avg_gen_time:.3f}s")
print(" (Search time from Stage 4)")
results_out["stage5"] = {
"total_queries": len(retrieval_results),
"avg_generation_time": avg_gen_time,
"generation_times": generation_times,
"responses": responses,
}
# Show sample results
print("\n📝 Sample Results:")
for i in range(min(3, len(retrieval_results))):
query = retrieval_results[i]["query"]
response = responses[i]
print(f" Q{i + 1}: {query[:60]}...")
print(f" A{i + 1}: {response[:100]}...")
print()
except Exception as e:
print(f"❌ Generation evaluation failed: {e}")
print("💡 Make sure transformers/vllm is installed and model is available")
print("✅ Stage 5 completed!\n")
if args.output and results_out:
with open(args.output, "w", encoding="utf-8") as f:
json.dump(results_out, f, indent=2)
print(f"📝 Saved results to {args.output}")
if __name__ == "__main__":
main()

View File

@@ -1,359 +0,0 @@
"""
Enron Emails Benchmark Setup Script
Prepares passages from emails.csv, builds LEANN index, and FAISS Flat baseline
"""
import argparse
import csv
import json
import os
import re
from collections.abc import Iterable
from email import message_from_string
from email.policy import default
from pathlib import Path
from typing import Optional
from leann import LeannBuilder
class EnronSetup:
def __init__(self, data_dir: str = "data"):
self.data_dir = Path(data_dir)
self.data_dir.mkdir(parents=True, exist_ok=True)
self.passages_preview = self.data_dir / "enron_passages_preview.jsonl"
self.index_path = self.data_dir / "enron_index_hnsw.leann"
self.queries_file = self.data_dir / "evaluation_queries.jsonl"
self.downloads_dir = self.data_dir / "downloads"
self.downloads_dir.mkdir(parents=True, exist_ok=True)
# ----------------------------
# Dataset acquisition
# ----------------------------
def ensure_emails_csv(self, emails_csv: Optional[str]) -> str:
"""Return a path to emails.csv, downloading from Kaggle if needed."""
if emails_csv:
p = Path(emails_csv)
if not p.exists():
raise FileNotFoundError(f"emails.csv not found: {emails_csv}")
return str(p)
print(
"📥 Trying to download Enron emails.csv from Kaggle (wcukierski/enron-email-dataset)..."
)
try:
from kaggle.api.kaggle_api_extended import KaggleApi
api = KaggleApi()
api.authenticate()
api.dataset_download_files(
"wcukierski/enron-email-dataset", path=str(self.downloads_dir), unzip=True
)
candidate = self.downloads_dir / "emails.csv"
if candidate.exists():
print(f"✅ Downloaded emails.csv: {candidate}")
return str(candidate)
else:
raise FileNotFoundError(
f"emails.csv was not found in {self.downloads_dir} after Kaggle download"
)
except Exception as e:
print(
"❌ Could not download via Kaggle automatically. Provide --emails-csv or configure Kaggle API."
)
print(
" Set KAGGLE_USERNAME and KAGGLE_KEY env vars, or place emails.csv locally and pass --emails-csv."
)
raise e
# ----------------------------
# Data preparation
# ----------------------------
@staticmethod
def _extract_message_id(raw_email: str) -> str:
msg = message_from_string(raw_email, policy=default)
val = msg.get("Message-ID", "")
if val.startswith("<") and val.endswith(">"):
val = val[1:-1]
return val or ""
@staticmethod
def _split_header_body(raw_email: str) -> tuple[str, str]:
parts = raw_email.split("\n\n", 1)
if len(parts) == 2:
return parts[0].strip(), parts[1].strip()
# Heuristic fallback
first_lines = raw_email.splitlines()
if first_lines and ":" in first_lines[0]:
return raw_email.strip(), ""
return "", raw_email.strip()
@staticmethod
def _split_fixed_words(text: str, chunk_words: int, keep_last: bool) -> list[str]:
text = (text or "").strip()
if not text:
return []
if chunk_words <= 0:
return [text]
words = text.split()
if not words:
return []
limit = len(words)
if not keep_last:
limit = (len(words) // chunk_words) * chunk_words
if limit == 0:
return []
chunks = [" ".join(words[i : i + chunk_words]) for i in range(0, limit, chunk_words)]
return [c for c in (s.strip() for s in chunks) if c]
def _iter_passages_from_csv(
self,
emails_csv: Path,
chunk_words: int = 256,
keep_last_header: bool = True,
keep_last_body: bool = True,
max_emails: int | None = None,
) -> Iterable[dict]:
with open(emails_csv, encoding="utf-8") as f:
reader = csv.DictReader(f)
count = 0
for i, row in enumerate(reader):
if max_emails is not None and count >= max_emails:
break
raw_message = row.get("message", "")
email_file_id = row.get("file", "")
if not raw_message.strip():
continue
message_id = self._extract_message_id(raw_message)
if not message_id:
# Fallback ID based on CSV position and file path
safe_file = re.sub(r"[^A-Za-z0-9_.-]", "_", email_file_id)
message_id = f"enron_{i}_{safe_file}"
header, body = self._split_header_body(raw_message)
# Header chunks
for chunk in self._split_fixed_words(header, chunk_words, keep_last_header):
yield {
"text": chunk,
"metadata": {
"message_id": message_id,
"is_header": True,
"email_file_id": email_file_id,
},
}
# Body chunks
for chunk in self._split_fixed_words(body, chunk_words, keep_last_body):
yield {
"text": chunk,
"metadata": {
"message_id": message_id,
"is_header": False,
"email_file_id": email_file_id,
},
}
count += 1
# ----------------------------
# Build LEANN index and FAISS baseline
# ----------------------------
def build_leann_index(
self,
emails_csv: Optional[str],
backend: str = "hnsw",
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
chunk_words: int = 256,
max_emails: int | None = None,
) -> str:
emails_csv_path = self.ensure_emails_csv(emails_csv)
print(f"🏗️ Building LEANN index from {emails_csv_path}...")
builder = LeannBuilder(
backend_name=backend,
embedding_model=embedding_model,
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=True,
is_compact=True,
num_threads=4,
)
# Stream passages and add to builder
preview_written = 0
with open(self.passages_preview, "w", encoding="utf-8") as preview_out:
for p in self._iter_passages_from_csv(
Path(emails_csv_path), chunk_words=chunk_words, max_emails=max_emails
):
builder.add_text(p["text"], metadata=p["metadata"])
if preview_written < 200:
preview_out.write(json.dumps({"text": p["text"][:200], **p["metadata"]}) + "\n")
preview_written += 1
print(f"🔨 Building index at {self.index_path}...")
builder.build_index(str(self.index_path))
print("✅ LEANN index built!")
return str(self.index_path)
def build_faiss_flat_baseline(self, index_path: str, output_dir: str = "baseline") -> str:
print("🔨 Building FAISS Flat baseline from LEANN passages...")
import pickle
import numpy as np
from leann.api import compute_embeddings
from leann_backend_hnsw import faiss
os.makedirs(output_dir, exist_ok=True)
baseline_path = os.path.join(output_dir, "faiss_flat.index")
metadata_path = os.path.join(output_dir, "metadata.pkl")
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
print(f"✅ Baseline already exists at {baseline_path}")
return baseline_path
# Read meta for passage source and embedding model
meta_path = f"{index_path}.meta.json"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
embedding_model = meta["embedding_model"]
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
if not os.path.isabs(passage_file):
index_dir = os.path.dirname(index_path)
passage_file = os.path.join(index_dir, os.path.basename(passage_file))
# Load passages from builder output so IDs match LEANN
passages: list[str] = []
passage_ids: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data = json.loads(line)
passages.append(data["text"])
passage_ids.append(data["id"]) # builder-assigned ID
print(f"📄 Loaded {len(passages)} passages for baseline")
print(f"🤖 Embedding model: {embedding_model}")
embeddings = compute_embeddings(
passages,
embedding_model,
mode="sentence-transformers",
use_server=False,
)
# Build FAISS IndexFlatIP
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
emb_f32 = embeddings.astype(np.float32)
index.add(emb_f32.shape[0], faiss.swig_ptr(emb_f32))
faiss.write_index(index, baseline_path)
with open(metadata_path, "wb") as pf:
pickle.dump(passage_ids, pf)
print(f"✅ FAISS baseline saved: {baseline_path}")
print(f"✅ Metadata saved: {metadata_path}")
print(f"📊 Total vectors: {index.ntotal}")
return baseline_path
# ----------------------------
# Queries (optional): prepare evaluation queries file
# ----------------------------
def prepare_queries(self, min_realism: float = 0.85) -> Path:
print(
"📝 Preparing evaluation queries from HuggingFace dataset corbt/enron_emails_sample_questions ..."
)
try:
from datasets import load_dataset
ds = load_dataset("corbt/enron_emails_sample_questions", split="train")
except Exception as e:
print(f"⚠️ Failed to load dataset: {e}")
return self.queries_file
kept = 0
with open(self.queries_file, "w", encoding="utf-8") as out:
for i, item in enumerate(ds):
how_realistic = float(item.get("how_realistic", 0.0))
if how_realistic < min_realism:
continue
qid = str(item.get("id", f"enron_q_{i}"))
query = item.get("question", "")
if not query:
continue
record = {
"id": qid,
"query": query,
# For reference only, not used in recall metric below
"gt_message_ids": item.get("message_ids", []),
}
out.write(json.dumps(record) + "\n")
kept += 1
print(f"✅ Wrote {kept} queries to {self.queries_file}")
return self.queries_file
def main():
parser = argparse.ArgumentParser(description="Setup Enron Emails Benchmark")
parser.add_argument(
"--emails-csv",
help="Path to emails.csv (Enron dataset). If omitted, attempt Kaggle download.",
)
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument("--backend", choices=["hnsw", "diskann"], default="hnsw")
parser.add_argument(
"--embedding-model",
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model for LEANN",
)
parser.add_argument("--chunk-words", type=int, default=256, help="Fixed word chunk size")
parser.add_argument("--max-emails", type=int, help="Limit number of emails to process")
parser.add_argument("--skip-queries", action="store_true", help="Skip creating queries file")
parser.add_argument("--skip-build", action="store_true", help="Skip building LEANN index")
args = parser.parse_args()
setup = EnronSetup(args.data_dir)
# Build index
if not args.skip_build:
index_path = setup.build_leann_index(
emails_csv=args.emails_csv,
backend=args.backend,
embedding_model=args.embedding_model,
chunk_words=args.chunk_words,
max_emails=args.max_emails,
)
# Build FAISS baseline from the same passages & embeddings
setup.build_faiss_flat_baseline(index_path)
else:
print("⏭️ Skipping LEANN index build and baseline")
# Queries file (optional)
if not args.skip_queries:
setup.prepare_queries()
else:
print("⏭️ Skipping query preparation")
print("\n🎉 Enron Emails setup completed!")
print(f"📁 Data directory: {setup.data_dir.absolute()}")
print("Next steps:")
print(
"1) Evaluate recall: python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2"
)
if __name__ == "__main__":
main()

View File

@@ -1,115 +0,0 @@
# FinanceBench Benchmark for LEANN-RAG
FinanceBench is a benchmark for evaluating retrieval-augmented generation (RAG) systems on financial document question-answering tasks.
## Dataset
- **Source**: [PatronusAI/financebench](https://huggingface.co/datasets/PatronusAI/financebench)
- **Questions**: 150 financial Q&A examples
- **Documents**: 368 PDF files (10-K, 10-Q, 8-K, earnings reports)
- **Companies**: Major public companies (3M, Apple, Microsoft, Amazon, etc.)
- **Paper**: [FinanceBench: A New Benchmark for Financial Question Answering](https://arxiv.org/abs/2311.11944)
## Structure
```
benchmarks/financebench/
├── setup_financebench.py # Downloads PDFs and builds index
├── evaluate_financebench.py # Intelligent evaluation script
├── data/
│ ├── financebench_merged.jsonl # Q&A dataset
│ ├── pdfs/ # Downloaded financial documents
│ └── index/ # LEANN indexes
│ └── financebench_full_hnsw.leann
└── README.md
```
## Usage
### 1. Setup (Download & Build Index)
```bash
cd benchmarks/financebench
python setup_financebench.py
```
This will:
- Download the 150 Q&A examples
- Download all 368 PDF documents (parallel processing)
- Build a LEANN index from 53K+ text chunks
- Verify setup with test query
### 2. Evaluation
```bash
# Basic retrieval evaluation
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann
# RAG generation evaluation with Qwen3-8B
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann --stage 4 --complexity 64 --llm-backend hf --model-name Qwen/Qwen3-8B --output results_qwen3.json
```
## Evaluation Methods
### Retrieval Evaluation
Uses intelligent matching with three strategies:
1. **Exact text overlap** - Direct substring matches
2. **Number matching** - Key financial figures ($1,577, 1.2B, etc.)
3. **Semantic similarity** - Word overlap with 20% threshold
### QA Evaluation
LLM-based answer evaluation using GPT-4o:
- Handles numerical rounding and equivalent representations
- Considers fractions, percentages, and decimal equivalents
- Evaluates semantic meaning rather than exact text match
## Benchmark Results
### LEANN-RAG Performance (sentence-transformers/all-mpnet-base-v2)
**Retrieval Metrics:**
- **Question Coverage**: 100.0% (all questions retrieve relevant docs)
- **Exact Match Rate**: 0.7% (substring overlap with evidence)
- **Number Match Rate**: 120.7% (key financial figures matched)*
- **Semantic Match Rate**: 4.7% (word overlap ≥20%)
- **Average Search Time**: 0.097s
**QA Metrics:**
- **Accuracy**: 42.7% (LLM-evaluated answer correctness)
- **Average QA Time**: 4.71s (end-to-end response time)
**System Performance:**
- **Index Size**: 53,985 chunks from 368 PDFs
- **Build Time**: ~5-10 minutes with sentence-transformers/all-mpnet-base-v2
*Note: Number match rate >100% indicates multiple retrieved documents contain the same financial figures, which is expected behavior for financial data appearing across multiple document sections.
### LEANN-RAG Generation Performance (Qwen3-8B)
- **Stage 4 (Index Comparison):**
- Compact Index: 5.0 MB
- Non-compact Index: 172.2 MB
- **Storage Saving**: 97.1%
- **Search Performance**:
- Non-compact (no recompute): 0.009s avg per query
- Compact (with recompute): 2.203s avg per query
- Speed ratio: 0.004x
**Generation Evaluation (20 queries, complexity=64):**
- **Average Search Time**: 1.638s per query
- **Average Generation Time**: 45.957s per query
- **LLM Backend**: HuggingFace transformers
- **Model**: Qwen/Qwen3-8B (thinking model with <think></think> processing)
- **Total Questions Processed**: 20
## Options
```bash
# Use different backends
python setup_financebench.py --backend diskann
python evaluate_financebench.py --index data/index/financebench_full_diskann.leann
# Use different embedding models
python setup_financebench.py --embedding-model facebook/contriever
```

View File

@@ -1,923 +0,0 @@
"""
FinanceBench Evaluation Script - Modular Recall-based Evaluation
"""
import argparse
import json
import logging
import os
import pickle
import time
from pathlib import Path
from typing import Optional
import numpy as np
import openai
from leann import LeannChat, LeannSearcher
from leann_backend_hnsw import faiss
from ..llm_utils import evaluate_rag, generate_hf, generate_vllm, load_hf_model, load_vllm_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (searcher vs baseline)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
# Load FAISS flat baseline
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.passage_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
def evaluate_recall_at_3(
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 for given queries at specified complexity"""
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
num_queries = len(queries)
for i, query in enumerate(queries):
# Get ground truth: search with FAISS flat
from leann.api import compute_embeddings
query_embedding = compute_embeddings(
[query],
self.searcher.embedding_model,
mode=self.searcher.embedding_mode,
use_server=False,
).astype(np.float32)
# Search FAISS flat for ground truth using LEANN's modified faiss API
n = query_embedding.shape[0] # Number of queries
k = 3 # Number of nearest neighbors
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(query_embedding),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
# Extract the results
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
# Search with LEANN at specified complexity
test_results = self.searcher.search(
query,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {result.id for result in test_results}
# Calculate recall@3 = |intersection| / |ground_truth|
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0 # Ground truth size is 3
total_recall += recall
if i < 3: # Show first few examples
print(f" Query {i + 1}: '{query[:50]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS ground truth: {list(baseline_ids)}")
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
print(f" Intersection: {list(intersection)}")
avg_recall = total_recall / num_queries
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
return avg_recall
def cleanup(self):
"""Cleanup resources"""
if hasattr(self, "searcher"):
self.searcher.cleanup()
class FinanceBenchEvaluator:
def __init__(self, index_path: str, openai_api_key: Optional[str] = None):
self.index_path = index_path
self.openai_client = openai.OpenAI(api_key=openai_api_key) if openai_api_key else None
self.searcher = LeannSearcher(index_path)
self.chat = LeannChat(index_path) if openai_api_key else None
def load_dataset(self, dataset_path: str = "data/financebench_merged.jsonl"):
"""Load FinanceBench dataset"""
data = []
with open(dataset_path, encoding="utf-8") as f:
for line in f:
if line.strip():
data.append(json.loads(line))
print(f"📊 Loaded {len(data)} FinanceBench examples")
return data
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes with and without embeddings"""
print("📏 Analyzing index sizes...")
# Get all index-related files
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem # Remove .leann extension
sizes = {}
total_with_embeddings = 0
# Core index files
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
for file_path, name in [
(index_file, "index"),
(meta_file, "metadata"),
(passages_file, "passages_text"),
(passages_idx_file, "passages_index"),
]:
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
sizes[name] = size_mb
total_with_embeddings += size_mb
else:
sizes[name] = 0
sizes["total_with_embeddings"] = total_with_embeddings
sizes["index_only_mb"] = sizes["index"] # Just the .index file for fair comparison
print(f" 📁 Total index size: {total_with_embeddings:.1f} MB")
print(f" 📁 Index file only: {sizes['index']:.1f} MB")
return sizes
def create_compact_index_for_comparison(self, compact_index_path: str) -> dict:
"""Create a compact index for comparison purposes"""
print("🏗️ Building compact index from existing passages...")
# Load existing passages from current index
from leann import LeannBuilder
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path) as f:
import json
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
print(f"📄 Loading passages from {passage_file}...")
# Build compact index with same passages
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=True, # Enable recompute (no stored embeddings)
is_compact=True, # Enable compact storage
**meta.get("backend_kwargs", {}),
)
# Load all passages
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
builder.add_text(data["text"], metadata=data.get("metadata", {}))
print(f"🔨 Building compact index at {compact_index_path}...")
builder.build_index(compact_index_path)
# Analyze the compact index size
temp_evaluator = FinanceBenchEvaluator(compact_index_path)
compact_sizes = temp_evaluator.analyze_index_sizes()
compact_sizes["index_type"] = "compact"
return compact_sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison purposes"""
print("🏗️ Building non-compact index from existing passages...")
# Load existing passages from current index
from leann import LeannBuilder
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path) as f:
import json
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
print(f"📄 Loading passages from {passage_file}...")
# Build non-compact index with same passages
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=False, # Disable recompute (store embeddings)
is_compact=False, # Disable compact storage
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact"]
},
)
# Load all passages
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
builder.add_text(data["text"], metadata=data.get("metadata", {}))
print(f"🔨 Building non-compact index at {non_compact_index_path}...")
builder.build_index(non_compact_index_path)
# Analyze the non-compact index size
temp_evaluator = FinanceBenchEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_data: list, complexity: int
) -> dict:
"""Compare performance between non-compact and compact indexes"""
print("⚡ Comparing search performance between indexes...")
import time
from leann import LeannSearcher
# Test queries
test_queries = [item["question"] for item in test_data[:5]]
results = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
}
# Test non-compact index (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for query in test_queries:
start_time = time.time()
_ = non_compact_searcher.search(
query, top_k=3, complexity=complexity, recompute_embeddings=False
)
search_time = time.time() - start_time
results["non_compact"]["search_times"].append(search_time)
# Test compact index (with recompute)
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for query in test_queries:
start_time = time.time()
_ = compact_searcher.search(
query, top_k=3, complexity=complexity, recompute_embeddings=True
)
search_time = time.time() - start_time
results["compact"]["search_times"].append(search_time)
# Calculate averages
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
# Performance ratio
if results["avg_search_times"]["compact"] > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = float("inf")
print(
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
)
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
# Cleanup
non_compact_searcher.cleanup()
compact_searcher.cleanup()
return results
def evaluate_timing_breakdown(
self, data: list[dict], max_samples: Optional[int] = None
) -> dict:
"""Evaluate timing breakdown and accuracy by hacking LeannChat.ask() for separated timing"""
if not self.chat or not self.openai_client:
print("⚠️ Skipping timing evaluation (no OpenAI API key provided)")
return {
"total_questions": 0,
"avg_search_time": 0.0,
"avg_generation_time": 0.0,
"avg_total_time": 0.0,
"accuracy": 0.0,
}
print("🔍🤖 Evaluating timing breakdown and accuracy (search + generation)...")
if max_samples:
data = data[:max_samples]
print(f"📝 Using first {max_samples} samples for timing evaluation")
search_times = []
generation_times = []
total_times = []
correct_answers = 0
for i, item in enumerate(data):
question = item["question"]
ground_truth = item["answer"]
try:
# Hack: Monkey-patch the ask method to capture internal timing
original_ask = self.chat.ask
captured_search_time = None
captured_generation_time = None
def patched_ask(*args, **kwargs):
nonlocal captured_search_time, captured_generation_time
# Time the search part
search_start = time.time()
results = self.chat.searcher.search(args[0], top_k=3, complexity=64)
captured_search_time = time.time() - search_start
# Time the generation part
context = "\n\n".join([r.text for r in results])
prompt = (
"Here is some retrieved context that might help answer your question:\n\n"
f"{context}\n\n"
f"Question: {args[0]}\n\n"
"Please provide the best answer you can based on this context and your knowledge."
)
generation_start = time.time()
answer = self.chat.llm.ask(prompt)
captured_generation_time = time.time() - generation_start
return answer
# Apply the patch
self.chat.ask = patched_ask
# Time the total QA
total_start = time.time()
generated_answer = self.chat.ask(question)
total_time = time.time() - total_start
# Restore original method
self.chat.ask = original_ask
# Store the timings
search_times.append(captured_search_time)
generation_times.append(captured_generation_time)
total_times.append(total_time)
# Check accuracy using LLM as judge
is_correct = self._check_answer_accuracy(generated_answer, ground_truth, question)
if is_correct:
correct_answers += 1
status = "" if is_correct else ""
print(
f"Question {i + 1}/{len(data)}: {status} Search={captured_search_time:.3f}s, Gen={captured_generation_time:.3f}s, Total={total_time:.3f}s"
)
print(f" GT: {ground_truth}")
print(f" Gen: {generated_answer[:100]}...")
except Exception as e:
print(f" ❌ Error: {e}")
search_times.append(0.0)
generation_times.append(0.0)
total_times.append(0.0)
accuracy = correct_answers / len(data) if data else 0.0
metrics = {
"total_questions": len(data),
"avg_search_time": sum(search_times) / len(search_times) if search_times else 0.0,
"avg_generation_time": sum(generation_times) / len(generation_times)
if generation_times
else 0.0,
"avg_total_time": sum(total_times) / len(total_times) if total_times else 0.0,
"accuracy": accuracy,
"correct_answers": correct_answers,
"search_times": search_times,
"generation_times": generation_times,
"total_times": total_times,
}
return metrics
def _check_answer_accuracy(
self, generated_answer: str, ground_truth: str, question: str
) -> bool:
"""Check if generated answer matches ground truth using LLM as judge"""
judge_prompt = f"""You are an expert judge evaluating financial question answering.
Question: {question}
Ground Truth Answer: {ground_truth}
Generated Answer: {generated_answer}
Task: Determine if the generated answer is factually correct compared to the ground truth. Focus on:
1. Numerical accuracy (exact values, units, currency)
2. Key financial concepts and terminology
3. Overall factual correctness
For financial data, small formatting differences are OK (e.g., "$1,577" vs "1577 million" vs "$1.577 billion"), but the core numerical value must match.
Respond with exactly one word: "CORRECT" if the generated answer is factually accurate, or "INCORRECT" if it's wrong or significantly different."""
try:
judge_response = self.openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": judge_prompt}],
max_tokens=10,
temperature=0,
)
judgment = judge_response.choices[0].message.content.strip().upper()
return judgment == "CORRECT"
except Exception as e:
print(f" ⚠️ Judge error: {e}, falling back to string matching")
# Fallback to simple string matching
gen_clean = generated_answer.strip().lower().replace("$", "").replace(",", "")
gt_clean = ground_truth.strip().lower().replace("$", "").replace(",", "")
return gt_clean in gen_clean
def _print_results(self, timing_metrics: dict):
"""Print evaluation results"""
print("\n🎯 EVALUATION RESULTS")
print("=" * 50)
# Index comparison analysis
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
print("\n📏 Index Comparison Analysis:")
current = timing_metrics["current_index"]
non_compact = timing_metrics["non_compact_index"]
print(f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB")
print(
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
)
print(" Component breakdown (non-compact):")
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
# Performance comparison
if "performance_comparison" in timing_metrics:
perf = timing_metrics["performance_comparison"]
print("\n⚡ Performance Comparison:")
print(
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
)
print(
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
)
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
# Legacy single index analysis (fallback)
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
print("\n📏 Index Size Analysis:")
print(f" Total index size: {timing_metrics.get('total_with_embeddings', 0):.1f} MB")
print("\n📊 Accuracy:")
print(f" Accuracy: {timing_metrics.get('accuracy', 0) * 100:.1f}%")
print(
f" Correct Answers: {timing_metrics.get('correct_answers', 0)}/{timing_metrics.get('total_questions', 0)}"
)
print("\n📊 Timing Breakdown:")
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
print(f" Avg Total Time: {timing_metrics.get('avg_total_time', 0):.3f}s")
if timing_metrics.get("avg_total_time", 0) > 0:
search_pct = (
timing_metrics.get("avg_search_time", 0)
/ timing_metrics.get("avg_total_time", 1)
* 100
)
gen_pct = (
timing_metrics.get("avg_generation_time", 0)
/ timing_metrics.get("avg_total_time", 1)
* 100
)
print("\n📈 Time Distribution:")
print(f" Search: {search_pct:.1f}%")
print(f" Generation: {gen_pct:.1f}%")
def cleanup(self):
"""Cleanup resources"""
if self.searcher:
self.searcher.cleanup()
def main():
parser = argparse.ArgumentParser(description="Modular FinanceBench Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument("--dataset", default="data/financebench_merged.jsonl", help="Dataset path")
parser.add_argument(
"--stage",
choices=["2", "3", "4", "all"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument("--openai-api-key", help="OpenAI API key for generation evaluation")
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument(
"--llm-backend", choices=["openai", "hf", "vllm"], default="openai", help="LLM backend"
)
parser.add_argument("--model-name", default="Qwen3-8B", help="Model name for HF/vLLM")
args = parser.parse_args()
try:
# Check if baseline exists
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_financebench.py first to build the baseline")
exit(1)
if args.stage == "2" or args.stage == "all":
# Stage 2: Recall@3 evaluation
print("🚀 Starting Stage 2: Recall@3 evaluation")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
# Load FinanceBench queries for testing
print("📖 Loading FinanceBench dataset...")
queries = []
with open(args.dataset, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
queries.append(data["question"])
# Test with more queries for robust measurement
test_queries = queries[:2000]
print(f"🧪 Testing with {len(test_queries)} queries")
# Test with complexity 64
complexity = 64
recall = evaluator.evaluate_recall_at_3(test_queries, complexity)
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
evaluator.cleanup()
print("✅ Stage 2 completed!\n")
# Shared non-compact index path for Stage 3 and 4
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
complexity = args.complexity
if args.stage == "3" or args.stage == "all":
# Stage 3: Binary search for 90% recall complexity (using non-compact index for speed)
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
print(
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
)
# Create non-compact index for binary search (will be reused in Stage 4)
print("🏗️ Creating non-compact index for binary search...")
evaluator = FinanceBenchEvaluator(args.index)
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact index for binary search
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
# Load queries for testing
print("📖 Loading FinanceBench dataset...")
queries = []
with open(args.dataset, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
queries.append(data["question"])
# Use more queries for robust measurement
test_queries = queries[:200]
print(f"🧪 Testing with {len(test_queries)} queries")
# Binary search for 90% recall complexity (without recompute for speed)
target_recall = 0.9
min_complexity, max_complexity = 1, 32
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
print(f"Search range: {min_complexity} to {max_complexity}")
best_complexity = None
best_recall = 0.0
while min_complexity <= max_complexity:
mid_complexity = (min_complexity + max_complexity) // 2
print(
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
)
# Use recompute_embeddings=False on non-compact index for fast binary search
recall = binary_search_evaluator.evaluate_recall_at_3(
test_queries, mid_complexity, recompute_embeddings=False
)
print(
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
)
if recall >= target_recall:
best_complexity = mid_complexity
best_recall = recall
max_complexity = mid_complexity - 1
print(" ✅ Target reached! Searching for lower complexity...")
else:
min_complexity = mid_complexity + 1
print(" ❌ Below target. Searching for higher complexity...")
if best_complexity is not None:
print("\n🎯 Optimal complexity found!")
print(f" Complexity: {best_complexity}")
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
# Test a few complexities around the optimal one for verification
print("\n🔬 Verification test around optimal complexity:")
verification_complexities = [
max(1, best_complexity - 2),
max(1, best_complexity - 1),
best_complexity,
best_complexity + 1,
best_complexity + 2,
]
for complexity in verification_complexities:
if complexity <= 512: # reasonable upper bound
recall = binary_search_evaluator.evaluate_recall_at_3(
test_queries, complexity, recompute_embeddings=False
)
status = "" if recall >= target_recall else ""
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
# Now test the optimal complexity with compact index and recompute for comparison
print(
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
)
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
test_queries[:10], best_complexity, recompute_embeddings=True
)
print(
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
)
complexity = best_complexity
print(
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
)
compact_evaluator.cleanup()
else:
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
print("All tested complexities were below target.")
# Cleanup evaluators (keep non-compact index for Stage 4)
binary_search_evaluator.cleanup()
evaluator.cleanup()
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
if args.stage == "4" or args.stage == "all":
# Stage 4: Comprehensive evaluation with dual index comparison
print("🚀 Starting Stage 4: Comprehensive evaluation with dual index comparison")
# Use FinanceBench evaluator for QA evaluation
evaluator = FinanceBenchEvaluator(
args.index, args.openai_api_key if args.llm_backend == "openai" else None
)
print("📖 Loading FinanceBench dataset...")
data = evaluator.load_dataset(args.dataset)
# Step 1: Analyze current (compact) index
print("\n📏 Analyzing current index (compact, pruned)...")
compact_size_metrics = evaluator.analyze_index_sizes()
compact_size_metrics["index_type"] = "compact"
# Step 2: Use existing non-compact index or create if needed
from pathlib import Path
if Path(non_compact_index_path).exists():
print(
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
)
temp_evaluator = FinanceBenchEvaluator(non_compact_index_path)
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
non_compact_size_metrics["index_type"] = "non_compact"
else:
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
non_compact_index_path
)
# Step 3: Compare index sizes
print("\n📊 Index size comparison:")
print(
f" Compact index (current): {compact_size_metrics['total_with_embeddings']:.1f} MB"
)
print(
f" Non-compact index: {non_compact_size_metrics['total_with_embeddings']:.1f} MB"
)
print("\n📊 Index-only size comparison (.index file only):")
print(f" Compact index: {compact_size_metrics['index_only_mb']:.1f} MB")
print(f" Non-compact index: {non_compact_size_metrics['index_only_mb']:.1f} MB")
# Use index-only size for fair comparison (same as Enron emails)
storage_saving = (
(non_compact_size_metrics["index_only_mb"] - compact_size_metrics["index_only_mb"])
/ non_compact_size_metrics["index_only_mb"]
* 100
)
print(f" Storage saving by compact: {storage_saving:.1f}%")
# Step 4: Performance comparison between the two indexes
if complexity is None:
raise ValueError("Complexity is required for performance comparison")
print("\n⚡ Performance comparison between indexes...")
performance_metrics = evaluator.compare_index_performance(
non_compact_index_path, args.index, data[:10], complexity=complexity
)
# Step 5: Generation evaluation
test_samples = 20
print(f"\n🧪 Testing with first {test_samples} samples for generation analysis")
if args.llm_backend == "openai" and args.openai_api_key:
print("🔍🤖 Running OpenAI-based generation evaluation...")
evaluation_start = time.time()
timing_metrics = evaluator.evaluate_timing_breakdown(data[:test_samples])
evaluation_time = time.time() - evaluation_start
else:
print(
f"🔍🤖 Running {args.llm_backend} generation evaluation with {args.model_name}..."
)
try:
# Load LLM
if args.llm_backend == "hf":
tokenizer, model = load_hf_model(args.model_name)
def llm_func(prompt):
return generate_hf(tokenizer, model, prompt)
else: # vllm
llm, sampling_params = load_vllm_model(args.model_name)
def llm_func(prompt):
return generate_vllm(llm, sampling_params, prompt)
# Simple generation evaluation
queries = [item["question"] for item in data[:test_samples]]
gen_results = evaluate_rag(
evaluator.searcher,
llm_func,
queries,
domain="finance",
complexity=complexity,
)
timing_metrics = {
"total_questions": len(queries),
"avg_search_time": gen_results["avg_search_time"],
"avg_generation_time": gen_results["avg_generation_time"],
"results": gen_results["results"],
}
evaluation_time = time.time()
except Exception as e:
print(f"❌ Generation evaluation failed: {e}")
timing_metrics = {
"total_questions": 0,
"avg_search_time": 0,
"avg_generation_time": 0,
}
evaluation_time = 0
# Combine all metrics
combined_metrics = {
**timing_metrics,
"total_evaluation_time": evaluation_time,
"current_index": compact_size_metrics,
"non_compact_index": non_compact_size_metrics,
"performance_comparison": performance_metrics,
"storage_saving_percent": storage_saving,
}
# Print results
print("\n📊 Generation Results:")
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
# Save results if requested
if args.output:
print(f"\n💾 Saving results to {args.output}...")
with open(args.output, "w") as f:
json.dump(combined_metrics, f, indent=2, default=str)
print(f"✅ Results saved to {args.output}")
evaluator.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage == "all":
print("🎉 All evaluation stages completed successfully!")
print("\n📋 Summary:")
print(" Stage 2: ✅ Recall@3 evaluation completed")
print(" Stage 3: ✅ Optimal complexity found")
print(" Stage 4: ✅ Generation accuracy & timing evaluation completed")
print("\n🔧 Recommended next steps:")
print(" - Use optimal complexity for best speed/accuracy balance")
print(" - Review accuracy and timing breakdown for performance optimization")
print(" - Run full evaluation on complete dataset if needed")
# Clean up non-compact index after all stages complete
print("\n🧹 Cleaning up temporary non-compact index...")
from pathlib import Path
if Path(non_compact_index_path).exists():
temp_index_dir = Path(non_compact_index_path).parent
temp_index_name = Path(non_compact_index_path).name
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
temp_file.unlink()
print(f"✅ Cleaned up {non_compact_index_path}")
else:
print("📝 No temporary index to clean up")
except KeyboardInterrupt:
print("\n⚠️ Evaluation interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Stage {args.stage} failed: {e}")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,462 +0,0 @@
#!/usr/bin/env python3
"""
FinanceBench Complete Setup Script
Downloads all PDFs and builds full LEANN datastore
"""
import argparse
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from threading import Lock
import pymupdf
import requests
from leann import LeannBuilder, LeannSearcher
from tqdm import tqdm
class FinanceBenchSetup:
def __init__(self, data_dir: str = "data"):
self.base_dir = Path(__file__).parent # benchmarks/financebench/
self.data_dir = self.base_dir / data_dir
self.pdf_dir = self.data_dir / "pdfs"
self.dataset_file = self.data_dir / "financebench_merged.jsonl"
self.index_dir = self.data_dir / "index"
self.download_lock = Lock()
def download_dataset(self):
"""Download the main FinanceBench dataset"""
print("📊 Downloading FinanceBench dataset...")
self.data_dir.mkdir(parents=True, exist_ok=True)
if self.dataset_file.exists():
print(f"✅ Dataset already exists: {self.dataset_file}")
return
url = "https://huggingface.co/datasets/PatronusAI/financebench/raw/main/financebench_merged.jsonl"
response = requests.get(url, stream=True)
response.raise_for_status()
with open(self.dataset_file, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"✅ Dataset downloaded: {self.dataset_file}")
def get_pdf_list(self):
"""Get list of all PDF files from GitHub"""
print("📋 Fetching PDF list from GitHub...")
response = requests.get(
"https://api.github.com/repos/patronus-ai/financebench/contents/pdfs"
)
response.raise_for_status()
pdf_files = response.json()
print(f"Found {len(pdf_files)} PDF files")
return pdf_files
def download_single_pdf(self, pdf_info, position):
"""Download a single PDF file"""
pdf_name = pdf_info["name"]
pdf_path = self.pdf_dir / pdf_name
# Skip if already downloaded
if pdf_path.exists() and pdf_path.stat().st_size > 0:
return f"{pdf_name} (cached)"
try:
# Download PDF
response = requests.get(pdf_info["download_url"], timeout=60)
response.raise_for_status()
# Write to file
with self.download_lock:
with open(pdf_path, "wb") as f:
f.write(response.content)
return f"{pdf_name} ({len(response.content) // 1024}KB)"
except Exception as e:
return f"{pdf_name}: {e!s}"
def download_all_pdfs(self, max_workers: int = 5):
"""Download all PDF files with parallel processing"""
self.pdf_dir.mkdir(parents=True, exist_ok=True)
pdf_files = self.get_pdf_list()
print(f"📥 Downloading {len(pdf_files)} PDFs with {max_workers} workers...")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all download tasks
future_to_pdf = {
executor.submit(self.download_single_pdf, pdf_info, i): pdf_info["name"]
for i, pdf_info in enumerate(pdf_files)
}
# Process completed downloads with progress bar
with tqdm(total=len(pdf_files), desc="Downloading PDFs") as pbar:
for future in as_completed(future_to_pdf):
result = future.result()
pbar.set_postfix_str(result.split()[-1] if "" in result else "Error")
pbar.update(1)
# Verify downloads
downloaded_pdfs = list(self.pdf_dir.glob("*.pdf"))
print(f"✅ Successfully downloaded {len(downloaded_pdfs)}/{len(pdf_files)} PDFs")
# Show any failures
missing_pdfs = []
for pdf_info in pdf_files:
pdf_path = self.pdf_dir / pdf_info["name"]
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
missing_pdfs.append(pdf_info["name"])
if missing_pdfs:
print(f"⚠️ Failed to download {len(missing_pdfs)} PDFs:")
for pdf in missing_pdfs[:5]: # Show first 5
print(f" - {pdf}")
if len(missing_pdfs) > 5:
print(f" ... and {len(missing_pdfs) - 5} more")
def build_leann_index(
self,
backend: str = "hnsw",
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
):
"""Build LEANN index from all PDFs"""
print(f"🏗️ Building LEANN index with {backend} backend...")
# Check if we have PDFs
pdf_files = list(self.pdf_dir.glob("*.pdf"))
if not pdf_files:
raise RuntimeError("No PDF files found! Run download first.")
print(f"Found {len(pdf_files)} PDF files to process")
start_time = time.time()
# Initialize builder with standard compact configuration
builder = LeannBuilder(
backend_name=backend,
embedding_model=embedding_model,
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=True, # Enable recompute (no stored embeddings)
is_compact=True, # Enable compact storage (pruned)
num_threads=4,
)
# Process PDFs and extract text
total_chunks = 0
failed_pdfs = []
for pdf_path in tqdm(pdf_files, desc="Processing PDFs"):
try:
chunks = self.extract_pdf_text(pdf_path)
for chunk in chunks:
builder.add_text(chunk["text"], metadata=chunk["metadata"])
total_chunks += 1
except Exception as e:
print(f"❌ Failed to process {pdf_path.name}: {e}")
failed_pdfs.append(pdf_path.name)
continue
# Build index in index directory
self.index_dir.mkdir(parents=True, exist_ok=True)
index_path = self.index_dir / f"financebench_full_{backend}.leann"
print(f"🔨 Building index: {index_path}")
builder.build_index(str(index_path))
build_time = time.time() - start_time
print("✅ Index built successfully!")
print(f" 📁 Index path: {index_path}")
print(f" 📊 Total chunks: {total_chunks:,}")
print(f" 📄 Processed PDFs: {len(pdf_files) - len(failed_pdfs)}/{len(pdf_files)}")
print(f" ⏱️ Build time: {build_time:.1f}s")
if failed_pdfs:
print(f" ⚠️ Failed PDFs: {failed_pdfs}")
return str(index_path)
def build_faiss_flat_baseline(self, index_path: str, output_dir: str = "baseline"):
"""Build FAISS flat baseline using the same embeddings as LEANN index"""
print("🔨 Building FAISS Flat baseline...")
import os
import pickle
import numpy as np
from leann.api import compute_embeddings
from leann_backend_hnsw import faiss
os.makedirs(output_dir, exist_ok=True)
baseline_path = os.path.join(output_dir, "faiss_flat.index")
metadata_path = os.path.join(output_dir, "metadata.pkl")
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
print(f"✅ Baseline already exists at {baseline_path}")
return baseline_path
# Read metadata from the built index
meta_path = f"{index_path}.meta.json"
with open(meta_path) as f:
import json
meta = json.loads(f.read())
embedding_model = meta["embedding_model"]
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not os.path.isabs(passage_file):
index_dir = os.path.dirname(index_path)
passage_file = os.path.join(index_dir, os.path.basename(passage_file))
print(f"📊 Loading passages from {passage_file}...")
print(f"🤖 Using embedding model: {embedding_model}")
# Load all passages for baseline
passages = []
passage_ids = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
passages.append(data["text"])
passage_ids.append(data["id"])
print(f"📄 Loaded {len(passages)} passages")
# Compute embeddings using the same method as LEANN
print("🧮 Computing embeddings...")
embeddings = compute_embeddings(
passages,
embedding_model,
mode="sentence-transformers",
use_server=False,
)
print(f"📐 Embedding shape: {embeddings.shape}")
# Build FAISS flat index
print("🏗️ Building FAISS IndexFlatIP...")
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
# Add embeddings to flat index
embeddings_f32 = embeddings.astype(np.float32)
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
# Save index and metadata
faiss.write_index(index, baseline_path)
with open(metadata_path, "wb") as f:
pickle.dump(passage_ids, f)
print(f"✅ FAISS baseline saved to {baseline_path}")
print(f"✅ Metadata saved to {metadata_path}")
print(f"📊 Total vectors: {index.ntotal}")
return baseline_path
def extract_pdf_text(self, pdf_path: Path) -> list[dict]:
"""Extract and chunk text from a PDF file"""
chunks = []
doc = pymupdf.open(pdf_path)
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text() # type: ignore
if not text.strip():
continue
# Create metadata
metadata = {
"source_file": pdf_path.name,
"page_number": page_num + 1,
"document_type": "10K" if "10K" in pdf_path.name else "10Q",
"company": pdf_path.name.split("_")[0],
"doc_period": self.extract_year_from_filename(pdf_path.name),
}
# Use recursive character splitting like LangChain
if len(text.split()) > 500:
# Split by double newlines (paragraphs)
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
current_chunk = ""
for para in paragraphs:
# If adding this paragraph would make chunk too long, save current chunk
if current_chunk and len((current_chunk + " " + para).split()) > 300:
if current_chunk.strip():
chunks.append(
{
"text": current_chunk.strip(),
"metadata": {
**metadata,
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
},
}
)
current_chunk = para
else:
current_chunk = (current_chunk + " " + para).strip()
# Add the last chunk
if current_chunk.strip():
chunks.append(
{
"text": current_chunk.strip(),
"metadata": {
**metadata,
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
},
}
)
else:
# Page is short enough, use as single chunk
chunks.append(
{
"text": text.strip(),
"metadata": {**metadata, "chunk_id": f"page_{page_num + 1}"},
}
)
doc.close()
return chunks
def extract_year_from_filename(self, filename: str) -> str:
"""Extract year from PDF filename"""
# Try to find 4-digit year in filename
match = re.search(r"(\d{4})", filename)
return match.group(1) if match else "unknown"
def verify_setup(self, index_path: str):
"""Verify the setup by testing a simple query"""
print("🧪 Verifying setup with test query...")
try:
searcher = LeannSearcher(index_path)
# Test query
test_query = "What is the capital expenditure for 3M in 2018?"
results = searcher.search(test_query, top_k=3)
print(f"✅ Test query successful! Found {len(results)} results:")
for i, result in enumerate(results, 1):
company = result.metadata.get("company", "Unknown")
year = result.metadata.get("doc_period", "Unknown")
page = result.metadata.get("page_number", "Unknown")
print(f" {i}. {company} {year} (page {page}) - Score: {result.score:.3f}")
print(f" {result.text[:100]}...")
searcher.cleanup()
print("✅ Setup verification completed successfully!")
except Exception as e:
print(f"❌ Setup verification failed: {e}")
raise
def main():
parser = argparse.ArgumentParser(description="Setup FinanceBench with full PDF datastore")
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument(
"--backend", choices=["hnsw", "diskann"], default="hnsw", help="LEANN backend"
)
parser.add_argument(
"--embedding-model",
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model",
)
parser.add_argument("--max-workers", type=int, default=5, help="Parallel download workers")
parser.add_argument("--skip-download", action="store_true", help="Skip PDF download")
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
parser.add_argument(
"--build-baseline-only",
action="store_true",
help="Only build FAISS baseline from existing index",
)
args = parser.parse_args()
print("🏦 FinanceBench Complete Setup")
print("=" * 50)
setup = FinanceBenchSetup(args.data_dir)
try:
if args.build_baseline_only:
# Only build baseline from existing index
index_path = setup.index_dir / f"financebench_full_{args.backend}"
index_file = f"{index_path}.index"
meta_file = f"{index_path}.leann.meta.json"
if not os.path.exists(index_file) or not os.path.exists(meta_file):
print("❌ Index files not found:")
print(f" Index: {index_file}")
print(f" Meta: {meta_file}")
print("💡 Run without --build-baseline-only to build the index first")
exit(1)
print(f"🔨 Building baseline from existing index: {index_path}")
baseline_path = setup.build_faiss_flat_baseline(str(index_path))
print(f"✅ Baseline built at {baseline_path}")
return
# Step 1: Download dataset
setup.download_dataset()
# Step 2: Download PDFs
if not args.skip_download:
setup.download_all_pdfs(max_workers=args.max_workers)
else:
print("⏭️ Skipping PDF download")
# Step 3: Build LEANN index
if not args.skip_build:
index_path = setup.build_leann_index(
backend=args.backend, embedding_model=args.embedding_model
)
# Step 4: Build FAISS flat baseline
print("\n🔨 Building FAISS flat baseline...")
baseline_path = setup.build_faiss_flat_baseline(index_path)
print(f"✅ Baseline built at {baseline_path}")
# Step 5: Verify setup
setup.verify_setup(index_path)
else:
print("⏭️ Skipping index building")
print("\n🎉 FinanceBench setup completed!")
print(f"📁 Data directory: {setup.data_dir.absolute()}")
print("\nNext steps:")
print(
"1. Run evaluation: python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann"
)
print(
"2. Or test manually: python -c \"from leann import LeannSearcher; s = LeannSearcher('data/index/financebench_full_hnsw.leann'); print(s.search('3M capital expenditure 2018'))\""
)
except KeyboardInterrupt:
print("\n⚠️ Setup interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Setup failed: {e}")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,214 +0,0 @@
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.9"
# dependencies = [
# "faiss-cpu",
# "numpy",
# "sentence-transformers",
# "torch",
# "tqdm",
# ]
# ///
"""
Independent recall verification script using standard FAISS.
Creates two indexes (HNSW and Flat) and compares recall@3 at different complexities.
"""
import json
import time
from pathlib import Path
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
def compute_embeddings_direct(chunks: list[str], model_name: str) -> np.ndarray:
"""
Direct embedding computation using sentence-transformers.
Copied logic to avoid dependency issues.
"""
print(f"Loading model: {model_name}")
model = SentenceTransformer(model_name)
print(f"Computing embeddings for {len(chunks)} chunks...")
embeddings = model.encode(
chunks,
show_progress_bar=True,
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=False,
)
return embeddings.astype(np.float32)
def load_financebench_queries(dataset_path: str, max_queries: int = 200) -> list[str]:
"""Load FinanceBench queries from dataset"""
queries = []
with open(dataset_path, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
queries.append(data["question"])
if len(queries) >= max_queries:
break
return queries
def load_passages_from_leann_index(index_path: str) -> tuple[list[str], list[str]]:
"""Load passages from LEANN index structure"""
meta_path = f"{index_path}.meta.json"
with open(meta_path) as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
index_dir = Path(index_path).parent
passage_file = index_dir / Path(passage_file).name
print(f"Loading passages from {passage_file}")
passages = []
passage_ids = []
with open(passage_file, encoding="utf-8") as f:
for line in tqdm(f, desc="Loading passages"):
if line.strip():
data = json.loads(line)
passages.append(data["text"])
passage_ids.append(data["id"])
print(f"Loaded {len(passages)} passages")
return passages, passage_ids
def build_faiss_indexes(embeddings: np.ndarray) -> tuple[faiss.Index, faiss.Index]:
"""Build FAISS indexes: Flat (ground truth) and HNSW"""
dimension = embeddings.shape[1]
# Build Flat index (ground truth)
print("Building FAISS IndexFlatIP (ground truth)...")
flat_index = faiss.IndexFlatIP(dimension)
flat_index.add(embeddings)
# Build HNSW index
print("Building FAISS IndexHNSWFlat...")
M = 32 # Same as LEANN default
hnsw_index = faiss.IndexHNSWFlat(dimension, M, faiss.METRIC_INNER_PRODUCT)
hnsw_index.hnsw.efConstruction = 200 # Same as LEANN default
hnsw_index.add(embeddings)
print(f"Built indexes with {flat_index.ntotal} vectors, dimension {dimension}")
return flat_index, hnsw_index
def evaluate_recall_at_k(
query_embeddings: np.ndarray,
flat_index: faiss.Index,
hnsw_index: faiss.Index,
passage_ids: list[str],
k: int = 3,
ef_search: int = 64,
) -> float:
"""Evaluate recall@k comparing HNSW vs Flat"""
# Set search parameters for HNSW
hnsw_index.hnsw.efSearch = ef_search
total_recall = 0.0
num_queries = query_embeddings.shape[0]
for i in range(num_queries):
query = query_embeddings[i : i + 1] # Keep 2D shape
# Get ground truth from Flat index (standard FAISS API)
flat_distances, flat_indices = flat_index.search(query, k)
ground_truth_ids = {passage_ids[idx] for idx in flat_indices[0]}
# Get results from HNSW index (standard FAISS API)
hnsw_distances, hnsw_indices = hnsw_index.search(query, k)
hnsw_ids = {passage_ids[idx] for idx in hnsw_indices[0]}
# Calculate recall
intersection = ground_truth_ids.intersection(hnsw_ids)
recall = len(intersection) / k
total_recall += recall
if i < 3: # Show first few examples
print(f" Query {i + 1}: Recall@{k} = {recall:.3f}")
print(f" Flat: {list(ground_truth_ids)}")
print(f" HNSW: {list(hnsw_ids)}")
print(f" Intersection: {list(intersection)}")
avg_recall = total_recall / num_queries
return avg_recall
def main():
# Configuration
dataset_path = "data/financebench_merged.jsonl"
index_path = "data/index/financebench_full_hnsw.leann"
embedding_model = "sentence-transformers/all-mpnet-base-v2"
print("🔍 FAISS Recall Verification")
print("=" * 50)
# Check if files exist
if not Path(dataset_path).exists():
print(f"❌ Dataset not found: {dataset_path}")
return
if not Path(f"{index_path}.meta.json").exists():
print(f"❌ Index metadata not found: {index_path}.meta.json")
return
# Load data
print("📖 Loading FinanceBench queries...")
queries = load_financebench_queries(dataset_path, max_queries=50)
print(f"Loaded {len(queries)} queries")
print("📄 Loading passages from LEANN index...")
passages, passage_ids = load_passages_from_leann_index(index_path)
# Compute embeddings
print("🧮 Computing passage embeddings...")
passage_embeddings = compute_embeddings_direct(passages, embedding_model)
print("🧮 Computing query embeddings...")
query_embeddings = compute_embeddings_direct(queries, embedding_model)
# Build FAISS indexes
print("🏗️ Building FAISS indexes...")
flat_index, hnsw_index = build_faiss_indexes(passage_embeddings)
# Test different efSearch values (equivalent to LEANN complexity)
print("\n📊 Evaluating Recall@3 at different efSearch values...")
ef_search_values = [16, 32, 64, 128, 256]
for ef_search in ef_search_values:
print(f"\n🧪 Testing efSearch = {ef_search}")
start_time = time.time()
recall = evaluate_recall_at_k(
query_embeddings, flat_index, hnsw_index, passage_ids, k=3, ef_search=ef_search
)
elapsed = time.time() - start_time
print(
f"📈 efSearch {ef_search}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%) in {elapsed:.2f}s"
)
print("\n✅ Verification completed!")
print("\n📋 Summary:")
print(" - Built independent FAISS Flat and HNSW indexes")
print(" - Compared recall@3 at different efSearch values")
print(" - Used same embedding model as LEANN")
print(" - This validates LEANN's recall measurements")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,114 @@
import argparse
import re
import sys
import time
from pathlib import Path
from statistics import mean
from leann.chat import get_llm
def parse_prompts_from_file(file_path: str) -> list[str]:
"""
Parse a prompt dump file into individual prompt strings.
Splits by lines that look like: "PROMPT #<n>:".
Keeps the content from each marker up to the next marker (or EOF).
"""
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
matches = list(re.finditer(r"^PROMPT\s+#\d+:\s*$", text, flags=re.MULTILINE))
if not matches:
# Fallback: try a more permissive pattern
matches = list(
re.finditer(r"^=+\nPROMPT\s+#\d+:\n=+\s*$", text, flags=re.MULTILINE)
)
prompts: list[str] = []
if not matches:
# No explicit markers; treat the whole file as a single prompt
return [text]
for i, m in enumerate(matches):
start = m.end()
end = matches[i + 1].start() if i + 1 < len(matches) else len(text)
block = text[start:end].strip()
# Reattach the marker line content above the block for full context
header_line_start = text.rfind("\n", 0, m.start()) + 1
header = text[header_line_start : m.end()].strip()
prompts.append(f"{header}\n{block}".strip())
return prompts
def main():
parser = argparse.ArgumentParser(
description=(
"Iterate prompts in a dump file, time generations, print outputs, and report last-10 average time."
)
)
parser.add_argument(
"--path",
default="benchmarks/data/prompts_g5/prompt_dump_nq_hnsw.txt",
help="Path to the prompt dump file",
)
parser.add_argument(
"--type",
default="ollama",
choices=["hf", "openai", "ollama", "gemini", "simulated"],
help="LLM backend type",
)
parser.add_argument(
"--model",
default="Qwen/Qwen3-4B",
help="Model identifier (depends on backend)",
)
parser.add_argument(
"--max_tokens",
type=int,
default=512,
help="Max new tokens to generate per prompt",
)
args = parser.parse_args()
llm_config = {"type": args.type, "model": args.model}
chat = get_llm(llm_config)
prompts = parse_prompts_from_file(args.path)
print(f"Found {len(prompts)} prompts in {args.path}")
times: list[float] = []
for idx, prompt in enumerate(prompts, start=1):
print("\n" + "=" * 80)
print(f"PROMPT {idx}/{len(prompts)}")
print("-" * 80)
start = time.perf_counter()
try:
output = chat.ask(prompt, max_tokens=args.max_tokens)
except Exception as e:
output = f"<error: {e}>"
elapsed = time.perf_counter() - start
times.append(elapsed)
print(f"Time: {elapsed:.3f}s")
print("-" * 80)
print(output)
print("=" * 80)
if times:
window = times[-10:] if len(times) >= 10 else times
avg_last_10 = mean(window)
print(
f"\nAverage time over last {len(window)} prompts: {avg_last_10:.3f}s"
)
else:
print("No prompts processed.")
if __name__ == "__main__":
main()

View File

@@ -1 +0,0 @@
data/

View File

@@ -1,199 +0,0 @@
# LAION Multimodal Benchmark
A multimodal benchmark for evaluating image retrieval and generation performance using LEANN with CLIP embeddings and Qwen2.5-VL for multimodal generation on LAION dataset subset.
## Overview
This benchmark evaluates:
- **Image retrieval timing** using caption-based queries
- **Recall@K performance** for image search
- **Complexity analysis** across different search parameters
- **Index size and storage efficiency**
- **Multimodal generation** with Qwen2.5-VL for image understanding and description
## Dataset Configuration
- **Dataset**: LAION-400M subset (10,000 images)
- **Embeddings**: Pre-computed CLIP ViT-B/32 (512 dimensions)
- **Queries**: 200 random captions from the dataset
- **Ground Truth**: Self-recall (query caption → original image)
## Quick Start
### 1. Setup the benchmark
```bash
cd benchmarks/laion
python setup_laion.py --num-samples 10000 --num-queries 200
```
This will:
- Create dummy LAION data (10K samples)
- Generate CLIP embeddings (512-dim)
- Build LEANN index with HNSW backend
- Create 200 evaluation queries
### 2. Run evaluation
```bash
# Run all evaluation stages
python evaluate_laion.py --index data/laion_index.leann
# Run specific stages
python evaluate_laion.py --index data/laion_index.leann --stage 2 # Recall evaluation
python evaluate_laion.py --index data/laion_index.leann --stage 3 # Complexity analysis
python evaluate_laion.py --index data/laion_index.leann --stage 4 # Index comparison
python evaluate_laion.py --index data/laion_index.leann --stage 5 # Multimodal generation
# Multimodal generation with Qwen2.5-VL
python evaluate_laion.py --index data/laion_index.leann --stage 5 --model-name Qwen/Qwen2.5-VL-7B-Instruct
```
### 3. Save results
```bash
python evaluate_laion.py --index data/laion_index.leann --output results.json
```
## Configuration Options
### Setup Options
```bash
python setup_laion.py \
--num-samples 10000 \
--num-queries 200 \
--index-path data/laion_index.leann \
--backend hnsw
```
### Evaluation Options
```bash
python evaluate_laion.py \
--index data/laion_index.leann \
--queries data/evaluation_queries.jsonl \
--complexity 64 \
--top-k 3 \
--num-samples 100 \
--stage all
```
## Evaluation Stages
### Stage 2: Recall Evaluation
- Evaluates Recall@3 for multimodal retrieval
- Compares LEANN vs FAISS baseline performance
- Self-recall: query caption should retrieve original image
### Stage 3: Complexity Analysis
- Binary search for optimal complexity (90% recall target)
- Tests performance across different complexity levels
- Analyzes speed vs. accuracy tradeoffs
### Stage 4: Index Comparison
- Compares compact vs non-compact index sizes
- Measures search performance differences
- Reports storage efficiency and speed ratios
### Stage 5: Multimodal Generation
- Uses Qwen2.5-VL for image understanding and description
- Retrieval-Augmented Generation (RAG) with multimodal context
- Measures both search and generation timing
## Output Metrics
### Timing Metrics
- Average/median/min/max search time
- Standard deviation
- Searches per second
- Latency in milliseconds
### Recall Metrics
- Recall@3 percentage for image retrieval
- Number of queries with ground truth
### Index Metrics
- Total index size (MB)
- Component breakdown (index, passages, metadata)
- Storage savings (compact vs non-compact)
- Backend and embedding model info
### Generation Metrics (Stage 5)
- Average search time per query
- Average generation time per query
- Time distribution (search vs generation)
- Sample multimodal responses
- Model: Qwen2.5-VL performance
## Benchmark Results
### LEANN-RAG Performance (CLIP ViT-L/14 + Qwen2.5-VL)
**Stage 3: Optimal Complexity Analysis**
- **Optimal Complexity**: 85 (achieving 90% Recall@3)
- **Binary Search Range**: 1-128
- **Target Recall**: 90%
- **Index Type**: Non-compact (for fast binary search)
**Stage 5: Multimodal Generation Performance (Qwen2.5-VL)**
- **Total Queries**: 20
- **Average Search Time**: 1.200s per query
- **Average Generation Time**: 6.558s per query
- **Time Distribution**: Search 15.5%, Generation 84.5%
- **LLM Backend**: HuggingFace transformers
- **Model**: Qwen/Qwen2.5-VL-7B-Instruct
- **Optimal Complexity**: 85
**System Performance:**
- **Index Size**: ~10,000 image embeddings from LAION subset
- **Embedding Model**: CLIP ViT-L/14 (768 dimensions)
- **Backend**: HNSW with cosine distance
### Example Results
```
🎯 LAION MULTIMODAL BENCHMARK RESULTS
============================================================
📊 Multimodal Generation Results:
Total Queries: 20
Avg Search Time: 1.200s
Avg Generation Time: 6.558s
Time Distribution: Search 15.5%, Generation 84.5%
LLM Backend: HuggingFace transformers
Model: Qwen/Qwen2.5-VL-7B-Instruct
⚙️ Optimal Complexity Analysis:
Target Recall: 90%
Optimal Complexity: 85
Binary Search Range: 1-128
Non-compact Index (fast search, no recompute)
🚀 Performance Summary:
Multimodal RAG: 7.758s total per query
Search: 15.5% of total time
Generation: 84.5% of total time
```
## Directory Structure
```
benchmarks/laion/
├── setup_laion.py # Setup script
├── evaluate_laion.py # Evaluation script
├── README.md # This file
└── data/ # Generated data
├── laion_images/ # Image files (placeholder)
├── laion_metadata.jsonl # Image metadata
├── laion_passages.jsonl # LEANN passages
├── laion_embeddings.npy # CLIP embeddings
├── evaluation_queries.jsonl # Evaluation queries
└── laion_index.leann/ # LEANN index files
```
## Notes
- Current implementation uses dummy data for demonstration
- For real LAION data, implement actual download logic in `setup_laion.py`
- CLIP embeddings are randomly generated - replace with real CLIP model for production
- Adjust `num_samples` and `num_queries` based on available resources
- Consider using `--num-samples` during evaluation for faster testing

View File

@@ -1,725 +0,0 @@
"""
LAION Multimodal Benchmark Evaluation Script - Modular Recall-based Evaluation
"""
import argparse
import json
import logging
import os
import pickle
import time
from pathlib import Path
import numpy as np
from leann import LeannSearcher
from leann_backend_hnsw import faiss
from sentence_transformers import SentenceTransformer
from ..llm_utils import evaluate_multimodal_rag, load_qwen_vl_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS baseline for multimodal retrieval)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
# Load FAISS flat baseline (image embeddings)
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.image_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} image vectors")
# Load sentence-transformers CLIP for text embedding (ViT-L/14)
self.st_clip = SentenceTransformer("clip-ViT-L-14")
def evaluate_recall_at_3(
self, captions: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 for multimodal retrieval: caption queries -> image results"""
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
num_queries = len(captions)
for i, caption in enumerate(captions):
# Get ground truth: search with FAISS flat using caption text embedding
# Generate CLIP text embedding for caption via sentence-transformers (normalized)
query_embedding = self.st_clip.encode(
[caption], convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
).astype(np.float32)
# Search FAISS flat for ground truth using LEANN's modified faiss API
n = query_embedding.shape[0] # Number of queries
k = 3 # Number of nearest neighbors
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(query_embedding),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
# Extract the results (image IDs from FAISS)
baseline_ids = {self.image_ids[idx] for idx in labels[0]}
# Search with LEANN at specified complexity (using caption as text query)
test_results = self.searcher.search(
caption,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {result.id for result in test_results}
# Calculate recall@3 = |intersection| / |ground_truth|
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0 # Ground truth size is 3
total_recall += recall
if i < 3: # Show first few examples
print(f" Query {i + 1}: '{caption[:50]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS ground truth: {list(baseline_ids)}")
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
print(f" Intersection: {list(intersection)}")
avg_recall = total_recall / num_queries
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
return avg_recall
def cleanup(self):
"""Cleanup resources"""
if hasattr(self, "searcher"):
self.searcher.cleanup()
class LAIONEvaluator:
def __init__(self, index_path: str):
self.index_path = index_path
self.searcher = LeannSearcher(index_path)
def load_queries(self, queries_file: str) -> list[str]:
"""Load caption queries from evaluation file"""
captions = []
with open(queries_file, encoding="utf-8") as f:
for line in f:
if line.strip():
query_data = json.loads(line)
captions.append(query_data["query"])
print(f"📊 Loaded {len(captions)} caption queries")
return captions
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes, emphasizing .index only (exclude passages)."""
print("📏 Analyzing index sizes (.index only)...")
# Get all index-related files
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem # Remove .leann extension
sizes: dict[str, float] = {}
# Core index files
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
# Core index size (.index only)
index_mb = index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
sizes["index_only_mb"] = index_mb
# Other files for reference (not counted in index_only_mb)
sizes["metadata_mb"] = (
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
)
sizes["passages_text_mb"] = (
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
)
sizes["passages_index_mb"] = (
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
)
print(f" 📁 .index size: {index_mb:.1f} MB")
if sizes["metadata_mb"]:
print(f" 🧾 metadata: {sizes['metadata_mb']:.3f} MB")
if sizes["passages_text_mb"] or sizes["passages_index_mb"]:
print(
f" (passages excluded) text: {sizes['passages_text_mb']:.1f} MB, idx: {sizes['passages_index_mb']:.1f} MB"
)
return sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison purposes"""
print("🏗️ Building non-compact index from existing passages...")
# Load existing passages from current index
from leann import LeannBuilder
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path) as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
print(f"📄 Loading passages from {passage_file}...")
# Load CLIP embeddings
embeddings_file = current_index_dir / "clip_image_embeddings.npy"
embeddings = np.load(embeddings_file)
print(f"📐 Loaded embeddings shape: {embeddings.shape}")
# Build non-compact index with same passages and embeddings
builder = LeannBuilder(
backend_name="hnsw",
# Use CLIP text encoder (ViT-L/14) to match image embeddings (768-dim)
embedding_model="clip-ViT-L-14",
embedding_mode="sentence-transformers",
is_recompute=False, # Disable recompute (store embeddings)
is_compact=False, # Disable compact storage
distance_metric="cosine",
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact", "distance_metric"]
},
)
# Prepare ids and add passages
ids: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
ids.append(str(data["id"]))
# Ensure metadata contains the id used by the vector index
metadata = {**data.get("metadata", {}), "id": data["id"]}
builder.add_text(text=data["text"], metadata=metadata)
if len(ids) != embeddings.shape[0]:
raise ValueError(
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
)
# Persist a pickle for build_index_from_embeddings
pkl_path = current_index_dir / "clip_image_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings.astype(np.float32)), pf)
print(
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
)
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
# Analyze the non-compact index size
temp_evaluator = LAIONEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_captions: list, complexity: int
) -> dict:
"""Compare performance between non-compact and compact indexes"""
print("⚡ Comparing search performance between indexes...")
# Test queries
test_queries = test_captions[:5]
results = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
}
# Test non-compact index (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for caption in test_queries:
start_time = time.time()
_ = non_compact_searcher.search(
caption, top_k=3, complexity=complexity, recompute_embeddings=False
)
search_time = time.time() - start_time
results["non_compact"]["search_times"].append(search_time)
# Test compact index (with recompute)
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for caption in test_queries:
start_time = time.time()
_ = compact_searcher.search(
caption, top_k=3, complexity=complexity, recompute_embeddings=True
)
search_time = time.time() - start_time
results["compact"]["search_times"].append(search_time)
# Calculate averages
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
# Performance ratio
if results["avg_search_times"]["compact"] > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = float("inf")
print(
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
)
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
# Cleanup
non_compact_searcher.cleanup()
compact_searcher.cleanup()
return results
def _print_results(self, timing_metrics: dict):
"""Print evaluation results"""
print("\n🎯 LAION MULTIMODAL BENCHMARK RESULTS")
print("=" * 60)
# Index comparison analysis (prefer .index-only view if present)
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
current = timing_metrics["current_index"]
non_compact = timing_metrics["non_compact_index"]
if "index_only_mb" in current and "index_only_mb" in non_compact:
print("\n📏 Index Comparison Analysis (.index only):")
print(f" Compact index (current): {current.get('index_only_mb', 0):.1f} MB")
print(f" Non-compact index: {non_compact.get('index_only_mb', 0):.1f} MB")
print(
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
)
# Show excluded components for reference if available
if any(
k in non_compact
for k in ("passages_text_mb", "passages_index_mb", "metadata_mb")
):
print(" (passages excluded in totals, shown for reference):")
print(
f" - Passages text: {non_compact.get('passages_text_mb', 0):.1f} MB, "
f"Passages index: {non_compact.get('passages_index_mb', 0):.1f} MB, "
f"Metadata: {non_compact.get('metadata_mb', 0):.3f} MB"
)
else:
# Fallback to legacy totals if running with older metrics
print("\n📏 Index Comparison Analysis:")
print(
f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
)
print(" Component breakdown (non-compact):")
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
# Performance comparison
if "performance_comparison" in timing_metrics:
perf = timing_metrics["performance_comparison"]
print("\n⚡ Performance Comparison:")
print(
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
)
print(
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
)
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
# Legacy single index analysis (fallback)
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
print("\n📏 Index Size Analysis:")
print(
f" Index with embeddings: {timing_metrics.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Estimated pruned index: {timing_metrics.get('total_without_embeddings', 0):.1f} MB"
)
print(f" Compression ratio: {timing_metrics.get('compression_ratio', 0):.2f}x")
def cleanup(self):
"""Cleanup resources"""
if self.searcher:
self.searcher.cleanup()
def main():
parser = argparse.ArgumentParser(description="LAION Multimodal Benchmark Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument(
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "5", "all"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument(
"--llm-backend",
choices=["hf"],
default="hf",
help="LLM backend (Qwen2.5-VL only supports HF)",
)
parser.add_argument(
"--model-name", default="Qwen/Qwen2.5-VL-7B-Instruct", help="Multimodal model name"
)
args = parser.parse_args()
try:
# Check if baseline exists
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_laion.py first to build the baseline")
exit(1)
if args.stage == "2" or args.stage == "all":
# Stage 2: Recall@3 evaluation
print("🚀 Starting Stage 2: Recall@3 evaluation for multimodal retrieval")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
# Load caption queries for testing
laion_evaluator = LAIONEvaluator(args.index)
captions = laion_evaluator.load_queries(args.queries)
# Test with queries for robust measurement
test_captions = captions[:100] # Use subset for speed
print(f"🧪 Testing with {len(test_captions)} caption queries")
# Test with complexity 64
complexity = 64
recall = evaluator.evaluate_recall_at_3(test_captions, complexity)
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
evaluator.cleanup()
print("✅ Stage 2 completed!\n")
# Shared non-compact index path for Stage 3 and 4
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
complexity = args.complexity
if args.stage == "3" or args.stage == "all":
# Stage 3: Binary search for 90% recall complexity
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
print(
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
)
# Create non-compact index for binary search
print("🏗️ Creating non-compact index for binary search...")
evaluator = LAIONEvaluator(args.index)
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact index for binary search
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
# Load caption queries for testing
captions = evaluator.load_queries(args.queries)
# Use subset for robust measurement
test_captions = captions[:50] # Smaller subset for binary search speed
print(f"🧪 Testing with {len(test_captions)} caption queries")
# Binary search for 90% recall complexity
target_recall = 0.9
min_complexity, max_complexity = 1, 128
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
print(f"Search range: {min_complexity} to {max_complexity}")
best_complexity = None
best_recall = 0.0
while min_complexity <= max_complexity:
mid_complexity = (min_complexity + max_complexity) // 2
print(
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
)
# Use recompute_embeddings=False on non-compact index for fast binary search
recall = binary_search_evaluator.evaluate_recall_at_3(
test_captions, mid_complexity, recompute_embeddings=False
)
print(
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
)
if recall >= target_recall:
best_complexity = mid_complexity
best_recall = recall
max_complexity = mid_complexity - 1
print(" ✅ Target reached! Searching for lower complexity...")
else:
min_complexity = mid_complexity + 1
print(" ❌ Below target. Searching for higher complexity...")
if best_complexity is not None:
print("\n🎯 Optimal complexity found!")
print(f" Complexity: {best_complexity}")
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
# Test a few complexities around the optimal one for verification
print("\n🔬 Verification test around optimal complexity:")
verification_complexities = [
max(1, best_complexity - 2),
max(1, best_complexity - 1),
best_complexity,
best_complexity + 1,
best_complexity + 2,
]
for complexity in verification_complexities:
if complexity <= 512: # reasonable upper bound
recall = binary_search_evaluator.evaluate_recall_at_3(
test_captions, complexity, recompute_embeddings=False
)
status = "" if recall >= target_recall else ""
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
# Now test the optimal complexity with compact index and recompute for comparison
print(
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
)
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
test_captions[:10], best_complexity, recompute_embeddings=True
)
print(
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
)
complexity = best_complexity
print(
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
)
compact_evaluator.cleanup()
else:
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
print("All tested complexities were below target.")
# Cleanup evaluators (keep non-compact index for Stage 4)
binary_search_evaluator.cleanup()
evaluator.cleanup()
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
if args.stage == "4" or args.stage == "all":
# Stage 4: Index comparison (without LLM generation)
print("🚀 Starting Stage 4: Index comparison analysis")
# Use LAION evaluator for index comparison
evaluator = LAIONEvaluator(args.index)
# Load caption queries
captions = evaluator.load_queries(args.queries)
# Step 1: Analyze current (compact) index
print("\n📏 Analyzing current index (compact, pruned)...")
compact_size_metrics = evaluator.analyze_index_sizes()
compact_size_metrics["index_type"] = "compact"
# Step 2: Use existing non-compact index or create if needed
if Path(non_compact_index_path).exists():
print(
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
)
temp_evaluator = LAIONEvaluator(non_compact_index_path)
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
non_compact_size_metrics["index_type"] = "non_compact"
else:
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
non_compact_index_path
)
# Step 3: Compare index sizes (.index only)
print("\n📊 Index size comparison (.index only):")
print(
f" Compact index (current): {compact_size_metrics.get('index_only_mb', 0):.1f} MB"
)
print(f" Non-compact index: {non_compact_size_metrics.get('index_only_mb', 0):.1f} MB")
storage_saving = 0.0
if non_compact_size_metrics.get("index_only_mb", 0) > 0:
storage_saving = (
(
non_compact_size_metrics.get("index_only_mb", 0)
- compact_size_metrics.get("index_only_mb", 0)
)
/ non_compact_size_metrics.get("index_only_mb", 1)
* 100
)
print(f" Storage saving by compact: {storage_saving:.1f}%")
# Step 4: Performance comparison between the two indexes
if complexity is None:
raise ValueError("Complexity is required for index comparison")
print("\n⚡ Performance comparison between indexes...")
performance_metrics = evaluator.compare_index_performance(
non_compact_index_path, args.index, captions[:10], complexity=complexity
)
# Combine all metrics
combined_metrics = {
"current_index": compact_size_metrics,
"non_compact_index": non_compact_size_metrics,
"performance_comparison": performance_metrics,
"storage_saving_percent": storage_saving,
}
# Print comprehensive results
evaluator._print_results(combined_metrics)
# Save results if requested
if args.output:
print(f"\n💾 Saving results to {args.output}...")
with open(args.output, "w") as f:
json.dump(combined_metrics, f, indent=2, default=str)
print(f"✅ Results saved to {args.output}")
evaluator.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage in ("5", "all"):
print("🚀 Starting Stage 5: Multimodal generation with Qwen2.5-VL")
evaluator = LAIONEvaluator(args.index)
captions = evaluator.load_queries(args.queries)
test_captions = captions[: min(20, len(captions))] # Use subset for generation
print(f"🧪 Testing multimodal generation with {len(test_captions)} queries")
# Load Qwen2.5-VL model
try:
print("Loading Qwen2.5-VL model...")
processor, model = load_qwen_vl_model(args.model_name)
# Run multimodal generation evaluation
complexity = args.complexity or 64
gen_results = evaluate_multimodal_rag(
evaluator.searcher,
test_captions,
processor=processor,
model=model,
complexity=complexity,
)
print("\n📊 Multimodal Generation Results:")
print(f" Total Queries: {len(test_captions)}")
print(f" Avg Search Time: {gen_results['avg_search_time']:.3f}s")
print(f" Avg Generation Time: {gen_results['avg_generation_time']:.3f}s")
total_time = gen_results["avg_search_time"] + gen_results["avg_generation_time"]
search_pct = (gen_results["avg_search_time"] / total_time) * 100
gen_pct = (gen_results["avg_generation_time"] / total_time) * 100
print(f" Time Distribution: Search {search_pct:.1f}%, Generation {gen_pct:.1f}%")
print(" LLM Backend: HuggingFace transformers")
print(f" Model: {args.model_name}")
# Show sample results
print("\n📝 Sample Multimodal Generations:")
for i, response in enumerate(gen_results["results"][:3]):
# Handle both string and dict formats for captions
if isinstance(test_captions[i], dict):
caption_text = test_captions[i].get("query", str(test_captions[i]))
else:
caption_text = str(test_captions[i])
print(f" Query {i + 1}: {caption_text[:60]}...")
print(f" Response {i + 1}: {response[:100]}...")
print()
except Exception as e:
print(f"❌ Multimodal generation evaluation failed: {e}")
print("💡 Make sure transformers and Qwen2.5-VL are installed")
import traceback
traceback.print_exc()
evaluator.cleanup()
print("✅ Stage 5 completed!\n")
if args.stage == "all":
print("🎉 All evaluation stages completed successfully!")
print("\n📋 Summary:")
print(" Stage 2: ✅ Multimodal Recall@3 evaluation completed")
print(" Stage 3: ✅ Optimal complexity found")
print(" Stage 4: ✅ Index comparison analysis completed")
print(" Stage 5: ✅ Multimodal generation evaluation completed")
print("\n🔧 Recommended next steps:")
print(" - Use optimal complexity for best speed/accuracy balance")
print(" - Review index comparison for storage vs performance tradeoffs")
# Clean up non-compact index after all stages complete
print("\n🧹 Cleaning up temporary non-compact index...")
if Path(non_compact_index_path).exists():
temp_index_dir = Path(non_compact_index_path).parent
temp_index_name = Path(non_compact_index_path).name
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
temp_file.unlink()
print(f"✅ Cleaned up {non_compact_index_path}")
else:
print("📝 No temporary index to clean up")
except KeyboardInterrupt:
print("\n⚠️ Evaluation interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Stage {args.stage} failed: {e}")
import traceback
traceback.print_exc()
exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,576 +0,0 @@
"""
LAION Multimodal Benchmark Setup Script
Downloads LAION subset and builds LEANN index with sentence embeddings
"""
import argparse
import asyncio
import io
import json
import os
import pickle
import time
from pathlib import Path
import aiohttp
import numpy as np
from datasets import load_dataset
from leann import LeannBuilder
from PIL import Image
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
class LAIONSetup:
def __init__(self, data_dir: str = "data"):
self.data_dir = Path(data_dir)
self.images_dir = self.data_dir / "laion_images"
self.metadata_file = self.data_dir / "laion_metadata.jsonl"
# Create directories
self.data_dir.mkdir(exist_ok=True)
self.images_dir.mkdir(exist_ok=True)
async def download_single_image(self, session, sample_data, semaphore, progress_bar):
"""Download a single image asynchronously"""
async with semaphore: # Limit concurrent downloads
try:
image_url = sample_data["url"]
image_path = sample_data["image_path"]
# Skip if already exists
if os.path.exists(image_path):
progress_bar.update(1)
return sample_data
async with session.get(image_url, timeout=10) as response:
if response.status == 200:
content = await response.read()
# Verify it's a valid image
try:
img = Image.open(io.BytesIO(content))
img = img.convert("RGB")
img.save(image_path, "JPEG")
progress_bar.update(1)
return sample_data
except Exception:
progress_bar.update(1)
return None # Skip invalid images
else:
progress_bar.update(1)
return None
except Exception:
progress_bar.update(1)
return None
def download_laion_subset(self, num_samples: int = 1000):
"""Download LAION subset from HuggingFace datasets with async parallel downloading"""
print(f"📥 Downloading LAION subset ({num_samples} samples)...")
# Load LAION-400M subset from HuggingFace
print("🤗 Loading from HuggingFace datasets...")
dataset = load_dataset("laion/laion400m", split="train", streaming=True)
# Collect sample metadata first (fast)
print("📋 Collecting sample metadata...")
candidates = []
for sample in dataset:
if len(candidates) >= num_samples * 3: # Get 3x more candidates in case some fail
break
image_url = sample.get("url", "")
caption = sample.get("caption", "")
if not image_url or not caption:
continue
image_filename = f"laion_{len(candidates):06d}.jpg"
image_path = self.images_dir / image_filename
candidate = {
"id": f"laion_{len(candidates):06d}",
"url": image_url,
"caption": caption,
"image_path": str(image_path),
"width": sample.get("original_width", 512),
"height": sample.get("original_height", 512),
"similarity": sample.get("similarity", 0.0),
}
candidates.append(candidate)
print(
f"📊 Collected {len(candidates)} candidates, downloading {num_samples} in parallel..."
)
# Download images in parallel
async def download_batch():
semaphore = asyncio.Semaphore(20) # Limit to 20 concurrent downloads
connector = aiohttp.TCPConnector(limit=100, limit_per_host=20)
timeout = aiohttp.ClientTimeout(total=30)
progress_bar = tqdm(total=len(candidates[: num_samples * 2]), desc="Downloading images")
async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session:
tasks = []
for candidate in candidates[: num_samples * 2]: # Try 2x more than needed
task = self.download_single_image(session, candidate, semaphore, progress_bar)
tasks.append(task)
# Wait for all downloads
results = await asyncio.gather(*tasks, return_exceptions=True)
progress_bar.close()
# Filter successful downloads
successful = [r for r in results if r is not None and not isinstance(r, Exception)]
return successful[:num_samples]
# Run async download
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
samples = loop.run_until_complete(download_batch())
finally:
loop.close()
# Save metadata
with open(self.metadata_file, "w", encoding="utf-8") as f:
for sample in samples:
f.write(json.dumps(sample) + "\n")
print(f"✅ Downloaded {len(samples)} real LAION samples with async parallel downloading")
return samples
def generate_clip_image_embeddings(self, samples: list[dict]):
"""Generate CLIP image embeddings for downloaded images"""
print("🔍 Generating CLIP image embeddings...")
# Load sentence-transformers CLIP (ViT-L/14, 768-dim) for image embeddings
# This single model can encode both images and text.
model = SentenceTransformer("clip-ViT-L-14")
embeddings = []
valid_samples = []
for sample in tqdm(samples, desc="Processing images"):
try:
# Load image
image_path = sample["image_path"]
image = Image.open(image_path).convert("RGB")
# Encode image to 768-dim embedding via sentence-transformers (normalized)
vec = model.encode(
[image],
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=1,
show_progress_bar=False,
)[0]
embeddings.append(vec.astype(np.float32))
valid_samples.append(sample)
except Exception as e:
print(f" ⚠️ Failed to process {sample['id']}: {e}")
# Skip invalid images
embeddings = np.array(embeddings, dtype=np.float32)
# Save embeddings
embeddings_file = self.data_dir / "clip_image_embeddings.npy"
np.save(embeddings_file, embeddings)
print(f"✅ Generated {len(embeddings)} image embeddings, shape: {embeddings.shape}")
return embeddings, valid_samples
def build_faiss_baseline(
self, embeddings: np.ndarray, samples: list[dict], output_dir: str = "baseline"
):
"""Build FAISS flat baseline using CLIP image embeddings"""
print("🔨 Building FAISS Flat baseline...")
from leann_backend_hnsw import faiss
os.makedirs(output_dir, exist_ok=True)
baseline_path = os.path.join(output_dir, "faiss_flat.index")
metadata_path = os.path.join(output_dir, "metadata.pkl")
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
print(f"✅ Baseline already exists at {baseline_path}")
return baseline_path
# Extract image IDs (must be present)
if not samples or "id" not in samples[0]:
raise KeyError("samples missing 'id' field for FAISS baseline")
image_ids: list[str] = [str(sample["id"]) for sample in samples]
print(f"📐 Embedding shape: {embeddings.shape}")
print(f"📄 Processing {len(image_ids)} images")
# Build FAISS flat index
print("🏗️ Building FAISS IndexFlatIP...")
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
# Add embeddings to flat index
embeddings_f32 = embeddings.astype(np.float32)
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
# Save index and metadata
faiss.write_index(index, baseline_path)
with open(metadata_path, "wb") as f:
pickle.dump(image_ids, f)
print(f"✅ FAISS baseline saved to {baseline_path}")
print(f"✅ Metadata saved to {metadata_path}")
print(f"📊 Total vectors: {index.ntotal}")
return baseline_path
def create_leann_passages(self, samples: list[dict]):
"""Create LEANN-compatible passages from LAION data"""
print("📝 Creating LEANN passages...")
passages_file = self.data_dir / "laion_passages.jsonl"
with open(passages_file, "w", encoding="utf-8") as f:
for i, sample in enumerate(samples):
passage = {
"id": sample["id"],
"text": sample["caption"], # Use caption as searchable text
"metadata": {
"image_url": sample["url"],
"image_path": sample.get("image_path", ""),
"width": sample["width"],
"height": sample["height"],
"similarity": sample["similarity"],
"image_index": i, # Index for embedding lookup
},
}
f.write(json.dumps(passage) + "\n")
print(f"✅ Created {len(samples)} passages")
return passages_file
def build_compact_index(
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
):
"""Build compact LEANN index with CLIP embeddings (recompute=True, compact=True)"""
print(f"🏗️ Building compact LEANN index with {backend} backend...")
start_time = time.time()
# Save CLIP embeddings (npy) and also a pickle with (ids, embeddings)
npy_path = self.data_dir / "clip_image_embeddings.npy"
np.save(npy_path, embeddings)
print(f"💾 Saved CLIP embeddings to {npy_path}")
# Prepare ids in the same order as passages_file (matches embeddings order)
ids: list[str] = []
with open(passages_file, encoding="utf-8") as f:
for line in f:
if line.strip():
rec = json.loads(line)
ids.append(str(rec["id"]))
if len(ids) != embeddings.shape[0]:
raise ValueError(
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
)
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings.astype(np.float32)), pf)
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
# Initialize builder - compact with recompute
# Note: For multimodal case, we need to handle embeddings differently
# Let's try using sentence-transformers mode but with custom embeddings
builder = LeannBuilder(
backend_name=backend,
# Use CLIP text encoder (ViT-L/14) to match image space (768-dim)
embedding_model="clip-ViT-L-14",
embedding_mode="sentence-transformers",
# HNSW params (or forwarded to chosen backend)
graph_degree=32,
complexity=64,
# Compact/pruned with recompute at query time
is_recompute=True,
is_compact=True,
distance_metric="cosine", # CLIP uses normalized vectors; cosine is appropriate
num_threads=4,
)
# Add passages (text + metadata)
print("📚 Adding passages...")
self._add_passages_with_embeddings(builder, passages_file, embeddings)
print(f"🔨 Building compact index at {index_path} from precomputed embeddings...")
builder.build_index_from_embeddings(index_path, str(pkl_path))
build_time = time.time() - start_time
print(f"✅ Compact index built in {build_time:.2f}s")
# Analyze index size
self._analyze_index_size(index_path)
return index_path
def build_non_compact_index(
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
):
"""Build non-compact LEANN index with CLIP embeddings (recompute=False, compact=False)"""
print(f"🏗️ Building non-compact LEANN index with {backend} backend...")
start_time = time.time()
# Ensure embeddings are saved (npy + pickle)
npy_path = self.data_dir / "clip_image_embeddings.npy"
if not npy_path.exists():
np.save(npy_path, embeddings)
print(f"💾 Saved CLIP embeddings to {npy_path}")
# Prepare ids in same order as passages_file
ids: list[str] = []
with open(passages_file, encoding="utf-8") as f:
for line in f:
if line.strip():
rec = json.loads(line)
ids.append(str(rec["id"]))
if len(ids) != embeddings.shape[0]:
raise ValueError(
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
)
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
if not pkl_path.exists():
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings.astype(np.float32)), pf)
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
# Initialize builder - non-compact without recompute
builder = LeannBuilder(
backend_name=backend,
embedding_model="clip-ViT-L-14",
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=False, # Store embeddings (no recompute needed)
is_compact=False, # Store full index (not pruned)
distance_metric="cosine",
num_threads=4,
)
# Add passages - embeddings will be loaded from file
print("📚 Adding passages...")
self._add_passages_with_embeddings(builder, passages_file, embeddings)
print(f"🔨 Building non-compact index at {index_path} from precomputed embeddings...")
builder.build_index_from_embeddings(index_path, str(pkl_path))
build_time = time.time() - start_time
print(f"✅ Non-compact index built in {build_time:.2f}s")
# Analyze index size
self._analyze_index_size(index_path)
return index_path
def _add_passages_with_embeddings(self, builder, passages_file: Path, embeddings: np.ndarray):
"""Helper to add passages with pre-computed CLIP embeddings"""
with open(passages_file, encoding="utf-8") as f:
for line in tqdm(f, desc="Adding passages"):
if line.strip():
passage = json.loads(line)
# Add image metadata - LEANN will handle embeddings separately
# Note: We store image metadata and caption text for searchability
# Important: ensure passage ID in metadata matches vector ID
builder.add_text(
text=passage["text"], # Image caption for searchability
metadata={**passage["metadata"], "id": passage["id"]},
)
def _analyze_index_size(self, index_path: str):
"""Analyze index file sizes"""
print("📏 Analyzing index sizes...")
index_path = Path(index_path)
index_dir = index_path.parent
index_name = index_path.name # e.g., laion_index.leann
index_prefix = index_path.stem # e.g., laion_index
files = [
(f"{index_prefix}.index", ".index", "core"),
(f"{index_name}.meta.json", ".meta.json", "core"),
(f"{index_name}.ids.txt", ".ids.txt", "core"),
(f"{index_name}.passages.jsonl", ".passages.jsonl", "passages"),
(f"{index_name}.passages.idx", ".passages.idx", "passages"),
]
def _fmt_size(bytes_val: int) -> str:
if bytes_val < 1024:
return f"{bytes_val} B"
kb = bytes_val / 1024
if kb < 1024:
return f"{kb:.1f} KB"
mb = kb / 1024
if mb < 1024:
return f"{mb:.2f} MB"
gb = mb / 1024
return f"{gb:.2f} GB"
total_index_only_mb = 0.0
total_all_mb = 0.0
for filename, label, group in files:
file_path = index_dir / filename
if file_path.exists():
size_bytes = file_path.stat().st_size
print(f" {label}: {_fmt_size(size_bytes)}")
size_mb = size_bytes / (1024 * 1024)
total_all_mb += size_mb
if group == "core":
total_index_only_mb += size_mb
else:
print(f" {label}: (missing)")
print(f" Total (index only, exclude passages): {total_index_only_mb:.2f} MB")
print(f" Total (including passages): {total_all_mb:.2f} MB")
def create_evaluation_queries(self, samples: list[dict], num_queries: int = 200):
"""Create evaluation queries from captions"""
print(f"📝 Creating {num_queries} evaluation queries...")
# Sample random captions as queries
import random
random.seed(42) # For reproducibility
query_samples = random.sample(samples, min(num_queries, len(samples)))
queries_file = self.data_dir / "evaluation_queries.jsonl"
with open(queries_file, "w", encoding="utf-8") as f:
for sample in query_samples:
query = {
"id": sample["id"],
"query": sample["caption"],
"ground_truth_id": sample["id"], # For potential recall evaluation
}
f.write(json.dumps(query) + "\n")
print(f"✅ Created {len(query_samples)} evaluation queries")
return queries_file
def main():
parser = argparse.ArgumentParser(description="Setup LAION Multimodal Benchmark")
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument("--num-samples", type=int, default=1000, help="Number of LAION samples")
parser.add_argument("--num-queries", type=int, default=50, help="Number of evaluation queries")
parser.add_argument("--index-path", default="data/laion_index.leann", help="Output index path")
parser.add_argument(
"--backend", default="hnsw", choices=["hnsw", "diskann"], help="LEANN backend"
)
parser.add_argument("--skip-download", action="store_true", help="Skip LAION dataset download")
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
args = parser.parse_args()
print("🚀 Setting up LAION Multimodal Benchmark")
print("=" * 50)
try:
# Initialize setup
setup = LAIONSetup(args.data_dir)
# Step 1: Download LAION subset
if not args.skip_download:
print("\n📦 Step 1: Download LAION subset")
samples = setup.download_laion_subset(args.num_samples)
# Step 2: Generate CLIP image embeddings
print("\n🔍 Step 2: Generate CLIP image embeddings")
embeddings, valid_samples = setup.generate_clip_image_embeddings(samples)
# Step 3: Create LEANN passages (image metadata with embeddings)
print("\n📝 Step 3: Create LEANN passages")
passages_file = setup.create_leann_passages(valid_samples)
else:
print("⏭️ Skipping LAION dataset download")
# Load existing data
passages_file = setup.data_dir / "laion_passages.jsonl"
embeddings_file = setup.data_dir / "clip_image_embeddings.npy"
if not passages_file.exists() or not embeddings_file.exists():
raise FileNotFoundError(
"Passages or embeddings file not found. Run without --skip-download first."
)
embeddings = np.load(embeddings_file)
print(f"📊 Loaded {len(embeddings)} embeddings from {embeddings_file}")
# Step 4: Build LEANN indexes (both compact and non-compact)
if not args.skip_build:
print("\n🏗️ Step 4: Build LEANN indexes with CLIP image embeddings")
# Build compact index (production mode - small, recompute required)
compact_index_path = args.index_path
print(f"Building compact index: {compact_index_path}")
setup.build_compact_index(passages_file, embeddings, compact_index_path, args.backend)
# Build non-compact index (comparison mode - large, fast search)
non_compact_index_path = args.index_path.replace(".leann", "_noncompact.leann")
print(f"Building non-compact index: {non_compact_index_path}")
setup.build_non_compact_index(
passages_file, embeddings, non_compact_index_path, args.backend
)
# Step 5: Build FAISS flat baseline
print("\n🔨 Step 5: Build FAISS flat baseline")
if not args.skip_download:
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
else:
# Load valid_samples from passages file for FAISS baseline
valid_samples = []
with open(passages_file, encoding="utf-8") as f:
for line in f:
if line.strip():
passage = json.loads(line)
valid_samples.append({"id": passage["id"], "caption": passage["text"]})
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
# Step 6: Create evaluation queries
print("\n📝 Step 6: Create evaluation queries")
queries_file = setup.create_evaluation_queries(valid_samples, args.num_queries)
else:
print("⏭️ Skipping index building")
baseline_path = "data/baseline/faiss_index.bin"
queries_file = setup.data_dir / "evaluation_queries.jsonl"
print("\n🎉 Setup completed successfully!")
print("📊 Summary:")
if not args.skip_download:
print(f" Downloaded samples: {len(samples)}")
print(f" Valid samples with embeddings: {len(valid_samples)}")
else:
print(f" Loaded {len(embeddings)} embeddings")
if not args.skip_build:
print(f" Compact index: {compact_index_path}")
print(f" Non-compact index: {non_compact_index_path}")
print(f" FAISS baseline: {baseline_path}")
print(f" Queries: {queries_file}")
print("\n🔧 Next steps:")
print(f" Run evaluation: python evaluate_laion.py --index {compact_index_path}")
print(f" Or compare with: python evaluate_laion.py --index {non_compact_index_path}")
else:
print(" Skipped building indexes")
except KeyboardInterrupt:
print("\n⚠️ Setup interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Setup failed: {e}")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,342 +0,0 @@
"""
LLM utils for RAG benchmarks with Qwen3-8B and Qwen2.5-VL (multimodal)
"""
import time
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
try:
from vllm import LLM, SamplingParams
VLLM_AVAILABLE = True
except ImportError:
VLLM_AVAILABLE = False
def is_qwen3_model(model_name):
"""Check if model is Qwen3"""
return "Qwen3" in model_name or "qwen3" in model_name.lower()
def is_qwen_vl_model(model_name):
"""Check if model is Qwen2.5-VL"""
return "Qwen2.5-VL" in model_name or "qwen2.5-vl" in model_name.lower()
def apply_qwen3_chat_template(tokenizer, prompt):
"""Apply Qwen3 chat template with thinking enabled"""
messages = [{"role": "user", "content": prompt}]
return tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
def extract_thinking_answer(response):
"""Extract final answer from Qwen3 thinking model response"""
if "<think>" in response and "</think>" in response:
try:
think_end = response.index("</think>") + len("</think>")
final_answer = response[think_end:].strip()
return final_answer
except (ValueError, IndexError):
pass
return response.strip()
def load_hf_model(model_name="Qwen/Qwen3-8B", trust_remote_code=False):
"""Load HuggingFace model
Args:
model_name (str): Name of the model to load
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models.
"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
if trust_remote_code:
print(
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
)
print(f"Loading HF: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=trust_remote_code)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=trust_remote_code,
)
return tokenizer, model
def load_vllm_model(model_name="Qwen/Qwen3-8B", trust_remote_code=False):
"""Load vLLM model
Args:
model_name (str): Name of the model to load
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models.
"""
if not VLLM_AVAILABLE:
raise ImportError("vllm not available")
if trust_remote_code:
print(
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
)
print(f"Loading vLLM: {model_name}")
llm = LLM(model=model_name, trust_remote_code=trust_remote_code)
# Qwen3 specific config
if is_qwen3_model(model_name):
stop_tokens = ["<|im_end|>", "<|end_of_text|>"]
max_tokens = 2048
else:
stop_tokens = None
max_tokens = 1024
sampling_params = SamplingParams(temperature=0.7, max_tokens=max_tokens, stop=stop_tokens)
return llm, sampling_params
def generate_hf(tokenizer, model, prompt, max_tokens=None):
"""Generate with HF - supports Qwen3 thinking models"""
model_name = getattr(model, "name_or_path", "unknown")
is_qwen3 = is_qwen3_model(model_name)
# Apply chat template for Qwen3
if is_qwen3:
prompt = apply_qwen3_chat_template(tokenizer, prompt)
max_tokens = max_tokens or 2048
else:
max_tokens = max_tokens or 1024
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(prompt) :].strip()
# Extract final answer for thinking models
if is_qwen3:
return extract_thinking_answer(response)
return response
def generate_vllm(llm, sampling_params, prompt):
"""Generate with vLLM - supports Qwen3 thinking models"""
outputs = llm.generate([prompt], sampling_params)
response = outputs[0].outputs[0].text.strip()
# Extract final answer for Qwen3 thinking models
model_name = str(llm.llm_engine.model_config.model)
if is_qwen3_model(model_name):
return extract_thinking_answer(response)
return response
def create_prompt(context, query, domain="default"):
"""Create RAG prompt"""
if domain == "emails":
return f"Email content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
elif domain == "finance":
return f"Financial content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
elif domain == "multimodal":
return f"Image context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
else:
return f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
def evaluate_rag(searcher, llm_func, queries, domain="default", top_k=3, complexity=64):
"""Simple RAG evaluation with timing"""
search_times = []
gen_times = []
results = []
for i, query in enumerate(queries):
# Search
start = time.time()
docs = searcher.search(query, top_k=top_k, complexity=complexity)
search_time = time.time() - start
# Generate
context = "\n\n".join([doc.text for doc in docs])
prompt = create_prompt(context, query, domain)
start = time.time()
response = llm_func(prompt)
gen_time = time.time() - start
search_times.append(search_time)
gen_times.append(gen_time)
results.append(response)
if i < 3:
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
return {
"avg_search_time": sum(search_times) / len(search_times),
"avg_generation_time": sum(gen_times) / len(gen_times),
"results": results,
}
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=False):
"""Load Qwen2.5-VL multimodal model
Args:
model_name (str): Name of the model to load
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models.
"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
if trust_remote_code:
print(
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
)
print(f"Loading Qwen2.5-VL: {model_name}")
try:
from transformers import AutoModelForVision2Seq, AutoProcessor
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=trust_remote_code)
model = AutoModelForVision2Seq.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=trust_remote_code,
)
return processor, model
except Exception as e:
print(f"Failed to load with AutoModelForVision2Seq, trying specific class: {e}")
# Fallback to specific class
try:
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=trust_remote_code
)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=trust_remote_code,
)
return processor, model
except Exception as e2:
raise ImportError(f"Failed to load Qwen2.5-VL model: {e2}")
def generate_qwen_vl(processor, model, prompt, image_path=None, max_tokens=512):
"""Generate with Qwen2.5-VL multimodal model"""
from PIL import Image
# Prepare inputs
if image_path:
image = Image.open(image_path)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
else:
inputs = processor(text=prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
generated_ids = model.generate(
**inputs, max_new_tokens=max_tokens, do_sample=False, temperature=0.1
)
# Decode response
generated_ids = generated_ids[:, inputs["input_ids"].shape[1] :]
response = processor.decode(generated_ids[0], skip_special_tokens=True)
return response
def create_multimodal_prompt(context, query, image_descriptions, task_type="images"):
"""Create prompt for multimodal RAG"""
if task_type == "images":
return f"""Based on the retrieved images and their descriptions, answer the following question.
Retrieved Image Descriptions:
{context}
Question: {query}
Provide a detailed answer based on the visual content described above."""
return f"Context: {context}\nQuestion: {query}\nAnswer:"
def evaluate_multimodal_rag(searcher, queries, processor=None, model=None, complexity=64):
"""Evaluate multimodal RAG with Qwen2.5-VL"""
search_times = []
gen_times = []
results = []
for i, query_item in enumerate(queries):
# Handle both string and dict formats for queries
if isinstance(query_item, dict):
query = query_item.get("query", "")
image_path = query_item.get("image_path") # Optional reference image
else:
query = str(query_item)
image_path = None
# Search
start_time = time.time()
search_results = searcher.search(query, top_k=3, complexity=complexity)
search_time = time.time() - start_time
search_times.append(search_time)
# Prepare context from search results
context_parts = []
for result in search_results:
context_parts.append(f"- {result.text}")
context = "\n".join(context_parts)
# Generate with multimodal model
start_time = time.time()
if processor and model:
prompt = create_multimodal_prompt(context, query, context_parts)
response = generate_qwen_vl(processor, model, prompt, image_path)
else:
response = f"Context: {context}"
gen_time = time.time() - start_time
gen_times.append(gen_time)
results.append(response)
if i < 3:
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
return {
"avg_search_time": sum(search_times) / len(search_times),
"avg_generation_time": sum(gen_times) / len(gen_times),
"results": results,
}

49
benchmarks/run_all.sh Executable file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/env bash
set -euo pipefail
# 公共参数
INDEX_PATH="benchmarks/data/indices/rpj_wiki/rpj_wiki"
NUM_QUERIES=20
BATCH_SIZE=128
LLM_MODEL="qwen3:4b"
TOP_K=3
# 日志目录(带时间戳)
LOG_DIR="logs/eval_runs_$(date +%Y%m%d_%H%M%S)"
mkdir -p "$LOG_DIR"
# dataset -> ef 列表
declare -A EF_MAP=(
[nq_open.jsonl]="32 62 190"
[trivia_qa.jsonl]="77 150 249"
[gpqa.jsonl]="41 72 124"
[hotpot_qa.jsonl]="137 299 1199"
)
# 按指定顺序遍历
ORDERED_DATASETS=(nq_open.jsonl trivia_qa.jsonl gpqa.jsonl hotpot_qa.jsonl)
for dataset in "${ORDERED_DATASETS[@]}"; do
for ef in ${EF_MAP[$dataset]}; do
log_file="${LOG_DIR}/${dataset%.jsonl}_ef${ef}.log"
# 展示并记录将要执行的命令
cmd=(python benchmarks/run_evaluation.py "$INDEX_PATH" \
--num-queries "$NUM_QUERIES" \
--ef "$ef" \
--batch-size "$BATCH_SIZE" \
--llm-model "$LLM_MODEL" \
--top-k "$TOP_K" \
--queries-file "$dataset")
echo "=== Running dataset=${dataset} ef=${ef} ===" | tee -a "$log_file"
printf 'CMD: '; printf '%q ' "${cmd[@]}" | tee -a "$log_file"; echo | tee -a "$log_file"
# 同时输出到命令行和日志文件
"${cmd[@]}" 2>&1 | tee -a "$log_file"
echo | tee -a "$log_file"
done
done
echo "All runs completed. Logs in: $LOG_DIR"

View File

@@ -53,7 +53,7 @@ def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
print( print(
"Error: huggingface_hub is not installed. Please install it to download the data:" "Error: huggingface_hub is not installed. Please install it to download the data:"
) )
print("uv sync --only-group dev") print("uv pip install -e '.[dev]'")
sys.exit(1) sys.exit(1)
except Exception as e: except Exception as e:
print(f"An error occurred during data download: {e}") print(f"An error occurred during data download: {e}")
@@ -203,6 +203,15 @@ def main():
default=0, default=0,
help="Batch size for HNSW batched search (0 disables batching)", help="Batch size for HNSW batched search (0 disables batching)",
) )
parser.add_argument(
"--queries-file",
type=str,
default="nq_open.jsonl",
help=(
"Queries file to use. Provide a filename under benchmarks/data/queries "
"or an absolute path to a .jsonl file (default: nq_open.jsonl)."
),
)
parser.add_argument( parser.add_argument(
"--llm-type", "--llm-type",
type=str, type=str,
@@ -314,8 +323,52 @@ def main():
dataset_type = Path(args.index_path).name dataset_type = Path(args.index_path).name
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.") print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
queries_file = data_root / "queries" / "nq_open.jsonl" # Resolve queries file (supports absolute path or name under data/queries)
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json" queries_file_candidate = Path(args.queries_file)
if queries_file_candidate.is_absolute():
queries_file = queries_file_candidate
else:
queries_file = data_root / "queries" / args.queries_file
if not queries_file.exists():
print(f"Error: Queries file not found: {queries_file}")
print("Tip: Use --queries-file with a filename under benchmarks/data/queries or an absolute path.")
sys.exit(1)
# Infer ground-truth file from the queries filename
qname = queries_file.name.lower()
if "hotpot" in qname:
task_key = "hotpot"
elif "trivia" in qname:
task_key = "trivia"
elif "gpqa" in qname:
task_key = "gpqa"
elif "nq" in qname:
task_key = "nq"
else:
print(
"Error: Could not infer task from queries filename. Supported names include 'nq', 'hotpot', 'trivia', 'gpqa'."
)
print(f"Filename was: {queries_file.name}")
sys.exit(1)
golden_results_file = data_root / "ground_truth" / dataset_type / f"flat_results_{task_key}_k3.json"
if not golden_results_file.exists():
gt_dir = data_root / "ground_truth" / dataset_type
try:
available = sorted(p.name for p in gt_dir.glob("flat_results_*_k3.json"))
except Exception:
available = []
print(
f"Error: Ground truth file not found for task '{task_key}' under dataset '{dataset_type}': {golden_results_file}"
)
if available:
print("Available ground truth files:")
for name in available:
print(f" - {name}")
else:
print(f"No ground truth files found in {gt_dir}")
sys.exit(1)
print(f"INFO: Detected dataset type: {dataset_type}") print(f"INFO: Detected dataset type: {dataset_type}")
print(f"INFO: Using queries file: {queries_file}") print(f"INFO: Using queries file: {queries_file}")
@@ -346,15 +399,15 @@ def main():
search_times.append(time.time() - start_time) search_times.append(time.time() - start_time)
# Optional: also call the LLM with configurable backend/model (does not affect recall) # Optional: also call the LLM with configurable backend/model (does not affect recall)
llm_config = {"type": args.llm_type, "model": args.llm_model} # llm_config = {"type": args.llm_type, "model": args.llm_model}
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher) # chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
answer = chat.ask( # answer = chat.ask(
queries[i], # queries[i],
top_k=args.top_k, # top_k=args.top_k,
complexity=args.ef_search, # complexity=args.ef_search,
batch_size=args.batch_size, # batch_size=args.batch_size,
) # )
print(f"Answer: {answer}") # print(f"Answer: {answer}")
# Correct Recall Calculation: Based on TEXT content # Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results} new_texts = {result.text for result in new_results}
@@ -378,10 +431,16 @@ def main():
avg_recall = np.mean(recall_scores) if recall_scores else 0 avg_recall = np.mean(recall_scores) if recall_scores else 0
avg_time = np.mean(search_times) if search_times else 0 avg_time = np.mean(search_times) if search_times else 0
print(f"search time: {search_times}")
print("\n🎉 --- Evaluation Complete ---") print("\n🎉 --- Evaluation Complete ---")
print(f"Avg. Recall@{args.top_k} (efSearch={args.ef_search}): {avg_recall:.4f}") print(f"Avg. Recall@{args.top_k} (efSearch={args.ef_search}): {avg_recall:.4f}")
print(f"Avg. Search Time: {avg_time:.4f}s") print(f"Avg. Search Time: {avg_time:.4f}s")
# avg last 10 search times
avg_last_10_search_times = np.mean(search_times[-10:])
print(f"Avg. Last 10 Search Times: {avg_last_10_search_times:.4f}s")
except Exception as e: except Exception as e:
print(f"\n❌ An error occurred during evaluation: {e}") print(f"\n❌ An error occurred during evaluation: {e}")
import traceback import traceback

View File

@@ -0,0 +1,55 @@
#!/usr/bin/env bash
set -euo pipefail
# Absolute paths (adjust if needed)
PROMPTS_DIR="/home/tony/yichuan/leann/benchmarks/data/prompts_g5"
SCRIPT_PATH="/home/tony/yichuan/leann/benchmarks/generation_speed_bench.py"
# Common args
MAX_TOKENS=2048
OLLAMA_MODEL="qwen3:4b"
HF_MODEL="Qwen/Qwen3-4B"
# Logs
LOG_DIR="/home/tony/yichuan/leann/logs/speed_bench_$(date +%Y%m%d_%H%M%S)"
mkdir -p "$LOG_DIR"
echo "Scanning: $PROMPTS_DIR"
# Iterate all .txt files under PROMPTS_DIR
while IFS= read -r -d '' file; do
base_name=$(basename "$file")
stem_name="${base_name%.*}"
# 1) Ollama
log_ollama="${LOG_DIR}/${stem_name}_ollama.log"
cmd_ollama=(python "$SCRIPT_PATH" \
--path "$file" \
--type ollama \
--model "$OLLAMA_MODEL" \
--max_tokens "$MAX_TOKENS")
echo "=== Running (ollama) file=${file} model=${OLLAMA_MODEL} ===" | tee -a "$log_ollama"
printf 'CMD: '; printf '%q ' "${cmd_ollama[@]}" | tee -a "$log_ollama"; echo | tee -a "$log_ollama"
"${cmd_ollama[@]}" 2>&1 | tee -a "$log_ollama"
echo | tee -a "$log_ollama"
# 2) HF
log_hf="${LOG_DIR}/${stem_name}_hf.log"
cmd_hf=(python "$SCRIPT_PATH" \
--path "$file" \
--type hf \
--model "$HF_MODEL" \
--max_tokens "$MAX_TOKENS")
echo "=== Running (hf) file=${file} model=${HF_MODEL} ===" | tee -a "$log_hf"
printf 'CMD: '; printf '%q ' "${cmd_hf[@]}" | tee -a "$log_hf"; echo | tee -a "$log_hf"
"${cmd_hf[@]}" 2>&1 | tee -a "$log_hf"
echo | tee -a "$log_hf"
done < <(find "$PROMPTS_DIR" -type f -name '*.txt' -print0)
echo "All runs completed. Logs in: $LOG_DIR"

View File

@@ -1,143 +0,0 @@
# Update Benchmarks
This directory hosts two benchmark suites that exercise LEANNs HNSW “update +
search” pipeline under different assumptions:
1. **RNG recompute latency** measure how random-neighbour pruning and cache
settings influence incremental `add()` latency when embeddings are fetched
over the ZMQ embedding server.
2. **Update strategy comparison** compare a fully sequential update pipeline
against an offline approach that keeps the graph static and fuses results.
Both suites build a non-compact, `is_recompute=True` index so that new
embeddings are pulled from the embedding server. Benchmark outputs are written
under `.leann/bench/` by default and appended to CSV files for later plotting.
## Benchmarks
### 1. HNSW RNG Recompute Benchmark
`bench_hnsw_rng_recompute.py` evaluates incremental update latency under four
random-neighbour (RNG) configurations. Each scenario uses the same dataset but
changes the forward / reverse RNG pruning flags and whether the embedding cache
is enabled:
| Scenario name | Forward RNG | Reverse RNG | ZMQ embedding cache |
| ---------------------------------- | ----------- | ----------- | ------------------- |
| `baseline` | Enabled | Enabled | Enabled |
| `no_cache_baseline` | Enabled | Enabled | **Disabled** |
| `disable_forward_rng` | **Disabled**| Enabled | Enabled |
| `disable_forward_and_reverse_rng` | **Disabled**| **Disabled**| Enabled |
For each scenario the script:
1. (Re)builds a `is_recompute=True` index and writes it to `.leann/bench/`.
2. Starts `leann_backend_hnsw.hnsw_embedding_server` for remote embeddings.
3. Appends the requested updates using the scenarios RNG flags.
4. Records total time, latency per passage, ZMQ fetch counts, and stage-level
timings before appending a row to the CSV output.
**Run:**
```bash
LEANN_HNSW_LOG_PATH=.leann/bench/hnsw_server.log \
LEANN_LOG_LEVEL=INFO \
uv run -m benchmarks.update.bench_hnsw_rng_recompute \
--runs 1 \
--index-path .leann/bench/test.leann \
--initial-files data/PrideandPrejudice.txt \
--update-files data/huawei_pangu.md \
--max-initial 300 \
--max-updates 1 \
--add-timeout 120
```
**Output:**
- `benchmarks/update/bench_results.csv` per-scenario timing statistics
(including ms/passage) for each run.
- `.leann/bench/hnsw_server.log` detailed ZMQ/server logs (path controlled by
`LEANN_HNSW_LOG_PATH`).
_The reference CSVs checked into this branch were generated on a workstation with an NVIDIA RTX 4090 GPU; throughput numbers will differ on other hardware._
### 2. Sequential vs. Offline Update Benchmark
`bench_update_vs_offline_search.py` compares two end-to-end strategies on the
same dataset:
- **Scenario A Sequential Update**
- Start an embedding server.
- Sequentially call `index.add()`; each call fetches embeddings via ZMQ and
mutates the HNSW graph.
- After all inserts, run a search on the updated graph.
- Metrics recorded: update time (`add_total_s`), post-update search time
(`search_time_s`), combined total (`total_time_s`), and per-passage
latency.
- **Scenario B Offline Embedding + Concurrent Search**
- Stop Scenario As server and start a fresh embedding server.
- Spawn two threads: one generates embeddings for the new passages offline
(graph unchanged); the other computes the query embedding and searches the
existing graph.
- Merge offline similarities with the graph search results to emulate late
fusion, then report the merged topk preview.
- Metrics recorded: embedding time (`emb_time_s`), search time
(`search_time_s`), concurrent makespan (`makespan_s`), and scenario total.
**Run (both scenarios):**
```bash
uv run -m benchmarks.update.bench_update_vs_offline_search \
--index-path .leann/bench/offline_vs_update.leann \
--max-initial 300 \
--num-updates 1
```
You can pass `--only A` or `--only B` to run a single scenario. The script will
print timing summaries to stdout and append the results to CSV.
**Output:**
- `benchmarks/update/offline_vs_update.csv` per-scenario timing statistics for
Scenario A and B.
- Console output includes Scenario Bs merged topk preview for quick sanity
checks.
_The sample results committed here come from runs on an RTX 4090-equipped machine; expect variations if you benchmark on different GPUs._
### 3. Visualisation
`plot_bench_results.py` combines the RNG benchmark and the update strategy
benchmark into a single two-panel plot.
**Run:**
```bash
uv run -m benchmarks.update.plot_bench_results \
--csv benchmarks/update/bench_results.csv \
--csv-right benchmarks/update/offline_vs_update.csv \
--out benchmarks/update/bench_latency_from_csv.png
```
**Options:**
- `--broken-y` Enable a broken Y-axis (default: true when appropriate).
- `--csv` RNG benchmark results CSV (left panel).
- `--csv-right` Update strategy results CSV (right panel).
- `--out` Output image path (PNG/PDF supported).
**Output:**
- `benchmarks/update/bench_latency_from_csv.png` visual comparison of the two
suites.
- `benchmarks/update/bench_latency_from_csv.pdf` PDF version, suitable for
slides/papers.
## Parameters & Environment
### Common CLI Flags
- `--max-initial` Number of initial passages used to seed the index.
- `--max-updates` / `--num-updates` Number of passages to treat as updates.
- `--index-path` Base path (without extension) where the LEANN index is stored.
- `--runs` Number of repetitions (RNG benchmark only).
### Environment Variables
- `LEANN_HNSW_LOG_PATH` File to receive embedding-server logs (optional).
- `LEANN_LOG_LEVEL` Logging verbosity (DEBUG/INFO/WARNING/ERROR).
- `CUDA_VISIBLE_DEVICES` Set to empty string if you want to force CPU
execution of the embedding model.
With these scripts you can easily replicate LEANNs update benchmarks, compare
multiple RNG strategies, and evaluate whether sequential updates or offline
fusion better match your latency/accuracy trade-offs.

View File

@@ -1,16 +0,0 @@
"""Benchmarks for LEANN update workflows."""
# Expose helper to locate repository root for other modules that need it.
from pathlib import Path
def find_repo_root() -> Path:
"""Return the project root containing pyproject.toml."""
current = Path(__file__).resolve()
for parent in current.parents:
if (parent / "pyproject.toml").exists():
return parent
return current.parents[1]
__all__ = ["find_repo_root"]

View File

@@ -1,804 +0,0 @@
"""Benchmark incremental HNSW add() under different RNG pruning modes with real
embedding recomputation.
This script clones the structure of ``examples/dynamic_update_no_recompute.py``
so that we build a non-compact ``is_recompute=True`` index, spin up the
standard HNSW embedding server, and measure how long incremental ``add`` takes
when RNG pruning is fully enabled vs. partially/fully disabled.
Example usage (run from the repo root; downloads the model on first run)::
uv run -m benchmarks.update.bench_hnsw_rng_recompute \
--index-path .leann/bench/leann-demo.leann \
--runs 1
You can tweak the input documents with ``--initial-files`` / ``--update-files``
if you want a larger or different workload, and change the embedding model via
``--model-name``.
"""
import argparse
import json
import logging
import os
import pickle
import re
import sys
import time
from pathlib import Path
from typing import Any
import msgpack
import numpy as np
import zmq
from leann.api import LeannBuilder
if os.environ.get("LEANN_FORCE_CPU", "").lower() in ("1", "true", "yes"):
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
from leann.embedding_compute import compute_embeddings
from leann.embedding_server_manager import EmbeddingServerManager
from leann.registry import register_project_directory
from leann_backend_hnsw import faiss # type: ignore
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
logger = logging.getLogger(__name__)
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
def _find_repo_root() -> Path:
"""Locate project root by walking up until pyproject.toml is found."""
current = Path(__file__).resolve()
for parent in current.parents:
if (parent / "pyproject.toml").exists():
return parent
# Fallback: assume repo is two levels up (../..)
return current.parents[2]
REPO_ROOT = _find_repo_root()
if str(REPO_ROOT) not in sys.path:
sys.path.insert(0, str(REPO_ROOT))
from apps.chunking import create_text_chunks # noqa: E402
DEFAULT_INITIAL_FILES = [
REPO_ROOT / "data" / "2501.14312v1 (1).pdf",
REPO_ROOT / "data" / "huawei_pangu.md",
]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
DEFAULT_HNSW_LOG = Path(".leann/bench/hnsw_server.log")
def load_chunks_from_files(paths: list[Path], limit: int | None = None) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
cleaned = [c for c in chunks if isinstance(c, str) and c.strip()]
if limit is not None:
cleaned = cleaned[:limit]
return cleaned
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
distance_metric: str,
ef_construction: int,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=True,
distance_metric=distance_metric,
backend_kwargs={
"distance_metric": distance_metric,
"is_compact": False,
"is_recompute": True,
"efConstruction": ef_construction,
},
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def prepare_new_chunks(paragraphs: list[str]) -> list[dict[str, Any]]:
return [{"text": text, "metadata": {}} for text in paragraphs]
def benchmark_update_with_mode(
index_path: Path,
new_chunks: list[dict[str, Any]],
model_name: str,
embedding_mode: str,
distance_metric: str,
disable_forward_rng: bool,
disable_reverse_rng: bool,
server_port: int,
add_timeout: int,
ef_construction: int,
) -> tuple[float, float]:
meta_path = index_path.parent / f"{index_path.name}.meta.json"
passages_file = index_path.parent / f"{index_path.name}.passages.jsonl"
offset_file = index_path.parent / f"{index_path.name}.passages.idx"
index_file = index_path.parent / f"{index_path.stem}.index"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
with open(offset_file, "rb") as f:
offset_map: dict[str, int] = pickle.load(f)
existing_ids = set(offset_map.keys())
valid_chunks: list[dict[str, Any]] = []
for chunk in new_chunks:
text = chunk.get("text", "")
if not isinstance(text, str) or not text.strip():
continue
metadata = chunk.setdefault("metadata", {})
passage_id = chunk.get("id") or metadata.get("id")
if passage_id and passage_id in existing_ids:
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
valid_chunks.append(chunk)
if not valid_chunks:
raise ValueError("No valid chunks to append.")
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
embeddings = compute_embeddings(
texts_to_embed,
model_name,
mode=embedding_mode,
is_build=False,
batch_size=16,
)
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
if distance_metric == "cosine":
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
index = faiss.read_index(str(index_file))
index.is_recompute = True
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
else:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
try:
storage_index.ntotal = index.ntotal
except AttributeError:
pass
try:
index.hnsw.set_disable_rng_during_add(disable_forward_rng)
index.hnsw.set_disable_reverse_prune(disable_reverse_rng)
if ef_construction is not None:
index.hnsw.efConstruction = ef_construction
except AttributeError:
pass
applied_forward = getattr(index.hnsw, "disable_rng_during_add", None)
applied_reverse = getattr(index.hnsw, "disable_reverse_prune", None)
logger.info(
"HNSW RNG config -> requested forward=%s, reverse=%s | applied forward=%s, reverse=%s",
disable_forward_rng,
disable_reverse_rng,
applied_forward,
applied_reverse,
)
base_id = index.ntotal
for offset, chunk in enumerate(valid_chunks):
new_id = str(base_id + offset)
chunk.setdefault("metadata", {})["id"] = new_id
chunk["id"] = new_id
rollback_size = passages_file.stat().st_size if passages_file.exists() else 0
offset_map_backup = offset_map.copy()
try:
with open(passages_file, "a", encoding="utf-8") as f:
for chunk in valid_chunks:
offset = f.tell()
json.dump(
{
"id": chunk["id"],
"text": chunk["text"],
"metadata": chunk.get("metadata", {}),
},
f,
ensure_ascii=False,
)
f.write("\n")
offset_map[chunk["id"]] = offset
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
server_manager = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
server_started, actual_port = server_manager.start_server(
port=server_port,
model_name=model_name,
embedding_mode=embedding_mode,
passages_file=str(meta_path),
distance_metric=distance_metric,
)
if not server_started:
raise RuntimeError("Failed to start embedding server.")
if hasattr(index.hnsw, "set_zmq_port"):
index.hnsw.set_zmq_port(actual_port)
elif hasattr(index, "set_zmq_port"):
index.set_zmq_port(actual_port)
_warmup_embedding_server(actual_port)
total_start = time.time()
add_elapsed = 0.0
try:
import signal
def _timeout_handler(signum, frame):
raise TimeoutError("incremental add timed out")
if add_timeout > 0:
signal.signal(signal.SIGALRM, _timeout_handler)
signal.alarm(add_timeout)
add_start = time.time()
for i in range(embeddings.shape[0]):
index.add(1, faiss.swig_ptr(embeddings[i : i + 1]))
add_elapsed = time.time() - add_start
if add_timeout > 0:
signal.alarm(0)
faiss.write_index(index, str(index_file))
finally:
server_manager.stop_server()
except TimeoutError:
raise
except Exception:
if passages_file.exists():
with open(passages_file, "rb+") as f:
f.truncate(rollback_size)
with open(offset_file, "wb") as f:
pickle.dump(offset_map_backup, f)
raise
prune_hnsw_embeddings_inplace(str(index_file))
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f, indent=2)
# Reset toggles so the index on disk returns to baseline behaviour.
try:
index.hnsw.set_disable_rng_during_add(False)
index.hnsw.set_disable_reverse_prune(False)
except AttributeError:
pass
faiss.write_index(index, str(index_file))
total_elapsed = time.time() - total_start
return total_elapsed, add_elapsed
def _total_zmq_nodes(log_path: Path) -> int:
if not log_path.exists():
return 0
with log_path.open("r", encoding="utf-8") as log_file:
text = log_file.read()
return sum(int(match) for match in re.findall(r"ZMQ received (\d+) node IDs", text))
def _warmup_embedding_server(port: int) -> None:
"""Send a dummy REQ so the embedding server loads its model."""
ctx = zmq.Context()
try:
sock = ctx.socket(zmq.REQ)
sock.setsockopt(zmq.LINGER, 0)
sock.setsockopt(zmq.RCVTIMEO, 5000)
sock.setsockopt(zmq.SNDTIMEO, 5000)
sock.connect(f"tcp://127.0.0.1:{port}")
payload = msgpack.packb(["__WARMUP__"], use_bin_type=True)
sock.send(payload)
try:
sock.recv()
except zmq.error.Again:
pass
finally:
sock.close()
ctx.term()
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/bench/leann-demo.leann"),
help="Output index base path (without extension).",
)
parser.add_argument(
"--initial-files",
nargs="*",
type=Path,
default=DEFAULT_INITIAL_FILES,
help="Files used to build the initial index.",
)
parser.add_argument(
"--update-files",
nargs="*",
type=Path,
default=DEFAULT_UPDATE_FILES,
help="Files appended during the benchmark.",
)
parser.add_argument(
"--runs", type=int, default=1, help="How many times to repeat each scenario."
)
parser.add_argument(
"--model-name",
default="sentence-transformers/all-MiniLM-L6-v2",
help="Embedding model used for build/update.",
)
parser.add_argument(
"--embedding-mode",
default="sentence-transformers",
help="Embedding mode passed to LeannBuilder/embedding server.",
)
parser.add_argument(
"--distance-metric",
default="mips",
choices=["mips", "l2", "cosine"],
help="Distance metric for HNSW backend.",
)
parser.add_argument(
"--ef-construction",
type=int,
default=200,
help="efConstruction setting for initial build.",
)
parser.add_argument(
"--server-port",
type=int,
default=5557,
help="Port for the real embedding server.",
)
parser.add_argument(
"--max-initial",
type=int,
default=300,
help="Optional cap on initial passages (after chunking).",
)
parser.add_argument(
"--max-updates",
type=int,
default=1,
help="Optional cap on update passages (after chunking).",
)
parser.add_argument(
"--add-timeout",
type=int,
default=900,
help="Timeout in seconds for the incremental add loop (0 = no timeout).",
)
parser.add_argument(
"--plot-path",
type=Path,
default=Path("bench_latency.png"),
help="Where to save the latency bar plot.",
)
parser.add_argument(
"--cap-y",
type=float,
default=None,
help="Cap Y-axis (ms). Bars above are hatched and annotated.",
)
parser.add_argument(
"--broken-y",
action="store_true",
help="Use broken Y-axis (two stacked axes with gap). Overrides --cap-y unless both provided.",
)
parser.add_argument(
"--lower-cap-y",
type=float,
default=None,
help="Lower axes upper bound for broken Y (ms). Default=1.1x second-highest.",
)
parser.add_argument(
"--upper-start-y",
type=float,
default=None,
help="Upper axes lower bound for broken Y (ms). Default=1.2x second-highest.",
)
parser.add_argument(
"--csv-path",
type=Path,
default=Path("benchmarks/update/bench_results.csv"),
help="Where to append per-scenario results as CSV.",
)
args = parser.parse_args()
register_project_directory(REPO_ROOT)
initial_paragraphs = load_chunks_from_files(args.initial_files, args.max_initial)
update_paragraphs = load_chunks_from_files(args.update_files, args.max_updates)
if not update_paragraphs:
raise ValueError("No update passages found; please provide --update-files with content.")
update_chunks = prepare_new_chunks(update_paragraphs)
ensure_index_dir(args.index_path)
scenarios = [
("baseline", False, False, True),
("no_cache_baseline", False, False, False),
("disable_forward_rng", True, False, True),
("disable_forward_and_reverse_rng", True, True, True),
]
log_path = Path(os.environ.get("LEANN_HNSW_LOG_PATH", DEFAULT_HNSW_LOG))
log_path.parent.mkdir(parents=True, exist_ok=True)
os.environ["LEANN_HNSW_LOG_PATH"] = str(log_path.resolve())
os.environ.setdefault("LEANN_LOG_LEVEL", "INFO")
results_total: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_add: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_zmq: dict[str, list[int]] = {name: [] for name, *_ in scenarios}
results_stageA: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_stageBC: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_ms_per_passage: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
# CSV setup
import csv
run_id = time.strftime("%Y%m%d-%H%M%S")
csv_fields = [
"run_id",
"scenario",
"cache_enabled",
"ef_construction",
"max_initial",
"max_updates",
"total_time_s",
"add_only_s",
"latency_ms_per_passage",
"zmq_nodes",
"stageA_time_s",
"stageBC_time_s",
"model_name",
"embedding_mode",
"distance_metric",
]
# Create CSV with header if missing
if args.csv_path:
args.csv_path.parent.mkdir(parents=True, exist_ok=True)
if not args.csv_path.exists() or args.csv_path.stat().st_size == 0:
with args.csv_path.open("w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writeheader()
for run in range(args.runs):
print(f"\n=== Benchmark run {run + 1}/{args.runs} ===")
for name, disable_forward, disable_reverse, cache_enabled in scenarios:
print(f"\nScenario: {name}")
cleanup_index_files(args.index_path)
if log_path.exists():
try:
log_path.unlink()
except OSError:
pass
os.environ["LEANN_ZMQ_EMBED_CACHE"] = "1" if cache_enabled else "0"
build_initial_index(
args.index_path,
initial_paragraphs,
args.model_name,
args.embedding_mode,
args.distance_metric,
args.ef_construction,
)
prev_size = log_path.stat().st_size if log_path.exists() else 0
try:
total_elapsed, add_elapsed = benchmark_update_with_mode(
args.index_path,
update_chunks,
args.model_name,
args.embedding_mode,
args.distance_metric,
disable_forward,
disable_reverse,
args.server_port,
args.add_timeout,
args.ef_construction,
)
except TimeoutError as exc:
print(f"Scenario {name} timed out: {exc}")
continue
curr_size = log_path.stat().st_size if log_path.exists() else 0
if curr_size < prev_size:
prev_size = 0
zmq_count = 0
if log_path.exists():
with log_path.open("r", encoding="utf-8") as log_file:
log_file.seek(prev_size)
new_entries = log_file.read()
zmq_count = sum(
int(match) for match in re.findall(r"ZMQ received (\d+) node IDs", new_entries)
)
stageA = sum(
float(x)
for x in re.findall(r"Distance calculation E2E time: ([0-9.]+)s", new_entries)
)
stageBC = sum(
float(x) for x in re.findall(r"ZMQ E2E time: ([0-9.]+)s", new_entries)
)
else:
stageA = 0.0
stageBC = 0.0
per_chunk = add_elapsed / len(update_chunks)
print(
f"Total time: {total_elapsed:.3f} s | add-only: {add_elapsed:.3f} s "
f"for {len(update_chunks)} passages => {per_chunk * 1e3:.3f} ms/passage"
)
print(f"ZMQ node fetch total: {zmq_count}")
results_total[name].append(total_elapsed)
results_add[name].append(add_elapsed)
results_zmq[name].append(zmq_count)
results_ms_per_passage[name].append(per_chunk * 1e3)
results_stageA[name].append(stageA)
results_stageBC[name].append(stageBC)
# Append row to CSV
if args.csv_path:
row = {
"run_id": run_id,
"scenario": name,
"cache_enabled": 1 if cache_enabled else 0,
"ef_construction": args.ef_construction,
"max_initial": args.max_initial,
"max_updates": args.max_updates,
"total_time_s": round(total_elapsed, 6),
"add_only_s": round(add_elapsed, 6),
"latency_ms_per_passage": round(per_chunk * 1e3, 6),
"zmq_nodes": int(zmq_count),
"stageA_time_s": round(stageA, 6),
"stageBC_time_s": round(stageBC, 6),
"model_name": args.model_name,
"embedding_mode": args.embedding_mode,
"distance_metric": args.distance_metric,
}
with args.csv_path.open("a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writerow(row)
print("\n=== Summary ===")
for name in results_add:
add_values = results_add[name]
total_values = results_total[name]
zmq_values = results_zmq[name]
latency_values = results_ms_per_passage[name]
if not add_values:
print(f"{name}: no successful runs")
continue
avg_add = sum(add_values) / len(add_values)
avg_total = sum(total_values) / len(total_values)
avg_zmq = sum(zmq_values) / len(zmq_values) if zmq_values else 0.0
avg_latency = sum(latency_values) / len(latency_values) if latency_values else 0.0
runs = len(add_values)
print(
f"{name}: add-only avg {avg_add:.3f} s | total avg {avg_total:.3f} s "
f"| ZMQ avg {avg_zmq:.1f} node fetches | latency {avg_latency:.2f} ms/passage over {runs} run(s)"
)
if args.plot_path:
try:
import matplotlib.pyplot as plt
labels = [name for name, *_ in scenarios]
values = [
sum(results_ms_per_passage[name]) / len(results_ms_per_passage[name])
if results_ms_per_passage[name]
else 0.0
for name in labels
]
def _auto_cap(vals: list[float]) -> float | None:
s = sorted(vals, reverse=True)
if len(s) < 2:
return None
if s[1] > 0 and s[0] >= 2.5 * s[1]:
return s[1] * 1.1
return None
def _fmt_ms(v: float) -> str:
return f"{v / 1000:.1f}k" if v >= 1000 else f"{v:.1f}"
colors = ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2"]
if args.broken_y:
s = sorted(values, reverse=True)
second = s[1] if len(s) >= 2 else (s[0] if s else 0.0)
lower_cap = args.lower_cap_y if args.lower_cap_y is not None else second * 1.1
upper_start = (
args.upper_start_y
if args.upper_start_y is not None
else max(second * 1.2, lower_cap * 1.02)
)
ymax = max(values) * 1.10 if values else 1.0
fig, (ax_top, ax_bottom) = plt.subplots(
2,
1,
sharex=True,
figsize=(7.4, 5.0),
gridspec_kw={"height_ratios": [1, 3], "hspace": 0.05},
)
x = list(range(len(labels)))
ax_bottom.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_top.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_bottom.set_ylim(0, lower_cap)
ax_top.set_ylim(upper_start, ymax)
for i, v in enumerate(values):
if v <= lower_cap:
ax_bottom.text(
i,
v + lower_cap * 0.02,
_fmt_ms(v),
ha="center",
va="bottom",
fontsize=9,
)
else:
ax_top.text(i, v, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
ax_top.spines["bottom"].set_visible(False)
ax_bottom.spines["top"].set_visible(False)
ax_top.tick_params(labeltop=False)
ax_bottom.xaxis.tick_bottom()
d = 0.015
kwargs = {"transform": ax_top.transAxes, "color": "k", "clip_on": False}
ax_top.plot((-d, +d), (-d, +d), **kwargs)
ax_top.plot((1 - d, 1 + d), (-d, +d), **kwargs)
kwargs.update({"transform": ax_bottom.transAxes})
ax_bottom.plot((-d, +d), (1 - d, 1 + d), **kwargs)
ax_bottom.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs)
ax_bottom.set_xticks(range(len(labels)))
ax_bottom.set_xticklabels(labels)
ax = ax_bottom
else:
cap = args.cap_y or _auto_cap(values)
plt.figure(figsize=(7.2, 4.2))
ax = plt.gca()
if cap is not None:
show_vals = [min(v, cap) for v in values]
bars = []
for i, (v, show) in enumerate(zip(values, show_vals)):
b = ax.bar(i, show, color=colors[i], width=0.8)
bars.append(b[0])
if v > cap:
bars[-1].set_hatch("//")
ax.text(i, cap * 1.02, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
else:
ax.text(
i,
show + max(1.0, 0.01 * (cap or show)),
_fmt_ms(v),
ha="center",
va="bottom",
fontsize=9,
)
ax.set_ylim(0, cap * 1.10)
ax.plot(
[0.02 - 0.02, 0.02 + 0.02],
[0.98 + 0.02, 0.98 - 0.02],
transform=ax.transAxes,
color="k",
lw=1,
)
ax.plot(
[0.98 - 0.02, 0.98 + 0.02],
[0.98 + 0.02, 0.98 - 0.02],
transform=ax.transAxes,
color="k",
lw=1,
)
if any(v > cap for v in values):
ax.legend(
[bars[0]], ["capped"], fontsize=8, frameon=False, loc="upper right"
)
ax.set_xticks(range(len(labels)))
ax.set_xticklabels(labels)
else:
ax.bar(labels, values, color=colors[: len(labels)])
for idx, val in enumerate(values):
ax.text(idx, val + 1.0, f"{val:.1f}", ha="center", va="bottom")
plt.ylabel("Average add latency (ms per passage)")
plt.title(f"Initial passages {args.max_initial}, updates {args.max_updates}")
plt.tight_layout()
plt.savefig(args.plot_path)
print(f"Saved latency bar plot to {args.plot_path}")
# ZMQ time split (Stage A vs B/C)
try:
plt.figure(figsize=(6, 4))
a_vals = [sum(results_stageA[n]) / max(1, len(results_stageA[n])) for n in labels]
bc_vals = [
sum(results_stageBC[n]) / max(1, len(results_stageBC[n])) for n in labels
]
ind = range(len(labels))
plt.bar(ind, a_vals, color="#4e79a7", label="Stage A distance (s)")
plt.bar(
ind, bc_vals, bottom=a_vals, color="#e15759", label="Stage B/C embed-by-id (s)"
)
plt.xticks(list(ind), labels, rotation=10)
plt.ylabel("Server ZMQ time (s)")
plt.title(
f"ZMQ time split (initial {args.max_initial}, updates {args.max_updates})"
)
plt.legend()
out2 = args.plot_path.with_name(
args.plot_path.stem + "_zmq_split" + args.plot_path.suffix
)
plt.tight_layout()
plt.savefig(out2)
print(f"Saved ZMQ time split plot to {out2}")
except Exception as e:
print("Failed to plot ZMQ split:", e)
except ImportError:
print("matplotlib not available; skipping plot generation")
# leave the last build on disk for inspection
if __name__ == "__main__":
main()

View File

@@ -1,5 +0,0 @@
run_id,scenario,cache_enabled,ef_construction,max_initial,max_updates,total_time_s,add_only_s,latency_ms_per_passage,zmq_nodes,stageA_time_s,stageBC_time_s,model_name,embedding_mode,distance_metric
20251024-133101,baseline,1,200,300,1,3.391856,1.120359,1120.359421,126,0.507821,0.601608,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-133101,no_cache_baseline,0,200,300,1,34.941514,32.91376,32913.760185,4033,0.506933,32.159928,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-133101,disable_forward_rng,1,200,300,1,2.746756,0.8202,820.200443,66,0.474354,0.338454,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-133101,disable_forward_and_reverse_rng,1,200,300,1,2.396566,0.521478,521.478415,1,0.508973,0.006938,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
1 run_id scenario cache_enabled ef_construction max_initial max_updates total_time_s add_only_s latency_ms_per_passage zmq_nodes stageA_time_s stageBC_time_s model_name embedding_mode distance_metric
2 20251024-133101 baseline 1 200 300 1 3.391856 1.120359 1120.359421 126 0.507821 0.601608 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
3 20251024-133101 no_cache_baseline 0 200 300 1 34.941514 32.91376 32913.760185 4033 0.506933 32.159928 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
4 20251024-133101 disable_forward_rng 1 200 300 1 2.746756 0.8202 820.200443 66 0.474354 0.338454 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
5 20251024-133101 disable_forward_and_reverse_rng 1 200 300 1 2.396566 0.521478 521.478415 1 0.508973 0.006938 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips

View File

@@ -1,704 +0,0 @@
"""
Compare two latency models for small incremental updates vs. search:
Scenario A (sequential update then search):
- Build initial HNSW (is_recompute=True)
- Start embedding server (ZMQ) for recompute
- Add N passages one-by-one (each triggers recompute over ZMQ)
- Then run a search query on the updated index
- Report total time = sum(add_i) + search_time, with breakdowns
Scenario B (offline embeds + concurrent search; no graph updates):
- Do NOT insert the N passages into the graph
- In parallel: (1) compute embeddings for the N passages; (2) compute query
embedding and run a search on the existing index
- After both finish, compute similarity between the query embedding and the N
new passage embeddings, merge with the index search results by score, and
report time = max(embed_time, search_time) (i.e., no blocking on updates)
This script reuses the model/data loading conventions of
examples/bench_hnsw_rng_recompute.py but focuses on end-to-end latency
comparison for the two execution strategies above.
Example (from the repository root):
uv run -m benchmarks.update.bench_update_vs_offline_search \
--index-path .leann/bench/offline_vs_update.leann \
--max-initial 300 --num-updates 5 --k 10
"""
import argparse
import csv
import json
import logging
import os
import pickle
import sys
import threading
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Any
import numpy as np
import psutil # type: ignore
from leann.api import LeannBuilder
if os.environ.get("LEANN_FORCE_CPU", "").lower() in ("1", "true", "yes"):
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
from leann.embedding_compute import compute_embeddings
from leann.embedding_server_manager import EmbeddingServerManager
from leann.registry import register_project_directory
from leann_backend_hnsw import faiss # type: ignore
logger = logging.getLogger(__name__)
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
def _find_repo_root() -> Path:
"""Locate project root by walking up until pyproject.toml is found."""
current = Path(__file__).resolve()
for parent in current.parents:
if (parent / "pyproject.toml").exists():
return parent
# Fallback: assume repo is two levels up (../..)
return current.parents[2]
REPO_ROOT = _find_repo_root()
if str(REPO_ROOT) not in sys.path:
sys.path.insert(0, str(REPO_ROOT))
from apps.chunking import create_text_chunks # noqa: E402
DEFAULT_INITIAL_FILES = [
REPO_ROOT / "data" / "2501.14312v1 (1).pdf",
REPO_ROOT / "data" / "huawei_pangu.md",
]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
def load_chunks_from_files(paths: list[Path], limit: int | None = None) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
cleaned = [c for c in chunks if isinstance(c, str) and c.strip()]
if limit is not None:
cleaned = cleaned[:limit]
return cleaned
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
distance_metric: str,
ef_construction: int,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=True,
distance_metric=distance_metric,
backend_kwargs={
"distance_metric": distance_metric,
"is_compact": False,
"is_recompute": True,
"efConstruction": ef_construction,
},
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def _maybe_norm_cosine(vecs: np.ndarray, metric: str) -> np.ndarray:
if metric == "cosine":
vecs = np.ascontiguousarray(vecs, dtype=np.float32)
norms = np.linalg.norm(vecs, axis=1, keepdims=True)
norms[norms == 0] = 1
vecs = vecs / norms
return vecs
def _read_index_for_search(index_path: Path) -> Any:
index_file = index_path.parent / f"{index_path.stem}.index"
# Force-disable experimental disk cache when loading the index so that
# incremental benchmarks don't pick up stale top-degree bitmaps.
cfg = faiss.HNSWIndexConfig()
cfg.is_recompute = True
if hasattr(cfg, "disk_cache_ratio"):
cfg.disk_cache_ratio = 0.0
if hasattr(cfg, "external_storage_path"):
cfg.external_storage_path = None
io_flags = getattr(faiss, "IO_FLAG_MMAP", 0)
index = faiss.read_index(str(index_file), io_flags, cfg)
# ensure recompute mode persists after reload
try:
index.is_recompute = True
except AttributeError:
pass
try:
actual_ntotal = index.hnsw.levels.size()
except AttributeError:
actual_ntotal = index.ntotal
if actual_ntotal != index.ntotal:
print(
f"[bench_update_vs_offline_search] Correcting ntotal from {index.ntotal} to {actual_ntotal}",
flush=True,
)
index.ntotal = actual_ntotal
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
else:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
return index
def _append_passages_for_updates(
meta_path: Path,
start_id: int,
texts: list[str],
) -> list[str]:
"""Append update passages so the embedding server can serve recompute fetches."""
if not texts:
return []
index_dir = meta_path.parent
meta_name = meta_path.name
if not meta_name.endswith(".meta.json"):
raise ValueError(f"Unexpected meta filename: {meta_path}")
index_base = meta_name[: -len(".meta.json")]
passages_file = index_dir / f"{index_base}.passages.jsonl"
offsets_file = index_dir / f"{index_base}.passages.idx"
if not passages_file.exists() or not offsets_file.exists():
raise FileNotFoundError(
"Passage store missing; cannot register update passages for recompute mode."
)
with open(offsets_file, "rb") as f:
offset_map: dict[str, int] = pickle.load(f)
assigned_ids: list[str] = []
with open(passages_file, "a", encoding="utf-8") as f:
for i, text in enumerate(texts):
passage_id = str(start_id + i)
offset = f.tell()
json.dump({"id": passage_id, "text": text, "metadata": {}}, f, ensure_ascii=False)
f.write("\n")
offset_map[passage_id] = offset
assigned_ids.append(passage_id)
with open(offsets_file, "wb") as f:
pickle.dump(offset_map, f)
try:
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
except json.JSONDecodeError:
meta = {}
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f, indent=2)
return assigned_ids
def _search(index: Any, q: np.ndarray, k: int) -> tuple[np.ndarray, np.ndarray]:
q = np.ascontiguousarray(q, dtype=np.float32)
distances = np.zeros((1, k), dtype=np.float32)
indices = np.zeros((1, k), dtype=np.int64)
index.search(
1,
faiss.swig_ptr(q),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(indices),
)
return distances[0], indices[0]
def _score_for_metric(dist: float, metric: str) -> float:
# Convert FAISS distance to a "higher is better" score
if metric in ("mips", "cosine"):
return float(dist)
# l2 distance (smaller better) -> negative distance as score
return -float(dist)
def _merge_results(
index_results: tuple[np.ndarray, np.ndarray],
offline_scores: list[tuple[int, float]],
k: int,
metric: str,
) -> list[tuple[str, float]]:
distances, indices = index_results
merged: list[tuple[str, float]] = []
for distance, idx in zip(distances.tolist(), indices.tolist()):
merged.append((f"idx:{idx}", _score_for_metric(distance, metric)))
for j, s in offline_scores:
merged.append((f"offline:{j}", s))
merged.sort(key=lambda x: x[1], reverse=True)
return merged[:k]
@dataclass
class ScenarioResult:
name: str
update_total_s: float
search_s: float
overall_s: float
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/bench/offline-vs-update.leann"),
)
parser.add_argument(
"--initial-files",
nargs="*",
type=Path,
default=DEFAULT_INITIAL_FILES,
)
parser.add_argument(
"--update-files",
nargs="*",
type=Path,
default=DEFAULT_UPDATE_FILES,
)
parser.add_argument("--max-initial", type=int, default=300)
parser.add_argument("--num-updates", type=int, default=5)
parser.add_argument("--k", type=int, default=10, help="Top-k for search/merge")
parser.add_argument(
"--query",
type=str,
default="neural network",
help="Query text used for the search benchmark.",
)
parser.add_argument("--server-port", type=int, default=5557)
parser.add_argument("--add-timeout", type=int, default=600)
parser.add_argument("--model-name", default="sentence-transformers/all-MiniLM-L6-v2")
parser.add_argument("--embedding-mode", default="sentence-transformers")
parser.add_argument(
"--distance-metric",
default="mips",
choices=["mips", "l2", "cosine"],
)
parser.add_argument("--ef-construction", type=int, default=200)
parser.add_argument(
"--only",
choices=["A", "B", "both"],
default="both",
help="Run only Scenario A, Scenario B, or both",
)
parser.add_argument(
"--csv-path",
type=Path,
default=Path("benchmarks/update/offline_vs_update.csv"),
help="Where to append results (CSV).",
)
args = parser.parse_args()
register_project_directory(REPO_ROOT)
# Load data
initial_paragraphs = load_chunks_from_files(args.initial_files, args.max_initial)
update_paragraphs = load_chunks_from_files(args.update_files, None)
if not update_paragraphs:
raise ValueError("No update passages loaded from --update-files")
update_paragraphs = update_paragraphs[: args.num_updates]
if len(update_paragraphs) < args.num_updates:
raise ValueError(
f"Not enough update passages ({len(update_paragraphs)}) for --num-updates={args.num_updates}"
)
ensure_index_dir(args.index_path)
cleanup_index_files(args.index_path)
# Build initial index
build_initial_index(
args.index_path,
initial_paragraphs,
args.model_name,
args.embedding_mode,
args.distance_metric,
args.ef_construction,
)
# Prepare index object and meta
meta_path = args.index_path.parent / f"{args.index_path.name}.meta.json"
index = _read_index_for_search(args.index_path)
# CSV setup
run_id = time.strftime("%Y%m%d-%H%M%S")
if args.csv_path:
args.csv_path.parent.mkdir(parents=True, exist_ok=True)
csv_fields = [
"run_id",
"scenario",
"max_initial",
"num_updates",
"k",
"total_time_s",
"add_total_s",
"search_time_s",
"emb_time_s",
"makespan_s",
"model_name",
"embedding_mode",
"distance_metric",
]
if not args.csv_path.exists() or args.csv_path.stat().st_size == 0:
with args.csv_path.open("w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writeheader()
# Debug: list existing HNSW server PIDs before starting
try:
existing = [
p
for p in psutil.process_iter(attrs=["pid", "cmdline"])
if any(
isinstance(arg, str) and "leann_backend_hnsw.hnsw_embedding_server" in arg
for arg in (p.info.get("cmdline") or [])
)
]
if existing:
print("[debug] Found existing hnsw_embedding_server processes before run:")
for p in existing:
print(f"[debug] PID={p.info['pid']} cmd={' '.join(p.info.get('cmdline') or [])}")
except Exception as _e:
pass
add_total = 0.0
search_after_add = 0.0
total_seq = 0.0
port_a = None
if args.only in ("A", "both"):
# Scenario A: sequential update then search
start_id = index.ntotal
assigned_ids = _append_passages_for_updates(meta_path, start_id, update_paragraphs)
if assigned_ids:
logger.debug(
"Registered %d update passages starting at id %s",
len(assigned_ids),
assigned_ids[0],
)
server_manager = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
ok, port = server_manager.start_server(
port=args.server_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
passages_file=str(meta_path),
distance_metric=args.distance_metric,
)
if not ok:
raise RuntimeError("Failed to start embedding server")
try:
# Set ZMQ port for recompute mode
if hasattr(index.hnsw, "set_zmq_port"):
index.hnsw.set_zmq_port(port)
elif hasattr(index, "set_zmq_port"):
index.set_zmq_port(port)
# Start A overall timer BEFORE computing update embeddings
t0 = time.time()
# Compute embeddings for updates (counted into A's overall)
t_emb0 = time.time()
upd_embs = compute_embeddings(
update_paragraphs,
args.model_name,
mode=args.embedding_mode,
is_build=False,
batch_size=16,
)
emb_time_updates = time.time() - t_emb0
upd_embs = np.asarray(upd_embs, dtype=np.float32)
upd_embs = _maybe_norm_cosine(upd_embs, args.distance_metric)
# Perform sequential adds
for i in range(upd_embs.shape[0]):
t_add0 = time.time()
index.add(1, faiss.swig_ptr(upd_embs[i : i + 1]))
add_total += time.time() - t_add0
# Don't persist index after adds to avoid contaminating Scenario B
# index_file = args.index_path.parent / f"{args.index_path.stem}.index"
# faiss.write_index(index, str(index_file))
# Search after updates
q_emb = compute_embeddings(
[args.query], args.model_name, mode=args.embedding_mode, is_build=False
)
q_emb = np.asarray(q_emb, dtype=np.float32)
q_emb = _maybe_norm_cosine(q_emb, args.distance_metric)
# Warm up search with a dummy query first
print("[DEBUG] Warming up search...")
_ = _search(index, q_emb, 1)
t_s0 = time.time()
D_upd, I_upd = _search(index, q_emb, args.k)
search_after_add = time.time() - t_s0
total_seq = time.time() - t0
finally:
server_manager.stop_server()
port_a = port
print("\n=== Scenario A: update->search (sequential) ===")
# emb_time_updates is defined only when A runs
try:
_emb_a = emb_time_updates
except NameError:
_emb_a = 0.0
print(
f"Adds: {args.num_updates} passages; embeds={_emb_a:.3f}s; add_total={add_total:.3f}s; "
f"search={search_after_add:.3f}s; overall={total_seq:.3f}s"
)
# CSV row for A
if args.csv_path:
row_a = {
"run_id": run_id,
"scenario": "A",
"max_initial": args.max_initial,
"num_updates": args.num_updates,
"k": args.k,
"total_time_s": round(total_seq, 6),
"add_total_s": round(add_total, 6),
"search_time_s": round(search_after_add, 6),
"emb_time_s": round(_emb_a, 6),
"makespan_s": 0.0,
"model_name": args.model_name,
"embedding_mode": args.embedding_mode,
"distance_metric": args.distance_metric,
}
with args.csv_path.open("a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writerow(row_a)
# Verify server cleanup
try:
# short sleep to allow signal handling to finish
time.sleep(0.5)
leftovers = [
p
for p in psutil.process_iter(attrs=["pid", "cmdline"])
if any(
isinstance(arg, str) and "leann_backend_hnsw.hnsw_embedding_server" in arg
for arg in (p.info.get("cmdline") or [])
)
]
if leftovers:
print("[warn] hnsw_embedding_server process(es) still alive after A-stop:")
for p in leftovers:
print(
f"[warn] PID={p.info['pid']} cmd={' '.join(p.info.get('cmdline') or [])}"
)
else:
print("[debug] server cleanup confirmed: no hnsw_embedding_server found")
except Exception:
pass
# Scenario B: offline embeds + concurrent search (no graph updates)
if args.only in ("B", "both"):
# ensure a server is available for recompute search
server_manager_b = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
requested_port = args.server_port if port_a is None else port_a
ok_b, port_b = server_manager_b.start_server(
port=requested_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
passages_file=str(meta_path),
distance_metric=args.distance_metric,
)
if not ok_b:
raise RuntimeError("Failed to start embedding server for Scenario B")
# Wait for server to fully initialize
print("[DEBUG] Waiting 2s for embedding server to fully initialize...")
time.sleep(2)
try:
# Read the index first
index_no_update = _read_index_for_search(args.index_path) # unchanged index
# Then configure ZMQ port on the correct index object
if hasattr(index_no_update.hnsw, "set_zmq_port"):
index_no_update.hnsw.set_zmq_port(port_b)
elif hasattr(index_no_update, "set_zmq_port"):
index_no_update.set_zmq_port(port_b)
# Warmup the embedding model before benchmarking (do this for both --only B and --only both)
# This ensures fair comparison as Scenario A has warmed up the model during update embeddings
logger.info("Warming up embedding model for Scenario B...")
_ = compute_embeddings(
["warmup text"], args.model_name, mode=args.embedding_mode, is_build=False
)
# Prepare worker A: compute embeddings for the same N passages
emb_time = 0.0
updates_embs_offline: np.ndarray | None = None
def _worker_emb():
nonlocal emb_time, updates_embs_offline
t = time.time()
updates_embs_offline = compute_embeddings(
update_paragraphs,
args.model_name,
mode=args.embedding_mode,
is_build=False,
batch_size=16,
)
emb_time = time.time() - t
# Pre-compute query embedding and warm up search outside of timed section.
q_vec = compute_embeddings(
[args.query], args.model_name, mode=args.embedding_mode, is_build=False
)
q_vec = np.asarray(q_vec, dtype=np.float32)
q_vec = _maybe_norm_cosine(q_vec, args.distance_metric)
print("[DEBUG B] Warming up search...")
_ = _search(index_no_update, q_vec, 1)
# Worker B: timed search on the warmed index
search_time = 0.0
offline_elapsed = 0.0
index_results: tuple[np.ndarray, np.ndarray] | None = None
def _worker_search():
nonlocal search_time, index_results
t = time.time()
distances, indices = _search(index_no_update, q_vec, args.k)
search_time = time.time() - t
index_results = (distances, indices)
# Run two workers concurrently
t0 = time.time()
th1 = threading.Thread(target=_worker_emb)
th2 = threading.Thread(target=_worker_search)
th1.start()
th2.start()
th1.join()
th2.join()
offline_elapsed = time.time() - t0
# For mixing: compute query vs. offline update similarities (pure client-side)
offline_scores: list[tuple[int, float]] = []
if updates_embs_offline is not None:
upd2 = np.asarray(updates_embs_offline, dtype=np.float32)
upd2 = _maybe_norm_cosine(upd2, args.distance_metric)
# For mips/cosine, score = dot; for l2, score = -||x-y||^2
for j in range(upd2.shape[0]):
if args.distance_metric in ("mips", "cosine"):
s = float(np.dot(q_vec[0], upd2[j]))
else:
diff = q_vec[0] - upd2[j]
s = -float(np.dot(diff, diff))
offline_scores.append((j, s))
merged_topk = (
_merge_results(index_results, offline_scores, args.k, args.distance_metric)
if index_results
else []
)
print("\n=== Scenario B: offline embeds + concurrent search (no add) ===")
print(
f"embeddings({args.num_updates})={emb_time:.3f}s; search={search_time:.3f}s; makespan≈{offline_elapsed:.3f}s (≈max)"
)
if merged_topk:
preview = ", ".join([f"{lab}:{score:.3f}" for lab, score in merged_topk[:5]])
print(f"Merged top-5 preview: {preview}")
# CSV row for B
if args.csv_path:
row_b = {
"run_id": run_id,
"scenario": "B",
"max_initial": args.max_initial,
"num_updates": args.num_updates,
"k": args.k,
"total_time_s": 0.0,
"add_total_s": 0.0,
"search_time_s": round(search_time, 6),
"emb_time_s": round(emb_time, 6),
"makespan_s": round(offline_elapsed, 6),
"model_name": args.model_name,
"embedding_mode": args.embedding_mode,
"distance_metric": args.distance_metric,
}
with args.csv_path.open("a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writerow(row_b)
finally:
server_manager_b.stop_server()
# Summary
print("\n=== Summary ===")
msg_a = (
f"A: seq-add+search overall={total_seq:.3f}s (adds={add_total:.3f}s, search={search_after_add:.3f}s)"
if args.only in ("A", "both")
else "A: skipped"
)
msg_b = (
f"B: offline+concurrent overall≈{offline_elapsed:.3f}s (emb={emb_time:.3f}s, search={search_time:.3f}s)"
if args.only in ("B", "both")
else "B: skipped"
)
print(msg_a + "\n" + msg_b)
if __name__ == "__main__":
main()

View File

@@ -1,5 +0,0 @@
run_id,scenario,max_initial,num_updates,k,total_time_s,add_total_s,search_time_s,emb_time_s,makespan_s,model_name,embedding_mode,distance_metric
20251024-141607,A,300,1,10,3.273957,3.050168,0.097825,0.017339,0.0,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-141607,B,300,1,10,0.0,0.0,0.111892,0.007869,0.112635,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251025-160652,A,300,5,10,5.061945,4.805962,0.123271,0.015008,0.0,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251025-160652,B,300,5,10,0.0,0.0,0.101809,0.008817,0.102447,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
1 run_id scenario max_initial num_updates k total_time_s add_total_s search_time_s emb_time_s makespan_s model_name embedding_mode distance_metric
2 20251024-141607 A 300 1 10 3.273957 3.050168 0.097825 0.017339 0.0 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
3 20251024-141607 B 300 1 10 0.0 0.0 0.111892 0.007869 0.112635 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
4 20251025-160652 A 300 5 10 5.061945 4.805962 0.123271 0.015008 0.0 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
5 20251025-160652 B 300 5 10 0.0 0.0 0.101809 0.008817 0.102447 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips

View File

@@ -1,645 +0,0 @@
#!/usr/bin/env python3
"""
Plot latency bars from the benchmark CSV produced by
benchmarks/update/bench_hnsw_rng_recompute.py.
If you also provide an offline_vs_update.csv via --csv-right
(from benchmarks/update/bench_update_vs_offline_search.py), this script will
output a side-by-side figure:
- Left: ms/passage bars (four RNG scenarios).
- Right: seconds bars (Scenario A seq add+search vs Scenario B offline+search).
Usage:
uv run python benchmarks/update/plot_bench_results.py \
--csv benchmarks/update/bench_results.csv \
--out benchmarks/update/bench_latency_from_csv.png
The script selects the latest run_id in the CSV and plots four bars for
the default scenarios:
- baseline
- no_cache_baseline
- disable_forward_rng
- disable_forward_and_reverse_rng
If multiple rows exist per scenario for that run_id, the script averages
their latency_ms_per_passage values.
"""
import argparse
import csv
from collections import defaultdict
from pathlib import Path
DEFAULT_SCENARIOS = [
"no_cache_baseline",
"baseline",
"disable_forward_rng",
"disable_forward_and_reverse_rng",
]
SCENARIO_LABELS = {
"baseline": "+ Cache",
"no_cache_baseline": "Naive \n Recompute",
"disable_forward_rng": "+ w/o \n Fwd RNG",
"disable_forward_and_reverse_rng": "+ w/o \n Bwd RNG",
}
# Paper-style colors and hatches for scenarios
SCENARIO_STYLES = {
"no_cache_baseline": {"edgecolor": "dimgrey", "hatch": "/////"},
"baseline": {"edgecolor": "#63B8B6", "hatch": "xxxxx"},
"disable_forward_rng": {"edgecolor": "green", "hatch": "....."},
"disable_forward_and_reverse_rng": {"edgecolor": "tomato", "hatch": "\\\\\\\\\\"},
}
def load_latest_run(csv_path: Path):
rows = []
with csv_path.open("r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
rows.append(row)
if not rows:
raise SystemExit("CSV is empty: no rows to plot")
# Choose latest run_id lexicographically (YYYYMMDD-HHMMSS)
run_ids = [r.get("run_id", "") for r in rows]
latest = max(run_ids)
latest_rows = [r for r in rows if r.get("run_id", "") == latest]
if not latest_rows:
# Fallback: take last 4 rows
latest_rows = rows[-4:]
latest = latest_rows[-1].get("run_id", "unknown")
return latest, latest_rows
def aggregate_latency(rows):
acc = defaultdict(list)
for r in rows:
sc = r.get("scenario", "")
try:
val = float(r.get("latency_ms_per_passage", "nan"))
except ValueError:
continue
acc[sc].append(val)
avg = {k: (sum(v) / len(v) if v else 0.0) for k, v in acc.items()}
return avg
def _auto_cap(values: list[float]) -> float | None:
if not values:
return None
sorted_vals = sorted(values, reverse=True)
if len(sorted_vals) < 2:
return None
max_v, second = sorted_vals[0], sorted_vals[1]
if second <= 0:
return None
# If the tallest bar dwarfs the second by 2.5x+, cap near the second
if max_v >= 2.5 * second:
return second * 1.1
return None
def _add_break_marker(ax, y, rel_x0=0.02, rel_x1=0.98, size=0.02):
# Draw small diagonal ticks near left/right to signal cap
x0, x1 = rel_x0, rel_x1
ax.plot([x0 - size, x0 + size], [y + size, y - size], transform=ax.transAxes, color="k", lw=1)
ax.plot([x1 - size, x1 + size], [y + size, y - size], transform=ax.transAxes, color="k", lw=1)
def _fmt_ms(v: float) -> str:
if v >= 1000:
return f"{v / 1000:.1f}k"
return f"{v:.1f}"
def main():
# Set LaTeX style for paper figures (matching paper_fig.py)
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "Helvetica"
plt.rcParams["ytick.direction"] = "in"
plt.rcParams["hatch.linewidth"] = 1.5
plt.rcParams["font.weight"] = "bold"
plt.rcParams["axes.labelweight"] = "bold"
plt.rcParams["text.usetex"] = True
ap = argparse.ArgumentParser(description=__doc__)
ap.add_argument(
"--csv",
type=Path,
default=Path("benchmarks/update/bench_results.csv"),
help="Path to results CSV (defaults to bench_results.csv)",
)
ap.add_argument(
"--out",
type=Path,
default=Path("add_ablation.pdf"),
help="Output image path",
)
ap.add_argument(
"--csv-right",
type=Path,
default=Path("benchmarks/update/offline_vs_update.csv"),
help="Optional: offline_vs_update.csv to render right subplot (A vs B)",
)
ap.add_argument(
"--cap-y",
type=float,
default=None,
help="Cap Y-axis at this ms value; bars above are hatched and annotated.",
)
ap.add_argument(
"--no-auto-cap",
action="store_true",
help="Disable auto-cap heuristic when --cap-y is not provided.",
)
ap.add_argument(
"--broken-y",
action="store_true",
default=True,
help="Use a broken Y-axis (two stacked axes with a gap). Overrides --cap-y unless both provided.",
)
ap.add_argument(
"--lower-cap-y",
type=float,
default=None,
help="Lower axes upper bound for broken Y (ms). Default = 1.1x second-highest.",
)
ap.add_argument(
"--upper-start-y",
type=float,
default=None,
help="Upper axes lower bound for broken Y (ms). Default = 1.2x second-highest.",
)
args = ap.parse_args()
latest_run, latest_rows = load_latest_run(args.csv)
avg = aggregate_latency(latest_rows)
try:
import matplotlib.pyplot as plt
except Exception as e:
raise SystemExit(f"matplotlib not available: {e}")
scenarios = DEFAULT_SCENARIOS
values = [avg.get(name, 0.0) for name in scenarios]
labels = [SCENARIO_LABELS.get(name, name) for name in scenarios]
colors = ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2"]
# If right CSV is provided, build side-by-side figure
if args.csv_right is not None:
try:
right_rows_all = []
with args.csv_right.open("r", encoding="utf-8") as f:
rreader = csv.DictReader(f)
right_rows_all = list(rreader)
if right_rows_all:
r_latest = max(r.get("run_id", "") for r in right_rows_all)
right_rows = [r for r in right_rows_all if r.get("run_id", "") == r_latest]
else:
r_latest = None
right_rows = []
except Exception:
r_latest = None
right_rows = []
a_total = 0.0
b_makespan = 0.0
for r in right_rows:
sc = (r.get("scenario", "") or "").strip().upper()
if sc == "A":
try:
a_total = float(r.get("total_time_s", 0.0))
except Exception:
pass
elif sc == "B":
try:
b_makespan = float(r.get("makespan_s", 0.0))
except Exception:
pass
import matplotlib.pyplot as plt
from matplotlib import gridspec
# Left subplot (reuse current style, with optional cap)
cap = args.cap_y
if cap is None and not args.no_auto_cap:
cap = _auto_cap(values)
x = list(range(len(labels)))
if args.broken_y:
# Use broken axis for left subplot
# Auto-adjust width ratios: left has 4 bars, right has 2 bars
fig = plt.figure(figsize=(4.8, 1.8)) # Scaled down to 80%
gs = gridspec.GridSpec(
2, 2, height_ratios=[1, 3], width_ratios=[1.5, 1], hspace=0.08, wspace=0.35
)
ax_left_top = fig.add_subplot(gs[0, 0])
ax_left_bottom = fig.add_subplot(gs[1, 0], sharex=ax_left_top)
ax_right = fig.add_subplot(gs[:, 1])
# Determine break points
s = sorted(values, reverse=True)
second = s[1] if len(s) >= 2 else (s[0] if s else 0.0)
lower_cap = (
args.lower_cap_y if args.lower_cap_y is not None else second * 1.4
) # Increased to show more range
upper_start = (
args.upper_start_y
if args.upper_start_y is not None
else max(second * 1.5, lower_cap * 1.02)
)
ymax = (
max(values) * 1.90 if values else 1.0
) # Increase headroom to 1.90 for text label and tick range
# Draw bars on both axes
ax_left_bottom.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_left_top.bar(x, values, color=colors[: len(labels)], width=0.8)
# Set limits
ax_left_bottom.set_ylim(0, lower_cap)
ax_left_top.set_ylim(upper_start, ymax)
# Annotate values (convert ms to s)
values_s = [v / 1000.0 for v in values]
lower_cap_s = lower_cap / 1000.0
upper_start_s = upper_start / 1000.0
ymax_s = ymax / 1000.0
ax_left_bottom.set_ylim(0, lower_cap_s)
ax_left_top.set_ylim(upper_start_s, ymax_s)
# Redraw bars with s values (paper style: white fill + colored edge + hatch)
ax_left_bottom.clear()
ax_left_top.clear()
bar_width = 0.50 # Reduced for wider spacing between bars
for i, (scenario_name, v) in enumerate(zip(scenarios, values_s)):
style = SCENARIO_STYLES.get(scenario_name, {"edgecolor": "black", "hatch": ""})
# Draw in bottom axis for all bars
ax_left_bottom.bar(
i,
v,
width=bar_width,
color="white",
edgecolor=style["edgecolor"],
hatch=style["hatch"],
linewidth=1.2,
)
# Only draw in top axis if the bar is tall enough to reach the upper range
if v > upper_start_s:
ax_left_top.bar(
i,
v,
width=bar_width,
color="white",
edgecolor=style["edgecolor"],
hatch=style["hatch"],
linewidth=1.2,
)
ax_left_bottom.set_ylim(0, lower_cap_s)
ax_left_top.set_ylim(upper_start_s, ymax_s)
for i, v in enumerate(values_s):
if v <= lower_cap_s:
ax_left_bottom.text(
i,
v + lower_cap_s * 0.02,
f"{v:.2f}",
ha="center",
va="bottom",
fontsize=8,
fontweight="bold",
)
else:
ax_left_top.text(
i,
v + (ymax_s - upper_start_s) * 0.02,
f"{v:.2f}",
ha="center",
va="bottom",
fontsize=8,
fontweight="bold",
)
# Hide spines between axes
ax_left_top.spines["bottom"].set_visible(False)
ax_left_bottom.spines["top"].set_visible(False)
ax_left_top.tick_params(
labeltop=False, labelbottom=False, bottom=False
) # Hide tick marks
ax_left_bottom.xaxis.tick_bottom()
ax_left_bottom.tick_params(top=False) # Hide top tick marks
# Draw break marks (matching paper_fig.py style)
d = 0.015
kwargs = {
"transform": ax_left_top.transAxes,
"color": "k",
"clip_on": False,
"linewidth": 0.8,
"zorder": 10,
}
ax_left_top.plot((-d, +d), (-d, +d), **kwargs)
ax_left_top.plot((1 - d, 1 + d), (-d, +d), **kwargs)
kwargs.update({"transform": ax_left_bottom.transAxes})
ax_left_bottom.plot((-d, +d), (1 - d, 1 + d), **kwargs)
ax_left_bottom.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs)
ax_left_bottom.set_xticks(x)
ax_left_bottom.set_xticklabels(labels, rotation=0, fontsize=7)
# Don't set ylabel here - will use fig.text for alignment
ax_left_bottom.tick_params(axis="y", labelsize=10)
ax_left_top.tick_params(axis="y", labelsize=10)
# Add subtle grid for better readability
ax_left_bottom.grid(axis="y", alpha=0.3, linestyle="--", linewidth=0.5)
ax_left_top.grid(axis="y", alpha=0.3, linestyle="--", linewidth=0.5)
ax_left_top.set_title("Single Add Operation", fontsize=11, pad=10, fontweight="bold")
# Set x-axis limits to match bar width with right subplot
ax_left_bottom.set_xlim(-0.6, 3.6)
ax_left_top.set_xlim(-0.6, 3.6)
ax_left = ax_left_bottom # for compatibility
else:
# Regular side-by-side layout
fig, (ax_left, ax_right) = plt.subplots(1, 2, figsize=(8.4, 3.15))
if cap is not None:
show_vals = [min(v, cap) for v in values]
bars = ax_left.bar(x, show_vals, color=colors[: len(labels)], width=0.8)
for i, (val, show) in enumerate(zip(values, show_vals)):
if val > cap:
bars[i].set_hatch("//")
ax_left.text(
i, cap * 1.02, _fmt_ms(val), ha="center", va="bottom", fontsize=9
)
else:
ax_left.text(
i,
show + max(1.0, 0.01 * (cap or show)),
_fmt_ms(val),
ha="center",
va="bottom",
fontsize=9,
)
ax_left.set_ylim(0, cap * 1.10)
_add_break_marker(ax_left, y=0.98)
ax_left.set_xticks(x)
ax_left.set_xticklabels(labels, rotation=0, fontsize=10)
else:
ax_left.bar(x, values, color=colors[: len(labels)], width=0.8)
for i, v in enumerate(values):
ax_left.text(i, v + 1.0, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
ax_left.set_xticks(x)
ax_left.set_xticklabels(labels, rotation=0, fontsize=10)
ax_left.set_ylabel("Latency (ms per passage)")
max_initial = latest_rows[0].get("max_initial", "?")
max_updates = latest_rows[0].get("max_updates", "?")
ax_left.set_title(
f"HNSW RNG (run {latest_run}) | init={max_initial}, upd={max_updates}"
)
# Right subplot (A vs B, seconds) - paper style
r_labels = ["Sequential", "Delayed \n Add+Search"]
r_values = [a_total or 0.0, b_makespan or 0.0]
r_styles = [
{"edgecolor": "#59a14f", "hatch": "xxxxx"},
{"edgecolor": "#edc948", "hatch": "/////"},
]
# 2 bars, centered with proper spacing
xr = [0, 1]
bar_width = 0.50 # Reduced for wider spacing between bars
for i, (v, style) in enumerate(zip(r_values, r_styles)):
ax_right.bar(
xr[i],
v,
width=bar_width,
color="white",
edgecolor=style["edgecolor"],
hatch=style["hatch"],
linewidth=1.2,
)
for i, v in enumerate(r_values):
max_v = max(r_values) if r_values else 1.0
offset = max(0.0002, 0.02 * max_v)
ax_right.text(
xr[i],
v + offset,
f"{v:.2f}",
ha="center",
va="bottom",
fontsize=8,
fontweight="bold",
)
ax_right.set_xticks(xr)
ax_right.set_xticklabels(r_labels, rotation=0, fontsize=7)
# Don't set ylabel here - will use fig.text for alignment
ax_right.tick_params(axis="y", labelsize=10)
# Add subtle grid for better readability
ax_right.grid(axis="y", alpha=0.3, linestyle="--", linewidth=0.5)
ax_right.set_title("Batched Add Operation", fontsize=11, pad=10, fontweight="bold")
# Set x-axis limits to match left subplot's bar width visually
# Accounting for width_ratios=[1.5, 1]:
# Left: 4 bars, xlim(-0.6, 3.6), range=4.2, physical_width=1.5*unit
# bar_width_visual = 0.72 * (1.5*unit / 4.2)
# Right: 2 bars, need same visual width
# 0.72 * (1.0*unit / range_right) = 0.72 * (1.5*unit / 4.2)
# range_right = 4.2 / 1.5 = 2.8
# For bars at 0, 1: padding = (2.8 - 1) / 2 = 0.9
ax_right.set_xlim(-0.9, 1.9)
# Set y-axis limit with headroom for text labels
if r_values:
max_v = max(r_values)
ax_right.set_ylim(0, max_v * 1.15)
# Format y-axis to avoid scientific notation
ax_right.ticklabel_format(style="plain", axis="y")
plt.tight_layout()
# Add aligned ylabels using fig.text (after tight_layout)
# Get the vertical center of the entire figure
fig_center_y = 0.5
# Left ylabel - closer to left plot
left_x = 0.05
fig.text(
left_x,
fig_center_y,
"Latency (s)",
va="center",
rotation="vertical",
fontsize=11,
fontweight="bold",
)
# Right ylabel - closer to right plot
right_bbox = ax_right.get_position()
right_x = right_bbox.x0 - 0.07
fig.text(
right_x,
fig_center_y,
"Latency (s)",
va="center",
rotation="vertical",
fontsize=11,
fontweight="bold",
)
plt.savefig(args.out, bbox_inches="tight", pad_inches=0.05)
# Also save PDF for paper
pdf_out = args.out.with_suffix(".pdf")
plt.savefig(pdf_out, bbox_inches="tight", pad_inches=0.05)
print(f"Saved: {args.out}")
print(f"Saved: {pdf_out}")
return
# Broken-Y mode
if args.broken_y:
import matplotlib.pyplot as plt
fig, (ax_top, ax_bottom) = plt.subplots(
2,
1,
sharex=True,
figsize=(7.5, 6.75),
gridspec_kw={"height_ratios": [1, 3], "hspace": 0.08},
)
# Determine default breaks from second-highest
s = sorted(values, reverse=True)
second = s[1] if len(s) >= 2 else (s[0] if s else 0.0)
lower_cap = args.lower_cap_y if args.lower_cap_y is not None else second * 1.1
upper_start = (
args.upper_start_y
if args.upper_start_y is not None
else max(second * 1.2, lower_cap * 1.02)
)
ymax = max(values) * 1.10 if values else 1.0
x = list(range(len(labels)))
ax_bottom.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_top.bar(x, values, color=colors[: len(labels)], width=0.8)
# Limits
ax_bottom.set_ylim(0, lower_cap)
ax_top.set_ylim(upper_start, ymax)
# Annotate values
for i, v in enumerate(values):
if v <= lower_cap:
ax_bottom.text(
i, v + lower_cap * 0.02, _fmt_ms(v), ha="center", va="bottom", fontsize=9
)
else:
ax_top.text(i, v, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
# Hide spines between axes and draw diagonal break marks
ax_top.spines["bottom"].set_visible(False)
ax_bottom.spines["top"].set_visible(False)
ax_top.tick_params(labeltop=False) # don't put tick labels at the top
ax_bottom.xaxis.tick_bottom()
# Diagonal lines at the break (matching paper_fig.py style)
d = 0.015
kwargs = {
"transform": ax_top.transAxes,
"color": "k",
"clip_on": False,
"linewidth": 0.8,
"zorder": 10,
}
ax_top.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax_top.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update({"transform": ax_bottom.transAxes})
ax_bottom.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax_bottom.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
ax_bottom.set_xticks(x)
ax_bottom.set_xticklabels(labels, rotation=0, fontsize=10)
ax = ax_bottom # for labeling below
else:
cap = args.cap_y
if cap is None and not args.no_auto_cap:
cap = _auto_cap(values)
plt.figure(figsize=(5.4, 3.15))
ax = plt.gca()
if cap is not None:
show_vals = [min(v, cap) for v in values]
bars = []
for i, (_label, val, show) in enumerate(zip(labels, values, show_vals)):
bar = ax.bar(i, show, color=colors[i], width=0.8)
bars.append(bar[0])
# Hatch and annotate when capped
if val > cap:
bars[-1].set_hatch("//")
ax.text(i, cap * 1.02, f"{_fmt_ms(val)}", ha="center", va="bottom", fontsize=9)
else:
ax.text(
i,
show + max(1.0, 0.01 * (cap or show)),
f"{_fmt_ms(val)}",
ha="center",
va="bottom",
fontsize=9,
)
ax.set_ylim(0, cap * 1.10)
_add_break_marker(ax, y=0.98)
ax.legend([bars[1]], ["capped"], fontsize=8, frameon=False, loc="upper right") if any(
v > cap for v in values
) else None
ax.set_xticks(range(len(labels)))
ax.set_xticklabels(labels, fontsize=11, fontweight="bold")
else:
ax.bar(labels, values, color=colors[: len(labels)])
for idx, val in enumerate(values):
ax.text(
idx,
val + 1.0,
f"{_fmt_ms(val)}",
ha="center",
va="bottom",
fontsize=10,
fontweight="bold",
)
ax.set_xticklabels(labels, fontsize=11, fontweight="bold")
# Try to extract some context for title
max_initial = latest_rows[0].get("max_initial", "?")
max_updates = latest_rows[0].get("max_updates", "?")
if args.broken_y:
fig.text(
0.02,
0.5,
"Latency (s)",
va="center",
rotation="vertical",
fontsize=11,
fontweight="bold",
)
fig.suptitle(
"Add Operation Latency",
fontsize=11,
y=0.98,
fontweight="bold",
)
plt.tight_layout(rect=(0.03, 0.04, 1, 0.96))
else:
plt.ylabel("Latency (s)", fontsize=11, fontweight="bold")
plt.title("Add Operation Latency", fontsize=11, fontweight="bold")
plt.tight_layout()
plt.savefig(args.out, bbox_inches="tight", pad_inches=0.05)
# Also save PDF for paper
pdf_out = args.out.with_suffix(".pdf")
plt.savefig(pdf_out, bbox_inches="tight", pad_inches=0.05)
print(f"Saved: {args.out}")
print(f"Saved: {pdf_out}")
if __name__ == "__main__":
main()

View File

@@ -1,200 +0,0 @@
# ColQwen Integration Guide
Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali models.
## Quick Start
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
### 1. Install Dependencies
```bash
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
### 2. Basic Usage
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
## Commands
### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 \
--pages-dir ./page_images/ # Optional: save page images
```
**Options:**
- `--pdfs`: Directory containing PDF files (or single PDF path)
- `--index`: Name for the index (required)
- `--model`: `colqwen2` (default) or `colpali`
- `--pages-dir`: Directory to save page images (optional)
### Search Index
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
**Options:**
- `--top-k`: Number of results to return (default: 5)
- `--model`: Model used for search (should match build model)
### Interactive Q&A
```bash
python -m apps.colqwen_rag ask my_index --interactive
```
**Commands in interactive mode:**
- Type your questions naturally
- `help`: Show available commands
- `quit`/`exit`/`q`: Exit interactive mode
## 🧪 Test & Reproduce Results
Run the reproduction test for issue #119:
```bash
python test_colqwen_reproduction.py
```
This will:
1. ✅ Check dependencies
2. 📥 Download sample PDF (Attention Is All You Need paper)
3. 🏗️ Build test index
4. 🔍 Run sample queries
5. 📊 Show how to generate similarity maps
## 🎨 Advanced: Similarity Maps
For visual similarity analysis, use the existing advanced script:
```bash
cd apps/multimodal/vision-based-pdf-multi-vector/
python multi-vector-leann-similarity-map.py
```
Edit the script to customize:
- `QUERY`: Your question
- `MODEL`: "colqwen2" or "colpali"
- `USE_HF_DATASET`: Use HuggingFace dataset or local PDFs
- `SIMILARITY_MAP`: Generate heatmaps
- `ANSWER`: Enable Qwen-VL answer generation
## 🔧 How It Works
### ColQwen2 vs ColPali
- **ColQwen2** (`vidore/colqwen2-v1.0`): Latest vision-language model
- **ColPali** (`vidore/colpali-v1.2`): Proven multimodal retriever
### Architecture
1. **PDF → Images**: Convert PDF pages to images (150 DPI)
2. **Vision Encoding**: Process images with ColQwen2/ColPali
3. **Multi-Vector Index**: Build LEANN HNSW index with multiple embeddings per page
4. **Query Processing**: Encode text queries with same model
5. **Similarity Search**: Find most relevant pages/regions
6. **Visual Maps**: Generate attention heatmaps (optional)
### Device Support
- **CUDA**: Best performance with GPU acceleration
- **MPS**: Apple Silicon Mac support
- **CPU**: Fallback for any system (slower)
Auto-detection: CUDA > MPS > CPU
## 📊 Performance Tips
### For Best Performance:
```bash
# Use ColQwen2 for latest features
--model colqwen2
# Save page images for reuse
--pages-dir ./cached_pages/
# Adjust batch size based on GPU memory
# (automatically handled)
```
### For Large Document Sets:
- Process PDFs in batches
- Use SSD storage for index files
- Consider using CUDA if available
## 🔗 Related Resources
- **Fast-PLAID**: https://github.com/lightonai/fast-plaid
- **Pylate**: https://github.com/lightonai/pylate
- **ColBERT**: https://github.com/stanford-futuredata/ColBERT
- **ColPali Paper**: Vision-Language Models for Document Retrieval
- **Issue #119**: https://github.com/yichuan-w/LEANN/issues/119
## 🐛 Troubleshooting
### PDF Conversion Issues (macOS)
```bash
# Install poppler
brew install poppler
which pdfinfo && pdfinfo -v
```
### Memory Issues
- Reduce batch size (automatically handled)
- Use CPU instead of GPU: `export CUDA_VISIBLE_DEVICES=""`
- Process fewer PDFs at once
### Model Download Issues
- Ensure internet connection for first run
- Models are cached after first download
- Use HuggingFace mirrors if needed
### Import Errors
```bash
# Ensure all dependencies installed
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
# Check PyTorch installation
python -c "import torch; print(torch.__version__)"
```
## 💡 Examples
### Research Paper Analysis
```bash
# Index your research papers
python -m apps.colqwen_rag build --pdfs ~/Papers/AI/ --index ai_papers
# Ask research questions
python -m apps.colqwen_rag search ai_papers "What are the limitations of transformer models?"
python -m apps.colqwen_rag search ai_papers "How does BERT compare to GPT?"
```
### Document Q&A
```bash
# Index business documents
python -m apps.colqwen_rag build --pdfs ~/Documents/Reports/ --index reports
# Interactive analysis
python -m apps.colqwen_rag ask reports --interactive
```
### Visual Analysis
```bash
# Generate similarity maps for specific queries
cd apps/multimodal/vision-based-pdf-multi-vector/
# Edit multi-vector-leann-similarity-map.py with your query
python multi-vector-leann-similarity-map.py
# Check ./figures/ for generated heatmaps
```
---
**🎯 This integration makes ColQwen as easy to use as other LEANN features while maintaining the full power of multimodal document understanding!**

View File

@@ -53,9 +53,9 @@ We use pre-commit hooks to ensure code quality and consistency. This runs automa
### Setup Pre-commit ### Setup Pre-commit
1. **Install pre-commit tools**: 1. **Install pre-commit** (already included when you run `uv sync`):
```bash ```bash
uv sync lint uv pip install pre-commit
``` ```
2. **Install the git hooks**: 2. **Install the git hooks**:
@@ -65,7 +65,7 @@ We use pre-commit hooks to ensure code quality and consistency. This runs automa
3. **Run pre-commit manually** (optional): 3. **Run pre-commit manually** (optional):
```bash ```bash
uv run pre-commit run --all-files pre-commit run --all-files
``` ```
### Pre-commit Checks ### Pre-commit Checks
@@ -85,9 +85,6 @@ Our pre-commit configuration includes:
### Running Tests ### Running Tests
```bash ```bash
# Install test tools only (no project runtime)
uv sync --group test
# Run all tests # Run all tests
uv run pytest uv run pytest

View File

@@ -26,21 +26,6 @@ leann build my-code-index --docs ./src --use-ast-chunking
uv pip install -e "." uv pip install -e "."
``` ```
#### For normal users (PyPI install)
- Use `pip install leann` or `uv pip install leann`.
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
#### For developers (from source, editable)
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
uv sync
```
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
## Best Practices ## Best Practices
### When to Use AST Chunking ### When to Use AST Chunking

View File

@@ -83,170 +83,6 @@ ollama pull nomic-embed-text
</details> </details>
## Local & Remote Inference Endpoints
> Applies to both LLMs (`leann ask`) and embeddings (`leann build`).
LEANN now treats Ollama, LM Studio, and other OpenAI-compatible runtimes as first-class providers. You can point LEANN at any compatible endpoint either on the same machine or across the network with a couple of flags or environment variables.
### One-Time Environment Setup
```bash
# Works for OpenAI-compatible runtimes such as LM Studio, vLLM, SGLang, llamafile, etc.
export OPENAI_API_KEY="your-key" # or leave unset for local servers that do not check keys
export OPENAI_BASE_URL="http://localhost:1234/v1"
# Ollama-compatible runtimes (Ollama, Ollama on another host, llamacpp-server, etc.)
export LEANN_OLLAMA_HOST="http://localhost:11434" # falls back to OLLAMA_HOST or LOCAL_LLM_ENDPOINT
```
LEANN also recognises `LEANN_LOCAL_LLM_HOST` (highest priority), `LEANN_OPENAI_BASE_URL`, and `LOCAL_OPENAI_BASE_URL`, so existing scripts continue to work.
### Passing Hosts Per Command
```bash
# Build an index with a remote embedding server
leann build my-notes \
--docs ./notes \
--embedding-mode openai \
--embedding-model text-embedding-qwen3-embedding-0.6b \
--embedding-api-base http://192.168.1.50:1234/v1 \
--embedding-api-key local-dev-key
# Query using a local LM Studio instance via OpenAI-compatible API
leann ask my-notes \
--llm openai \
--llm-model qwen3-8b \
--api-base http://localhost:1234/v1 \
--api-key local-dev-key
# Query an Ollama instance running on another box
leann ask my-notes \
--llm ollama \
--llm-model qwen3:14b \
--host http://192.168.1.101:11434
```
⚠️ **Make sure the endpoint is reachable**: when your inference server runs on a home/workstation and the index/search job runs in the cloud, the server must be able to reach the host you configured. Typical options include:
- Expose a public IP (and open the relevant port) on the machine that hosts LM Studio/Ollama.
- Configure router or cloud provider port forwarding.
- Tunnel traffic through tools like `tailscale`, `cloudflared`, or `ssh -R`.
When you set these options while building an index, LEANN stores them in `meta.json`. Any subsequent `leann ask` or searcher process automatically reuses the same provider settings even when we spawn background embedding servers. This makes the “server without GPU talking to my local workstation” workflow from [issue #80](https://github.com/yichuan-w/LEANN/issues/80#issuecomment-2287230548) work out-of-the-box.
**Tip:** If your runtime does not require an API key (many local stacks dont), leave `--api-key` unset. LEANN will skip injecting credentials.
### Python API Usage
You can pass the same configuration from Python:
```python
from leann.api import LeannBuilder
builder = LeannBuilder(
backend_name="hnsw",
embedding_mode="openai",
embedding_model="text-embedding-qwen3-embedding-0.6b",
embedding_options={
"base_url": "http://192.168.1.50:1234/v1",
"api_key": "local-dev-key",
},
)
builder.build_index("./indexes/my-notes", chunks)
```
`embedding_options` is persisted to the index `meta.json`, so subsequent `LeannSearcher` or `LeannChat` sessions automatically reuse the same provider settings (the embedding server manager forwards them to the provider for you).
## Optional Embedding Features
### Task-Specific Prompt Templates
Some embedding models are trained with task-specific prompts to differentiate between documents and queries. The most notable example is **Google's EmbeddingGemma**, which requires different prompts depending on the use case:
- **Indexing documents**: `"title: none | text: "`
- **Search queries**: `"task: search result | query: "`
LEANN supports automatic prompt prepending via the `--embedding-prompt-template` flag:
```bash
# Build index with EmbeddingGemma (via LM Studio or Ollama)
leann build my-docs \
--docs ./documents \
--embedding-mode openai \
--embedding-model text-embedding-embeddinggemma-300m-qat \
--embedding-api-base http://localhost:1234/v1 \
--embedding-prompt-template "title: none | text: " \
--force
# Search with query-specific prompt
leann search my-docs \
--query "What is quantum computing?" \
--embedding-prompt-template "task: search result | query: "
```
**Important Notes:**
- **Only use with compatible models**: EmbeddingGemma and similar task-specific models
- **NOT for regular models**: Adding prompts to models like `nomic-embed-text`, `text-embedding-3-small`, or `bge-base-en-v1.5` will corrupt embeddings
- **Template is saved**: Build-time templates are saved to `.meta.json` for reference
- **Flexible prompts**: You can use any prompt string, or leave it empty (`""`)
**Python API:**
```python
from leann.api import LeannBuilder
builder = LeannBuilder(
embedding_mode="openai",
embedding_model="text-embedding-embeddinggemma-300m-qat",
embedding_options={
"base_url": "http://localhost:1234/v1",
"api_key": "lm-studio",
"prompt_template": "title: none | text: ",
},
)
builder.build_index("./indexes/my-docs", chunks)
```
**References:**
- [HuggingFace Blog: EmbeddingGemma](https://huggingface.co/blog/embeddinggemma) - Technical details
### LM Studio Auto-Detection (Optional)
When using LM Studio with the OpenAI-compatible API, LEANN can optionally auto-detect model context lengths via the LM Studio SDK. This eliminates manual configuration for token limits.
**Prerequisites:**
```bash
# Install Node.js (if not already installed)
# Then install the LM Studio SDK globally
npm install -g @lmstudio/sdk
```
**How it works:**
1. LEANN detects LM Studio URLs (`:1234`, `lmstudio` in URL)
2. Queries model metadata via Node.js subprocess
3. Automatically unloads model after query (respects your JIT auto-evict settings)
4. Falls back to static registry if SDK unavailable
**No configuration needed** - it works automatically when SDK is installed:
```bash
leann build my-docs \
--docs ./documents \
--embedding-mode openai \
--embedding-model text-embedding-nomic-embed-text-v1.5 \
--embedding-api-base http://localhost:1234/v1
# Context length auto-detected if SDK available
# Falls back to registry (2048) if not
```
**Benefits:**
- ✅ Automatic token limit detection
- ✅ Respects LM Studio JIT auto-evict settings
- ✅ No manual registry maintenance
- ✅ Graceful fallback if SDK unavailable
**Note:** This is completely optional. LEANN works perfectly fine without the SDK using the built-in token limit registry.
## Index Selection: Matching Your Scale ## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World) ### HNSW (Hierarchical Navigable Small World)
@@ -454,7 +290,7 @@ leann search my-index "your query" \
### 2) Run remote builds with SkyPilot (cloud GPU) ### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://docs.skypilot.co/en/latest/docs/index.html). A template is provided at `sky/leann-build.yaml`. Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
```bash ```bash
# One-time: install and configure SkyPilot # One-time: install and configure SkyPilot
@@ -544,5 +380,5 @@ Conclusion:
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/) - [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276) - [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://suhasjs.github.io/files/diskann_neurips19.pdf) - [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN) - [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

View File

@@ -8,51 +8,3 @@ You can speed up the process by using a lightweight embedding model. Add this to
--embedding-model sentence-transformers/all-MiniLM-L6-v2 --embedding-model sentence-transformers/all-MiniLM-L6-v2
``` ```
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters) **Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
## 2. When should I use prompt templates?
**Use prompt templates ONLY with task-specific embedding models** like Google's EmbeddingGemma. These models are specially trained to use different prompts for documents vs queries.
**DO NOT use with regular models** like `nomic-embed-text`, `text-embedding-3-small`, or `bge-base-en-v1.5` - adding prompts to these models will corrupt the embeddings.
**Example usage with EmbeddingGemma:**
```bash
# Build with document prompt
leann build my-docs --embedding-prompt-template "title: none | text: "
# Search with query prompt
leann search my-docs --query "your question" --embedding-prompt-template "task: search result | query: "
```
See the [Configuration Guide: Task-Specific Prompt Templates](configuration-guide.md#task-specific-prompt-templates) for detailed usage.
## 3. Why is LM Studio loading multiple copies of my model?
This was fixed in recent versions. LEANN now properly unloads models after querying metadata, respecting your LM Studio JIT auto-evict settings.
**If you still see duplicates:**
- Update to the latest LEANN version
- Restart LM Studio to clear loaded models
- Check that you have JIT auto-evict enabled in LM Studio settings
**How it works now:**
1. LEANN loads model temporarily to get context length
2. Immediately unloads after query
3. LM Studio JIT loads model on-demand for actual embeddings
4. Auto-evicts per your settings
## 4. Do I need Node.js and @lmstudio/sdk?
**No, it's completely optional.** LEANN works perfectly fine without them using a built-in token limit registry.
**Benefits if you install it:**
- Automatic context length detection for LM Studio models
- No manual registry maintenance
- Always gets accurate token limits from the model itself
**To install (optional):**
```bash
npm install -g @lmstudio/sdk
```
See [Configuration Guide: LM Studio Auto-Detection](configuration-guide.md#lm-studio-auto-detection-optional) for details.

View File

@@ -1,149 +0,0 @@
# LEANN Grep Search Usage Guide
## Overview
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
## Basic Usage
### Simple Grep Search
```python
from leann.api import LeannSearcher
searcher = LeannSearcher("your_index_path")
# Exact text search
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:100]}...")
print("-" * 40)
```
### Comparison: Semantic vs Grep Search
```python
# Semantic search - finds conceptually similar content
semantic_results = searcher.search("machine learning algorithms", top_k=3)
# Grep search - finds exact text matches
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
```
## When to Use Grep Search
### Use Cases
- **Code Search**: Finding specific function definitions, class names, or variable references
- **Error Debugging**: Locating exact error messages or stack traces
- **Documentation**: Finding specific API endpoints or exact terminology
### Examples
```python
# Find function definitions
functions = searcher.search("def __init__", use_grep=True)
# Find import statements
imports = searcher.search("from sklearn import", use_grep=True)
# Find specific error types
errors = searcher.search("FileNotFoundError", use_grep=True)
# Find TODO comments
todos = searcher.search("TODO:", use_grep=True)
# Find configuration entries
configs = searcher.search("server_port=", use_grep=True)
```
## Technical Details
### How It Works
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
3. **Result Processing**: Parses JSON lines and extracts text and metadata
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
### Search Process
```
Query: "def train_model"
grep -i -n "def train_model" documents.leann.passages.jsonl
Parse matching JSON lines
Calculate scores based on term frequency
Return top_k results
```
### Scoring Algorithm
```python
# Term frequency in document
score = text.lower().count(query.lower())
```
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
## Error Handling
### Common Issues
#### Grep Command Not Found
```
RuntimeError: grep command not found. Please install grep or use semantic search.
```
**Solution**: Install grep on your system:
- **Ubuntu/Debian**: `sudo apt-get install grep`
- **macOS**: grep is pre-installed
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
#### No Results Found
```python
# Check if your query exists in the raw data
results = searcher.search("your_query", use_grep=True)
if not results:
print("No exact matches found. Try:")
print("1. Check spelling and case")
print("2. Use partial terms")
print("3. Switch to semantic search")
```
## Complete Example
```python
#!/usr/bin/env python3
"""
Grep Search Example
Demonstrates grep search for exact text matching.
"""
from leann.api import LeannSearcher
def demonstrate_grep_search():
# Initialize searcher
searcher = LeannSearcher("my_index")
print("=== Function Search ===")
functions = searcher.search("def __init__", use_grep=True, top_k=5)
for i, result in enumerate(functions, 1):
print(f"{i}. Score: {result.score}")
print(f" Preview: {result.text[:60]}...")
print()
print("=== Error Search ===")
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
for result in errors:
print(f"Content: {result.text.strip()}")
print("-" * 40)
if __name__ == "__main__":
demonstrate_grep_search()
```

View File

@@ -1,395 +0,0 @@
# Slack Integration Setup Guide
This guide provides step-by-step instructions for setting up Slack integration with LEANN.
## Overview
LEANN's Slack integration uses MCP (Model Context Protocol) servers to fetch and index your Slack messages for RAG (Retrieval-Augmented Generation). This allows you to search through your Slack conversations using natural language queries.
## Prerequisites
1. **Slack Workspace Access**: You need admin or owner permissions in your Slack workspace to create apps and configure OAuth tokens.
2. **Slack MCP Server**: Install a Slack MCP server (e.g., `slack-mcp-server` via npm)
3. **LEANN**: Ensure you have LEANN installed and working
## Step 1: Create a Slack App
### 1.1 Go to Slack API Dashboard
1. Visit [https://api.slack.com/apps](https://api.slack.com/apps)
2. Click **"Create New App"**
3. Choose **"From scratch"**
4. Enter your app name (e.g., "LEANN Slack Integration")
5. Select your workspace
6. Click **"Create App"**
### 1.2 Configure App Permissions
#### Token Scopes
1. In your app dashboard, go to **"OAuth & Permissions"** in the left sidebar
2. Scroll down to **"Scopes"** section
3. Under **"Bot Token Scopes & OAuth Scope"**, click **"Add an OAuth Scope"**
4. Add the following scopes:
- `channels:read` - Read public channel information
- `channels:history` - Read messages in public channels
- `groups:read` - Read private channel information
- `groups:history` - Read messages in private channels
- `im:read` - Read direct message information
- `im:history` - Read direct messages
- `mpim:read` - Read group direct message information
- `mpim:history` - Read group direct messages
- `users:read` - Read user information
- `team:read` - Read workspace information
#### App-Level Tokens (Optional)
Some MCP servers may require app-level tokens:
1. Go to **"Basic Information"** in the left sidebar
2. Scroll down to **"App-Level Tokens"**
3. Click **"Generate Token and Scopes"**
4. Enter a name (e.g., "LEANN Integration")
5. Add the `connections:write` scope
6. Click **"Generate"**
7. Copy the token (starts with `xapp-`)
### 1.3 Install App to Workspace
1. Go to **"OAuth & Permissions"** in the left sidebar
2. Click **"Install to Workspace"**
3. Review the permissions and click **"Allow"**
4. Copy the **"Bot User OAuth Token"** (starts with `xoxb-`)
5. Copy the **"User OAuth Token"** (starts with `xoxp-`)
## Step 2: Install Slack MCP Server
### Option A: Using npm (Recommended)
```bash
# Install globally
npm install -g slack-mcp-server
# Or install locally
npm install slack-mcp-server
```
### Option B: Using npx (No installation required)
```bash
# Use directly without installation
npx slack-mcp-server
```
## Step 3: Install and Configure Ollama (for Real LLM Responses)
### 3.1 Install Ollama
```bash
# Install Ollama using Homebrew (macOS)
brew install ollama
# Or download from https://ollama.ai/
```
### 3.2 Start Ollama Service
```bash
# Start Ollama as a service
brew services start ollama
# Or start manually
ollama serve
```
### 3.3 Pull a Model
```bash
# Pull a lightweight model for testing
ollama pull llama3.2:1b
# Verify the model is available
ollama list
```
## Step 4: Configure Environment Variables
Create a `.env` file or set environment variables:
```bash
# Required: User OAuth Token
SLACK_OAUTH_TOKEN=xoxp-your-user-oauth-token-here
# Optional: App-Level Token (if your MCP server requires it)
SLACK_APP_TOKEN=xapp-your-app-token-here
# Optional: Workspace-specific settings
SLACK_WORKSPACE_ID=T1234567890 # Your workspace ID (optional)
```
## Step 5: Test the Setup
### 5.1 Test MCP Server Connection
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--test-connection \
--workspace-name "Your Workspace Name"
```
This will test the connection and list available tools without indexing any data.
### 5.2 Index a Specific Channel
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Your Workspace Name" \
--channels general \
--query "What did we discuss about the project?"
```
### 5.3 Real RAG Query Examples
This section demonstrates successful Slack RAG integration queries against the Sky Lab Computing workspace's "random" channel. The system successfully retrieves actual conversation messages and performs semantic search with high relevance scores, including finding specific research paper announcements and technical discussions.
### Example 1: Advisor Models Query
**Query:** "train black-box models to adopt to your personal data"
This query demonstrates the system's ability to find specific research announcements about training black-box models for personal data adaptation.
![Advisor Models Query - Command Setup](videos/slack_integration_1.1.png)
![Advisor Models Query - Search Results](videos/slack_integration_1.2.png)
![Advisor Models Query - LLM Response](videos/slack_integration_1.3.png)
### Example 2: Barbarians at the Gate Query
**Query:** "AI-driven research systems ADRS"
This query demonstrates the system's ability to find specific research announcements about AI-driven research systems and algorithm discovery.
![Barbarians Query - Command Setup](videos/slack_integration_2.1.png)
![Barbarians Query - Search Results](videos/slack_integration_2.2.png)
![Barbarians Query - LLM Response](videos/slack_integration_2.3.png)
### Prerequisites
- Bot is installed in the Sky Lab Computing workspace and invited to the target channel (run `/invite @YourBotName` in the channel if needed)
- Bot token available and exported in the same terminal session
### Commands
1) Set the workspace token for this shell
```bash
export SLACK_MCP_XOXP_TOKEN="xoxp-***-redacted-***"
```
2) Run queries against the "random" channel by channel ID (C0GN5BX0F)
**Advisor Models Query:**
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Sky Lab Computing" \
--channels C0GN5BX0F \
--max-messages-per-channel 100000 \
--query "train black-box models to adopt to your personal data" \
--llm ollama \
--llm-model "llama3.2:1b" \
--llm-host "http://localhost:11434" \
--no-concatenate-conversations
```
**Barbarians at the Gate Query:**
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Sky Lab Computing" \
--channels C0GN5BX0F \
--max-messages-per-channel 100000 \
--query "AI-driven research systems ADRS" \
--llm ollama \
--llm-model "llama3.2:1b" \
--llm-host "http://localhost:11434" \
--no-concatenate-conversations
```
These examples demonstrate the system's ability to find and retrieve specific research announcements and technical discussions from the conversation history, showcasing the power of semantic search in Slack data.
3) Optional: Ask a broader question
```bash
python test_channel_by_id_or_name.py \
--channel-id C0GN5BX0F \
--workspace-name "Sky Lab Computing" \
--query "What is LEANN about?"
```
Notes:
- If you see `not_in_channel`, invite the bot to the channel and re-run.
- If you see `channel_not_found`, confirm the channel ID and workspace.
- Deep search via server-side “search” tools may require additional Slack scopes; the example above performs client-side filtering over retrieved history.
## Common Issues and Solutions
### Issue 1: "users cache is not ready yet" Error
**Problem**: You see this warning:
```
WARNING - Failed to fetch messages from channel random: Failed to fetch messages: {'code': -32603, 'message': 'users cache is not ready yet, sync process is still running... please wait'}
```
**Solution**: This is a common timing issue. The LEANN integration now includes automatic retry logic:
1. **Wait and Retry**: The system will automatically retry with exponential backoff (2s, 4s, 8s, etc.)
2. **Increase Retry Parameters**: If needed, you can customize retry behavior:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--max-retries 10 \
--retry-delay 3.0 \
--channels general \
--query "Your query here"
```
3. **Keep MCP Server Running**: Start the MCP server separately and keep it running:
```bash
# Terminal 1: Start MCP server
slack-mcp-server
# Terminal 2: Run LEANN (it will connect to the running server)
python -m apps.slack_rag --mcp-server "slack-mcp-server" --channels general --query "test"
```
### Issue 2: "No message fetching tool found"
**Problem**: The MCP server doesn't have the expected tools.
**Solution**:
1. Check if your MCP server is properly installed and configured
2. Verify your Slack tokens are correct
3. Try a different MCP server implementation
4. Check the MCP server documentation for required configuration
### Issue 3: Permission Denied Errors
**Problem**: You get permission errors when trying to access channels.
**Solutions**:
1. **Check Bot Permissions**: Ensure your bot has been added to the channels you want to access
2. **Verify Token Scopes**: Make sure you have all required scopes configured
3. **Channel Access**: For private channels, the bot needs to be explicitly invited
4. **Workspace Permissions**: Ensure your Slack app has the necessary workspace permissions
### Issue 4: Empty Results
**Problem**: No messages are returned even though the channel has messages.
**Solutions**:
1. **Check Channel Names**: Ensure channel names are correct (without the # symbol)
2. **Verify Bot Access**: Make sure the bot can access the channels
3. **Check Date Ranges**: Some MCP servers have limitations on message history
4. **Increase Message Limits**: Try increasing the message limit:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--channels general \
--max-messages-per-channel 1000 \
--query "test"
```
## Advanced Configuration
### Custom MCP Server Commands
If you need to pass additional parameters to your MCP server:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server --token-file /path/to/tokens.json" \
--workspace-name "Your Workspace" \
--channels general \
--query "Your query"
```
### Multiple Workspaces
To work with multiple Slack workspaces, you can:
1. Create separate apps for each workspace
2. Use different environment variables
3. Run separate instances with different configurations
### Performance Optimization
For better performance with large workspaces:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Your Workspace" \
--max-messages-per-channel 500 \
--no-concatenate-conversations \
--query "Your query"
```
---
## Troubleshooting Checklist
- [ ] Slack app created with proper permissions
- [ ] Bot token (xoxb-) copied correctly
- [ ] App-level token (xapp-) created if needed
- [ ] MCP server installed and accessible
- [ ] Ollama installed and running (`brew services start ollama`)
- [ ] Ollama model pulled (`ollama pull llama3.2:1b`)
- [ ] Environment variables set correctly
- [ ] Bot invited to relevant channels
- [ ] Channel names specified without # symbol
- [ ] Sufficient retry attempts configured
- [ ] Network connectivity to Slack APIs
## Getting Help
If you continue to have issues:
1. **Check Logs**: Look for detailed error messages in the console output
2. **Test MCP Server**: Use `--test-connection` to verify the MCP server is working
3. **Verify Tokens**: Double-check that your Slack tokens are valid and have the right scopes
4. **Check Ollama**: Ensure Ollama is running (`ollama serve`) and the model is available (`ollama list`)
5. **Community Support**: Reach out to the LEANN community for help
## Example Commands
### Basic Usage
```bash
# Test connection
python -m apps.slack_rag --mcp-server "slack-mcp-server" --test-connection
# Index specific channels
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "My Company" \
--channels general random \
--query "What did we decide about the project timeline?"
```
### Advanced Usage
```bash
# With custom retry settings
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "My Company" \
--channels general \
--max-retries 10 \
--retry-delay 5.0 \
--max-messages-per-channel 2000 \
--query "Show me all decisions made in the last month"
```

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 445 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 508 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 437 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 474 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 501 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 454 KiB

View File

View File

@@ -1,429 +0,0 @@
"""Dynamic HNSW update demo without compact storage.
This script reproduces the minimal scenario we used while debugging on-the-fly
recompute:
1. Build a non-compact HNSW index from the first few paragraphs of a text file.
2. Print the top results with `recompute_embeddings=True`.
3. Append additional paragraphs with :meth:`LeannBuilder.update_index`.
4. Run the same query again to show the newly inserted passages.
Run it with ``uv`` (optionally pointing LEANN_HNSW_LOG_PATH at a file to inspect
ZMQ activity)::
LEANN_HNSW_LOG_PATH=embedding_fetch.log \
uv run -m examples.dynamic_update_no_recompute \
--index-path .leann/examples/leann-demo.leann
By default the script builds an index from ``data/2501.14312v1 (1).pdf`` and
then updates it with LEANN-related material from ``data/2506.08276v1.pdf``.
It issues the query "What's LEANN?" before and after the update to show how the
new passages become immediately searchable. The script uses the
``sentence-transformers/all-MiniLM-L6-v2`` model with ``is_recompute=True`` so
Faiss pulls existing vectors on demand via the ZMQ embedding server, while
freshly added passages are embedded locally just like the initial build.
To make storage comparisons easy, the script can also build a matching
``is_recompute=False`` baseline (enabled by default) and report the index size
delta after the update. Disable the baseline run with
``--skip-compare-no-recompute`` if you only need the recompute flow.
"""
import argparse
import json
from collections.abc import Iterable
from pathlib import Path
from typing import Any
from leann.api import LeannBuilder, LeannSearcher
from leann.registry import register_project_directory
from apps.chunking import create_text_chunks
REPO_ROOT = Path(__file__).resolve().parents[1]
DEFAULT_QUERY = "What's LEANN?"
DEFAULT_INITIAL_FILES = [
REPO_ROOT / "data" / "2501.14312v1 (1).pdf",
REPO_ROOT / "data" / "huawei_pangu.md",
REPO_ROOT / "data" / "PrideandPrejudice.txt",
]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
def load_chunks_from_files(paths: list[Path]) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
return [c for c in chunks if isinstance(c, str) and c.strip()]
def run_search(index_path: Path, query: str, top_k: int, *, recompute_embeddings: bool) -> list:
searcher = LeannSearcher(str(index_path))
try:
return searcher.search(
query=query,
top_k=top_k,
recompute_embeddings=recompute_embeddings,
batch_size=16,
)
finally:
searcher.cleanup()
def print_results(title: str, results: Iterable) -> None:
print(f"\n=== {title} ===")
res_list = list(results)
print(f"results count: {len(res_list)}")
print("passages:")
if not res_list:
print(" (no passages returned)")
for res in res_list:
snippet = res.text.replace("\n", " ")[:120]
print(f" - {res.id}: {snippet}... (score={res.score:.4f})")
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=is_recompute,
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def update_index(
index_path: Path,
start_id: int,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
) -> None:
updater = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=is_recompute,
)
for offset, passage in enumerate(paragraphs, start=start_id):
updater.add_text(passage, metadata={"id": str(offset)})
updater.update_index(str(index_path))
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
"""Remove leftover index artifacts for a clean rebuild."""
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def index_file_size(index_path: Path) -> int:
"""Return the size of the primary .index file for the given index path."""
index_file = index_path.parent / f"{index_path.stem}.index"
return index_file.stat().st_size if index_file.exists() else 0
def load_metadata_snapshot(index_path: Path) -> dict[str, Any] | None:
meta_path = index_path.parent / f"{index_path.name}.meta.json"
if not meta_path.exists():
return None
try:
return json.loads(meta_path.read_text())
except json.JSONDecodeError:
return None
def run_workflow(
*,
label: str,
index_path: Path,
initial_paragraphs: list[str],
update_paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
query: str,
top_k: int,
skip_search: bool,
) -> dict[str, Any]:
prefix = f"[{label}] " if label else ""
ensure_index_dir(index_path)
cleanup_index_files(index_path)
print(f"{prefix}Building initial index...")
build_initial_index(
index_path,
initial_paragraphs,
model_name,
embedding_mode,
is_recompute=is_recompute,
)
initial_size = index_file_size(index_path)
if not skip_search:
before_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
else:
before_results = None
print(f"\n{prefix}Updating index with additional passages...")
update_index(
index_path,
start_id=len(initial_paragraphs),
paragraphs=update_paragraphs,
model_name=model_name,
embedding_mode=embedding_mode,
is_recompute=is_recompute,
)
if not skip_search:
after_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
else:
after_results = None
updated_size = index_file_size(index_path)
return {
"initial_size": initial_size,
"updated_size": updated_size,
"delta": updated_size - initial_size,
"before_results": before_results if not skip_search else None,
"after_results": after_results if not skip_search else None,
"metadata": load_metadata_snapshot(index_path),
}
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--initial-files",
type=Path,
nargs="+",
default=DEFAULT_INITIAL_FILES,
help="Initial document files (PDF/TXT) used to build the base index",
)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/examples/leann-demo.leann"),
help="Destination index path (default: .leann/examples/leann-demo.leann)",
)
parser.add_argument(
"--initial-count",
type=int,
default=8,
help="Number of chunks to use from the initial documents (default: 8)",
)
parser.add_argument(
"--update-files",
type=Path,
nargs="*",
default=DEFAULT_UPDATE_FILES,
help="Additional documents to add during update (PDF/TXT)",
)
parser.add_argument(
"--update-count",
type=int,
default=4,
help="Number of chunks to append from update documents (default: 4)",
)
parser.add_argument(
"--update-text",
type=str,
default=(
"LEANN (Lightweight Embedding ANN) is an indexing toolkit focused on "
"recompute-aware HNSW graphs, allowing embeddings to be regenerated "
"on demand to keep disk usage minimal."
),
help="Fallback text to append if --update-files is omitted",
)
parser.add_argument(
"--top-k",
type=int,
default=4,
help="Number of results to show for each search (default: 4)",
)
parser.add_argument(
"--query",
type=str,
default=DEFAULT_QUERY,
help="Query to run before/after the update",
)
parser.add_argument(
"--embedding-model",
type=str,
default="sentence-transformers/all-MiniLM-L6-v2",
help="Embedding model name",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)
parser.add_argument(
"--compare-no-recompute",
dest="compare_no_recompute",
action="store_true",
help="Also run a baseline with is_recompute=False and report its index growth.",
)
parser.add_argument(
"--skip-compare-no-recompute",
dest="compare_no_recompute",
action="store_false",
help="Skip building the no-recompute baseline.",
)
parser.add_argument(
"--skip-search",
dest="skip_search",
action="store_true",
help="Skip the search step.",
)
parser.set_defaults(compare_no_recompute=True)
args = parser.parse_args()
ensure_index_dir(args.index_path)
register_project_directory(REPO_ROOT)
initial_chunks = load_chunks_from_files(list(args.initial_files))
if not initial_chunks:
raise ValueError("No text chunks extracted from the initial files.")
initial = initial_chunks[: args.initial_count]
if not initial:
raise ValueError("Initial chunk set is empty after applying --initial-count.")
if args.update_files:
update_chunks = load_chunks_from_files(list(args.update_files))
if not update_chunks:
raise ValueError("No text chunks extracted from the update files.")
to_add = update_chunks[: args.update_count]
else:
if not args.update_text:
raise ValueError("Provide --update-files or --update-text for the update step.")
to_add = [args.update_text]
if not to_add:
raise ValueError("Update chunk set is empty after applying --update-count.")
recompute_stats = run_workflow(
label="recompute",
index_path=args.index_path,
initial_paragraphs=initial,
update_paragraphs=to_add,
model_name=args.embedding_model,
embedding_mode=args.embedding_mode,
is_recompute=True,
query=args.query,
top_k=args.top_k,
skip_search=args.skip_search,
)
if not args.skip_search:
print_results("initial search", recompute_stats["before_results"])
if not args.skip_search:
print_results("after update", recompute_stats["after_results"])
print(
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
f"{recompute_stats['delta']})"
)
if recompute_stats["metadata"]:
meta_view = {k: recompute_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
print("[recompute] metadata snapshot:")
print(json.dumps(meta_view, indent=2))
if args.compare_no_recompute:
baseline_path = (
args.index_path.parent / f"{args.index_path.stem}-norecompute{args.index_path.suffix}"
)
baseline_stats = run_workflow(
label="no-recompute",
index_path=baseline_path,
initial_paragraphs=initial,
update_paragraphs=to_add,
model_name=args.embedding_model,
embedding_mode=args.embedding_mode,
is_recompute=False,
query=args.query,
top_k=args.top_k,
skip_search=args.skip_search,
)
print(
f"\n[no-recompute] Index file size change: {baseline_stats['initial_size']} -> {baseline_stats['updated_size']} bytes"
f"{baseline_stats['delta']})"
)
after_texts = (
[res.text for res in recompute_stats["after_results"]] if not args.skip_search else None
)
baseline_after_texts = (
[res.text for res in baseline_stats["after_results"]] if not args.skip_search else None
)
if after_texts == baseline_after_texts:
print(
"[no-recompute] Search results match recompute baseline; see above for the shared output."
)
else:
print("[no-recompute] WARNING: search results differ from recompute baseline.")
if baseline_stats["metadata"]:
meta_view = {k: baseline_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
print("[no-recompute] metadata snapshot:")
print(json.dumps(meta_view, indent=2))
if __name__ == "__main__":
main()

View File

@@ -1,35 +0,0 @@
"""
Grep Search Example
Shows how to use grep-based text search instead of semantic search.
Useful when you need exact text matches rather than meaning-based results.
"""
from leann import LeannSearcher
# Load your index
searcher = LeannSearcher("my-documents.leann")
# Regular semantic search
print("=== Semantic Search ===")
results = searcher.search("machine learning algorithms", top_k=3)
for result in results:
print(f"Score: {result.score:.3f}")
print(f"Text: {result.text[:80]}...")
print()
# Grep-based search for exact text matches
print("=== Grep Search ===")
results = searcher.search("def train_model", top_k=3, use_grep=True)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:80]}...")
print()
# Find specific error messages
error_results = searcher.search("FileNotFoundError", use_grep=True)
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
# Search for function definitions
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
print(f"Found {len(func_results)} class definitions")

View File

@@ -1,178 +0,0 @@
#!/usr/bin/env python3
"""
MCP Integration Examples for LEANN
This script demonstrates how to use LEANN with different MCP servers for
RAG on various platforms like Slack and Twitter.
Examples:
1. Slack message RAG via MCP
2. Twitter bookmark RAG via MCP
3. Testing MCP server connections
"""
import asyncio
import sys
from pathlib import Path
# Add the parent directory to the path so we can import from apps
sys.path.append(str(Path(__file__).parent.parent))
async def demo_slack_mcp():
"""Demonstrate Slack MCP integration."""
print("=" * 60)
print("🔥 Slack MCP RAG Demo")
print("=" * 60)
print("\n1. Testing Slack MCP server connection...")
# This would typically use a real MCP server command
# For demo purposes, we show what the command would look like
# slack_app = SlackMCPRAG() # Would be used for actual testing
# Simulate command line arguments for testing
class MockArgs:
mcp_server = "slack-mcp-server" # This would be the actual MCP server command
workspace_name = "my-workspace"
channels = ["general", "random", "dev-team"]
no_concatenate_conversations = False
max_messages_per_channel = 50
test_connection = True
print(f"MCP Server Command: {MockArgs.mcp_server}")
print(f"Workspace: {MockArgs.workspace_name}")
print(f"Channels: {', '.join(MockArgs.channels)}")
# In a real scenario, you would run:
# success = await slack_app.test_mcp_connection(MockArgs)
print("\n📝 Example usage:")
print("python -m apps.slack_rag \\")
print(" --mcp-server 'slack-mcp-server' \\")
print(" --workspace-name 'my-team' \\")
print(" --channels general dev-team \\")
print(" --test-connection")
print("\n🔍 After indexing, you could query:")
print("- 'What did the team discuss about the project deadline?'")
print("- 'Find messages about the new feature launch'")
print("- 'Show me conversations about budget planning'")
async def demo_twitter_mcp():
"""Demonstrate Twitter MCP integration."""
print("\n" + "=" * 60)
print("🐦 Twitter MCP RAG Demo")
print("=" * 60)
print("\n1. Testing Twitter MCP server connection...")
# twitter_app = TwitterMCPRAG() # Would be used for actual testing
class MockArgs:
mcp_server = "twitter-mcp-server"
username = None # Fetch all bookmarks
max_bookmarks = 500
no_tweet_content = False
no_metadata = False
test_connection = True
print(f"MCP Server Command: {MockArgs.mcp_server}")
print(f"Max Bookmarks: {MockArgs.max_bookmarks}")
print(f"Include Content: {not MockArgs.no_tweet_content}")
print(f"Include Metadata: {not MockArgs.no_metadata}")
print("\n📝 Example usage:")
print("python -m apps.twitter_rag \\")
print(" --mcp-server 'twitter-mcp-server' \\")
print(" --max-bookmarks 1000 \\")
print(" --test-connection")
print("\n🔍 After indexing, you could query:")
print("- 'What AI articles did I bookmark last month?'")
print("- 'Find tweets about machine learning techniques'")
print("- 'Show me bookmarked threads about startup advice'")
async def show_mcp_server_setup():
"""Show how to set up MCP servers."""
print("\n" + "=" * 60)
print("⚙️ MCP Server Setup Guide")
print("=" * 60)
print("\n🔧 Setting up Slack MCP Server:")
print("1. Install a Slack MCP server (example commands):")
print(" npm install -g slack-mcp-server")
print(" # OR")
print(" pip install slack-mcp-server")
print("\n2. Configure Slack credentials:")
print(" export SLACK_BOT_TOKEN='xoxb-your-bot-token'")
print(" export SLACK_APP_TOKEN='xapp-your-app-token'")
print("\n3. Test the server:")
print(" slack-mcp-server --help")
print("\n🔧 Setting up Twitter MCP Server:")
print("1. Install a Twitter MCP server:")
print(" npm install -g twitter-mcp-server")
print(" # OR")
print(" pip install twitter-mcp-server")
print("\n2. Configure Twitter API credentials:")
print(" export TWITTER_API_KEY='your-api-key'")
print(" export TWITTER_API_SECRET='your-api-secret'")
print(" export TWITTER_ACCESS_TOKEN='your-access-token'")
print(" export TWITTER_ACCESS_TOKEN_SECRET='your-access-token-secret'")
print("\n3. Test the server:")
print(" twitter-mcp-server --help")
async def show_integration_benefits():
"""Show the benefits of MCP integration."""
print("\n" + "=" * 60)
print("🌟 Benefits of MCP Integration")
print("=" * 60)
benefits = [
("🔄 Live Data Access", "Fetch real-time data from platforms without manual exports"),
("🔌 Standardized Protocol", "Use any MCP-compatible server with minimal code changes"),
("🚀 Easy Extension", "Add new platforms by implementing MCP readers"),
("🔒 Secure Access", "MCP servers handle authentication and API management"),
("📊 Rich Metadata", "Access full platform metadata (timestamps, engagement, etc.)"),
("⚡ Efficient Processing", "Stream data directly into LEANN without intermediate files"),
]
for title, description in benefits:
print(f"\n{title}")
print(f" {description}")
async def main():
"""Main demo function."""
print("🎯 LEANN MCP Integration Examples")
print("This demo shows how to integrate LEANN with MCP servers for various platforms.")
await demo_slack_mcp()
await demo_twitter_mcp()
await show_mcp_server_setup()
await show_integration_benefits()
print("\n" + "=" * 60)
print("✨ Next Steps")
print("=" * 60)
print("1. Install and configure MCP servers for your platforms")
print("2. Test connections using --test-connection flag")
print("3. Run indexing to build your RAG knowledge base")
print("4. Start querying your personal data!")
print("\n📚 For more information:")
print("- Check the README for detailed setup instructions")
print("- Look at the apps/slack_rag.py and apps/twitter_rag.py for implementation details")
print("- Explore other MCP servers for additional platforms")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,28 +0,0 @@
# llms.txt — LEANN MCP and Agent Integration
product: LEANN
homepage: https://github.com/yichuan-w/LEANN
contact: https://github.com/yichuan-w/LEANN/issues
# Installation
install: uv tool install leann-core --with leann
# MCP Server Entry Point
mcp.server: leann_mcp
mcp.protocol_version: 2024-11-05
# Tools
mcp.tools: leann_list, leann_search
mcp.tool.leann_list.description: List available LEANN indexes
mcp.tool.leann_list.input: {}
mcp.tool.leann_search.description: Semantic search across a named LEANN index
mcp.tool.leann_search.input.index_name: string, required
mcp.tool.leann_search.input.query: string, required
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
# Notes
note: Build indexes with `leann build <name> --docs <files...>` before searching.
example.add: claude mcp add --scope user leann-server -- leann_mcp
example.verify: claude mcp list | cat

View File

@@ -343,8 +343,7 @@ class DiskannSearcher(BaseSearcher):
"full_index_prefix": full_index_prefix, "full_index_prefix": full_index_prefix,
"num_threads": self.num_threads, "num_threads": self.num_threads,
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0), "num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
# 1 -> initialize cache using sample_data; 2 -> ready cache without init; others disable cache "cache_mechanism": 1,
"cache_mechanism": kwargs.get("cache_mechanism", 1),
"pq_prefix": "", "pq_prefix": "",
"partition_prefix": partition_prefix, "partition_prefix": partition_prefix,
} }

View File

@@ -10,7 +10,7 @@ import sys
import threading import threading
import time import time
from pathlib import Path from pathlib import Path
from typing import Any, Optional from typing import Optional
import numpy as np import numpy as np
import zmq import zmq
@@ -32,16 +32,6 @@ if not logger.handlers:
logger.propagate = False logger.propagate = False
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
try:
PROVIDER_OPTIONS: dict[str, Any] = (
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
)
except json.JSONDecodeError:
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
PROVIDER_OPTIONS = {}
def create_diskann_embedding_server( def create_diskann_embedding_server(
passages_file: Optional[str] = None, passages_file: Optional[str] = None,
zmq_port: int = 5555, zmq_port: int = 5555,
@@ -191,12 +181,7 @@ def create_diskann_embedding_server(
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5 logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
# Process embeddings using unified computation # Process embeddings using unified computation
embeddings = compute_embeddings( embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
texts,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
logger.info( logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}" f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
) )
@@ -311,12 +296,7 @@ def create_diskann_embedding_server(
continue continue
# Process the request # Process the request
embeddings = compute_embeddings( embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
texts,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
logger.info(f"Computed embeddings shape: {embeddings.shape}") logger.info(f"Computed embeddings shape: {embeddings.shape}")
# Validation # Validation

View File

@@ -1,11 +1,11 @@
[build-system] [build-system]
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy", "cmake>=3.30"] requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy"]
build-backend = "scikit_build_core.build" build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-diskann" name = "leann-backend-diskann"
version = "0.3.5" version = "0.3.2"
dependencies = ["leann-core==0.3.5", "numpy", "protobuf>=3.19.0"] dependencies = ["leann-core==0.3.2", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build] [tool.scikit-build]
# Key: simplified CMake path # Key: simplified CMake path

View File

@@ -29,25 +29,12 @@ if(APPLE)
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version") set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
endif() endif()
# Find ZMQ using pkg-config with IMPORTED_TARGET for automatic target creation # Use system ZeroMQ instead of building from source
find_package(PkgConfig REQUIRED) find_package(PkgConfig REQUIRED)
pkg_check_modules(ZMQ REQUIRED libzmq)
# On ARM64 macOS, ensure pkg-config finds ARM64 Homebrew packages first
if(APPLE AND CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
set(ENV{PKG_CONFIG_PATH} "/opt/homebrew/lib/pkgconfig:/opt/homebrew/share/pkgconfig:$ENV{PKG_CONFIG_PATH}")
endif()
pkg_check_modules(ZMQ REQUIRED IMPORTED_TARGET libzmq)
# This creates PkgConfig::ZMQ target automatically with correct properties
if(TARGET PkgConfig::ZMQ)
message(STATUS "Found and configured ZMQ target: PkgConfig::ZMQ")
else()
message(FATAL_ERROR "pkg_check_modules did not create IMPORTED target for ZMQ.")
endif()
# Add cppzmq headers # Add cppzmq headers
include_directories(SYSTEM third_party/cppzmq) include_directories(third_party/cppzmq)
# Configure msgpack-c - disable boost dependency # Configure msgpack-c - disable boost dependency
set(MSGPACK_USE_BOOST OFF CACHE BOOL "" FORCE) set(MSGPACK_USE_BOOST OFF CACHE BOOL "" FORCE)
@@ -62,28 +49,9 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE) set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE) set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
# Disable x86-specific SIMD optimizations (important for ARM64 compatibility) # Disable additional SIMD versions to speed up compilation
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE) set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE) set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
# ARM64-specific configuration
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
message(STATUS "Configuring Faiss for ARM64 architecture")
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
else()
# Use generic optimization for other ARM64 platforms (like macOS)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
endif()
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
message(STATUS "Using ARM64-compatible Faiss submodule")
endif()
# Additional optimization options from INSTALL.md # Additional optimization options from INSTALL.md
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE) set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)

Some files were not shown because too many files have changed in this diff Show More